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We discuss, from a group point of view the angular momentum states that arise for

N electrons on a Haldane sphere containing at the center a magnetic monopole.

Angular momentum shells associated with large effective one electron angular mo-

mentum ℓn arise. For large N the multiplicities have a Wigner-type distribution.

Many of the properties of such a distribution can be quite closely represented in

terms of simple group properties. Furthermore simple relationships exist between

certain totally symmetric boson states and totally antisymmetric fermion states.

1 Introduction

The theory of symmetric functions and of Lie groups plays an essential role
in our understanding of the fractional quantum Hall effect. Here we first
outline some properties of some very particular irreducible representations of
the special unitary groups, SUk, that are of direct significance in mappings
of boson states to fermion states. We then discuss their statistical properties
when k and the number of particles become large. Finally we review some
combinatorial properties of the Laughlin wavefunctions.

2 Dimensions in SUk

We shall focus on two types of irreducible representations of SUk, the sym-
metric {p} and antisymmetric {1p} representations that respectively can be
associated with boson and fermion states for p particles. The dimensions of
these irreducible representations can be written as:-

Dk({p}) =

(

k + p − 1
k − 1

)

= (k+p−1)!
(k−1)!p! (1)

Dk({1p}) =

(

k
p

)

= k!
(k−p)!p! (2)

The following specialisations are to be noted:-
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D({n}) =

(

m + 1
m − n + 1

)

=

(

m + 1
n

)

(k = m − n + 2, p = n) or (k = n + 1, p = m + 1 − n) (3)

D({1n}) =

(

m + 1
n

)

(k = m + 1, p = n) or (k = m + 1, p = m + 1 − n) (4)

Suppose we have Bosons (B) and Fermions (F) with single particle angular
momenta

ℓB =
m − n + 1

2
, ℓ′B =

n

2
, ℓF =

m

2
(5)

The many-boson states will be totally symmetric while those of the many-
fermion states will be totally antisymmetric. Eqns (3) and (4) imply the
Hilbert space dimensional equalities

Dim(ℓB
n)S = Dim(ℓ′B

m+1−n
)S = Dim(ℓF

n)A = Dim(ℓF
m+1−n)A (6)

It is already clear that these are associated with very special irreducible repre-
sentations. Do they have relevant properties that go beyond mere dimensional
equalities?

3 The Second-order Casimir Invariants C2 in SUk

These may be calculated directly by specialisation of results given elsewhere1

to give:-

C2({p}) = p(p+k)(k−1)
2k2 (7)

C2({1p}) = p(k+1)(k−p)
2k2 (8)

These results can be specialised to give

C2({n}) = n(m+2)(m−n+1)
2(m−n+2)2 k = m − n + 2, p = n (9)

C2({n}) = n(m+2)(m−n+1)
2(n+1)2 k = n + 1, p = m + 1 − n (10)

C2({1n}) = n(m+2)(m−n+1)
2(m+1)2 k = m + 1, p = n (11)
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C2({1n}) = n(m+2)(m−n+1)
2(m+1)2 k = m + 1, p = m + 1 − n (12)

Recall that the Casimir invariant is defined up to an overall normalisation.

4 The Second-order Dynkin Index I2 for SUk

We have1

I2({λ} = NkDk({λ}) × C2({λ}) (13)

where Nk is a normalisation constant and hence for SUk

I2({p}) = Nk
(k+p−1)!
(k−1)!p! × p(p+k)(k−1)

2k2 (14)

I2({1p}) = Nk
k!

(k−p)!p! ×
p(k+1)(k−p)

2k2 (15)

(16)

Under the reduction SUk → SO3 we consider for the vector irreducible
representation {1} of SUk the decomposition

{1} → [
k − 1

2
] = [j] (17)

Let us define the Dynkin index for a SO3 irreducible representation [j] as

I2([j]) = j(j + 1)(2j + 1) (18)

and fix the normalisation constant Nk so as to match the Dynkin index of the
vector irreducible representation {1} of SUk. This gives

Nk =
k2

2
(19)

and hence

I2({p}) = (k+p)!
4(k−2)!(p−1)! (20)

I2({1p}) = (k+1)!
4(k−p−1)!(p−1)! (21)

leading to the specialisations:-

I2({n}) = (m+2)!
4(m−n)!(n−1)!

(k = m − n + 2, p = n)or (k = n + 1, p = m + 1 − n) (22)

I2({1n}) = (m+2)!
4(m−n)!(n−1)!
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(k = m + 1, p = n)or (k = m + 1, p = m + 1 − n) (23)

Thus the Dynkin index is the same for both irreducible representations.
Thus the dimensional equalities seen in Eq.(6) are also reflected in the equal-
ities of their Dynkin index.

5 SUk → SO3 branching rules and Gl2 plethysms

The above observations then raise the question “Do the irreducible represen-
tations of SUk that have the same dimension and Dynkin index have the same
SUk → SO3 decomposition when the embedding is defined as in Eq.(17)?”

For convenience let us introduce

j =
k − 1

2
(24)

as a single particle angular momentum that may be an integer or half-integer
as k is respectively an odd or even integer. Then for an arbitrary irreducible
representation {λ} of SUk the decomposition is given by the plethysm2,3

{λ} → [j] ⊗ {λ} =
∑

J

gλJ [J ] (25)

where λJ is the multiplicity, i.e. the number of times the SO3 irreducible
representation [J ] occurs in the decomposition.

Littlewood4 has exploited the isomorphism between the representations
[µ] of the ternary orthogonal group and the representations {2µ} of the binary
full linear group to evaluate such plethysms. Each partition into two parts
{µ1, µ2}, which arises in the binary analysis of the plethysm, may be converted
into a partition into just one part by making use of the equivalence

{µ1, µ2} ≡ {µ1 − µ2} (26)

Thus, the character decompositions under SUk → SO3 may be found by
simply replacing the characters {2µ} that arise in the plethysms {2j} ⊗ {λ}
by the characters [µ] of SO3.

Hermite’s reciprocity law3,5,6 plays a key role in what follows. Hermite’s
law states that5 “the number of invariants and covariants of degree m of a
binary form of degree n is the same as the number of invariants and covariants
of degree n of a binary form of degree m.” In terms of plethysm, this is
equivalent to the statement that the binary analysis of the plethysms {m} ⊗
{n} and {n} ⊗ {m} for the linear group of any dimension coincide, thus in
Gl2,

{m} ⊗ {n} = {n} ⊗ {m} (27)

fhe: submitted to World Scientific on August 9, 2000 4



The analysis of the plethysm {m}⊗{n} may be identified with the totally
symmetric states of a system of identical particles, each of angular momen-
tum m

2 while the plethysm {m} ⊗ {1n} may be identified with the totally
antisymmetric states of a system of identical particles, also each of angular
momentum m

2 .
Murnaghan7 has shown that in the case of the binary full linear group,

Hermite’s reciprocity principle leads naturally to the identity

{m} ⊗ {1n} = {m + 1 − n} ⊗ {n}, m + 1 ≥ n (28)

This result gives a direct link between the totally antisymmetric states of n
identical particles of angular momentum m

2 , and the totally symmetric states
of n identical particles each having angular momentum m+1−n

2 .
Use of Eq.(26) on the right-hand-side of Eq.(27) then gives

{m} ⊗ {1n} = {n} ⊗ {m + 1 − n}, m + 1 ≥ n (29)

from which we conclude that the totally antisymmetric states of n identi-
cal particles each of angular momentum m

2 , are the same as for the totally
symmetric states of m + 1 − n identical particles each of angular momentum
n
2 .

Use of Eq.(26) again in Eq.(27) gives

{m} ⊗ {1n} = {m} ⊗ {1m+1−n} (30)

corresponding to a particle-hole symmetry for fermions.

6 Equivalences among Bosonic and Fermionic States

The above results show that the dimensional equalities found in Eq.(6) extend
not only to equalities of the Dynkin index of their associated special unitary
group representations but also that there is a one-to-one correspondence be-
tween there angular momentum states at the SO3 level. This also implies
that the distribution of the states is the same for these particular irreducible
representations independently of whether they are associated with bosons or
fermions.

7 Statistical Distribution of States

Nearly thirty years ago8 my second year physics student, John Cleary, and
I considered the distribution of the number of states D(L) as a function of
the total angular momentum L associated with the states of maximal spin
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of a configuration ℓN of N electrons occupying equivalent orbitals of angu-
lar momentum ℓ. This was a natural outgrowth earlier work with Norbert
Rosenzweig9 which led me to study the statistical properties of the distri-
bution energy levels of the lanthanides and actinides10 where the Wigner
distribution plays a key role11,12.

Cleary and I found that indeed for sufficiently large ℓ and N the states
are distributed according to a Wigner-type distribution

D(L) =
∑

i

Ai(L +
1

2
) exp[−(L +

1

2
)2/2σ2

i ] (31)

or, to a lesser approximation as a single Wigner distribution

D(L) = A(L +
1

2
) exp[−(L +

1

2
)2/2σ2] (32)

This study was later extended13 but it seemed, at the time, to be largely a
curiosity with no applications. Relevance has come with the need to under-
stand certain aspects of the fractional quantum Hall effect where the size of
the Hilbert space can become very large as the electron angular momentum
can become very large14. In those cases rather than carrying out the explicit
group subgroup decompositions we can take to a very good approximation
the Wigner type distribution13

gJ = A(J +
1

2
) exp[−(J +

1

2
)2/2σ2] (33)

integrating we have

∑

J

gJ = A

∫ ∞

0

(J +
1

2
) exp[−(J +

1

2
)2/2σ2]dJ = Aσ2 (34)

which is simply the sum of the multiplicities.
Likewise

∑

J

(2J + 1)gJ = Aσ3
√

2π (35)

∑

J

J(J + 1)(2J + 1)gJ = Aσ3
√

2π(3σ2 − 1
4 ) (36)

Eqns (34)-(36) are respectively, the sum of the multiplicities, the dimension
and the second-order Dynkin index. Dividing Eq.(36) by Eq. (35) and noting
earlier results leads to

σ2 =
2n(j + 1)(2j + 1 − n) + 1

12
(37)
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Similarly we have

A = Dim{1n}
σ3

√
2π

(38)

〈2J + 1〉 = σ
√

2π (39)

gmax = Aσe−
1

2 (40)

g0 = A
2 (41)

Eq.(39) gives the expectation value of J for the distribution, while Eq.(40)
gives the maximal multiplicity which occurs when J attains the value Jm ∼
σ − 1

2
As an example, consider the case where there j = 18 and n = 13. Using

the computer package SCHUR we can compute the complete set of branching
multiplicities, gJ , for the decomposition of the {113} irreducible representa-
tion of SU37 under SU37 → SO3 exactly and compare the results with those
obtained using the Wigner-type distribution. It follows from Eqns (37) and
(38) that

A = 45, 758.4 σ = 31.434 (42)

Using those two results leads, via Eqns (34) to (41) to

∑

J

gJ = 45, 213, 088 (44, 585, 180) (43)

∑

J

J(J + 1)(2J + 1)gJ = 10, 560, 043, 704, 670 (10, 559, 153, 077, 200)

(44)

gmax = 872, 409 (848, 521) (45)

Jm = 31 (32) (46)

g0 = 22, 879 (21, 660) (47)

The exact computed values from SCHUR are given in brackets.It is apparent
that even a single Wigner type distribution gives the actual distribution to
within ∼ 5%.Our problem is essentially related to corresponding problems in
the theory of partitions of integers and generating functions8,13.
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8 Concluding Remarks

The fractional quantum Hall effect presents the combinatorist with many in-
teresting and incompletely solved problems and in this presentation I have
barely scratched the surface. We have identified certain irreducible represen-
tations of particular SUk groups that can be used to describe the properties
of bosons and fermions in Hilbert spaces of the same dimension with the same
SO3 multiplets. This has the consequence that any Hamiltonian that involves
just the invariants of SUk and SO3 will yield the same energy spectrum, to
within an overall constant as indeed recently noted by Quinn et al15. Note,
however, that invariants for subgroups of SUk that contain SO3 as a subgroup
do not conserve that property. Another combinatorial tool of great relevance
to the fractional quantum Hall effect are the even powers of the Vandermonde
determinant16,17,18. A remarkable conjecture concerning the number of ad-
missible tableaux that arise in the expansion of the second power in terms of
Schur functions was made by Di Francesco et al18 which however failed for
more than 7 particles. While clearly a close approximation it remains a com-
binatorial open problem to replace the conjecture by an exact result. Tellez
and Forrester19 have recently shown that in the results obtained17 for the sec-
ond power expansion lead to exact results in certain aspects of the statistical
physics of two-dimensional one-component plasmas demonstrating again the
richness of applications of combinatorial tools in physics.
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