
1. Introduction 1Combinatorial ExplosionsinComputing Group PropertiesLecture delivered in Rachiv, Ukraine (1993)B.G.WybourneInstytut Fizyki, Uniwersytet Miko laja Kopernikaul. Grudzi�adzka 5/787-100 Toru�nPolandAbstract Certain problems in the computation of the properties of groups become combinatoriallyexplosive and rapidly exceed the capacity and speed of any forseeable computer developments. A numberof examples are considered. The way forward is seen in the development of theories of moments andasymptopia.1. IntroductionIt is all too common for people to think that the solution to many problems in physics,chemistry and applied mathematics will become possible once there are computers withgreater speed and memory space. The developments of the last decade tends to createunlimited optimism as to future developments. There are however many problems that aresimple to state but can con�dently be expected to be beyond all possible improvements incomputer technology. We illustrate a number of combinatorially explosive problems thatarise in computing properties of groups and applications thereof. Throughout I follow thenotations associated with Macdonald[1] and Littlewood[2].2. Counting standard Young tableauxThe irreducible representations of the symmetric group Sn may be labelled by orderedpartitions � = (�1; �2; : : : ; �p of the integer n. A frame F� may be drawn as a series of left



2 3. Hook lengths and dimensions for Snadjusted boxes with �1 boxes in the �rst row, �2 boxes in the second row with �p boxesin the p�th row. A given frame F� with � ` n may be given a standard numbering byinserting in the boxes the integers 1;2; : : : ; n such that the numbers in rows and columnsare strictly increasing. Thus for n = 4 there are the following standard Young tableaux:-1 2 3 41 2 34 1 2 43 1 3 421 23 4 1 32 41 234 1 324 1 4231234Notice in the above examples that the number of standard tableaux for conjugate parti-tions is the same.The number of standard tableaux associated with a given frame F� is the dimension f�nof an irreducible representation f�g of the symmetric group Sn. For small values of ncounting Young tableaux is feasible but rapidly the number of possibilities becomes soenormous that a computer implementation seems the only way out. However, we shallshortly see that an alternative approach exists.3. Hook lengths and dimensions for SnThe hook length of a given box in a frame F� is the length of the right-angled path in theframe with that box as the upper left vertex. For example, the hook length of the markedbox in � � � �����is 8.



4. The staircase representations of Sn 3The task of calculating the dimensions f�n is greatly simpli�ed by application of the fol-lowing theorem:-Theorem: To �nd the dimension of the representation of Sn corresponding to the frameF�, divide n ! by the hook length of each box of F�.which is the celebrated result of Frame, Robinson and Thrall[3].f�n = n !Q(i;j)2� hij (3:1)where hij is the hook length of the box in the (i; j) position.Thus for the partition (5 432 21) we have the hook lengths108 6 3 18 6 4 16 4 25 3 13 11and hence a dimension f54322118 = 18 !10 � 82 � 63 � 5 � 42 � 33 � 2= 10720710It is not suggested that you check the above result by explicit enumeration!4. The staircase representations of SnAmong the representations of Sn I want to focus on the so-called staircase representationsassociated with partitions of the form a = (a; a�1; : : : ;1) where n = a(a+1)2 . The dimensionof these representations is readily seen to befan = n!Qa�1i=1 (2a� 2i + 1)i (3:2)The dimensions of the �rst twelve staircase representations are given in Table 3.1. Thereit is seen dramatically how the dimensions rapidly become astronomical and more. Ata = 14 the staircase representation in S105 has reached513782568580731957367019767803085320396632776099975918380



4 4. The staircase representations of Sn865685412418054992691200� 5 � 1080Suppose the Robinson, Frame, Thrall result remained undiscovered how long would ittake to count the tableaux for the staircase representation of S105? Assume we have ahypersuper computer and a remarkable algorithm that counts standard tableaux at 109=s.The time taken to complete the task will be � 1071s. How long is that? The age of theuniverse is � 1017s and hence the total time taken is � 1054 times the age of the universe!.Table 4.1 Dimensions of the �rst twelve staircase representations.a n Dimension1 1 12 3 23 6 164 10 7685 15 2928646 21 11007426567 28 486087956889608 36 292583669962584883209 45 27303528066353552248799232010 55 4426148608487407218364569920471040011 66 13801889550007948509594355921381708875694080012 78 9079590132732747656880081324531330222983622187548672000Of course executing the very simple counting algorithmt := 0; for i := 1 to N do t := t + 1;should rapidly convince you that counting must be avoided at all costs. The aboveexample of determining the dimension of staircase representations of Sn shows clearly theimportance of thinking about a problem before computing - a solution was found for aseemingly intractable problem. However, not all problems in computing properties ofgroups have solutions of that type. To a large extent it depends on the questions weare asking. Our example does however illustrate the way how quite simple problems canbecome combinatorially explosive.



5. Representations of Sn 5Let us now turn to problems that are combinatorially explosive and by their in-herent nature cannot be solved in any time small compared to the age of the universe.5. Representations of SnThe calculation of representation matrices pose especially severe problems even thoughthere often exist very simple prescriptions for the evaluation of individual matrix ele-ments. Thus for the symmetric group Sn Young has given a complete method for anytransposition and since any element of Sn can be represented as a product of transpo-sitions all representation matrices can be systematically determined by suitable matrixmultiplication. The fundamental problem is that the dimensions of the representationmatrices are combinatorially explosive and there is neither the time, nor the matter inthe universe, to complete the calculation.A much simpler task is the calculation of the diagonal elements of the representationmatrices but that is still a combinatorially explosive problem. Evaluating the diagonalelements for the staircase representation for S105 for a single transposition is certainly worsethan counting to 1080. Even at n = 15 the construction of a complete representation for asingle transposition of the staircase representation involves matrices of dimension 292864which are probably barely achievable with current computers. I believe it is futile toattempt constructions of representations for large n.6. Characters of SnThe calculation of the characters of representations of the symmetric group proceedsmuch more rapidly and economically than explicit constructions of representations. Thisis largely due to the existence of algorithms based upon results such as the Murnaghan-Nakayama formula(cf. [4]) which avoid the need for explicit construction of any represen-tation matrix elements. The programme MAPLEV will produce the complete charactertables for Sn for n = 6; : : : ;13 with the approximate timings given in Table 6.1 for astandard 80486PC. Clearly di�erent machines will give di�erent times but it is appar-ent and not surprising that the calculation of characters proceeds more rapidly than for



6 4. The staircase representations of Snrepresentation matrices or explicit evaluation of traces.



7. Plethysms and normal forms for tensor polynomials 7Table 6.1 Time in seconds for calculating a complete charactertable for Sn using MAPLEV.n time in seconds6 1:37 2:98 6:49 12:810 2711 5312 11213 222The time taken for the calculation of the complete set of characteristics associated withthe staircase representations of Sn using MAPLEV for n = 10; : : : ;28 is given in Table 6.2.Table 6.2 Time in seconds for calculating the characters forstaircase representations of Snn time in seconds10 2:215 1521 10128 815The number of elements and hence the number of matrices associated with a given repre-sentation of Sn increases as n! whereas the number of conjugacy classes and hence numberof characteristics associated with a given character increases as the number of partitionsP(n). While P(n) becomes combinatorially explosive it increases more slowly than n!.The above simple results and conclusions have important rami�cations for applicationsof group theory to physical problems. In developing theories for computing propertiesof physical systems it is desirable, wherever possible, to express the theories in terms ofcharacters rather than representations. This is well seen in recent emphasis on developingmodels of complex systems by methods of moments which make use of traces of matricesand hence characters[5,6].



8 6. Characters of Sn7. Plethysms and normal forms for tensor polynomialsThe operation of S�function plethysm (or outer plethysm) was introduced by Little-wood[2] and corresponds to the formation of symmetrised powers of S�functions. It alsobears a close relationship to branching rules for restriction of an irreducible representationof Gln to a subgroup Glm[7]. Mathematicians[1] these days view the operation of plethysmas a substitution of a symmetric function into a symmetric function. Fulling et al.[8]have recently made extensive application of the operation of plethysm to the problem ofthe enumeration of the scalars formed from the Riemann tensor (of a torsionless, metric-compatible connection) by covariant di�erentiation, multiplication and contraction. Theydetermined the number of independent homogeneous scalar monomials of each order anddegree up to order twelve in derivatives of the metric. Wybourne and Meller[9] haveextended those results to order fourteen.The master object for enumerating the Riemann scalars isG � 1Xm=1(t2f22g+ t3f32g+ t4f42g+ : : :)
m (7:1)For order tk there is a scalar for every partition involving only even parts. An equivalentproblem arises in the enumeration of Weyl scalars. There one is concerned with repre-sentations of the orthogonal groups On. In that case the master object di�ers from thatof Eq. (7.1) only by the replacement of the Gln irreducible representations by those of Onand a Weyl scalar occurs for every On scalar irreducible representation [0].The number of Riemann and Weyl scalars for each even order of tk (the odd orders cannotyield scalars) up to k = 14 is shown in Table 7.1.



Concluding remarks 9Table 7.1 Numbers of Riemann and Weyl scalars up to order 14Order Riemann Weyl2 1 �4 4 16 17 38 92 1210 668 6712 6721 58814 89137 7347Table 7.1 gives a further example of a combinatorially explosive situation and servesto focus on the need to develop alternative approaches. Had we attempted to extendthe count of Weyl scalars to the sixteenth order we would need to enumerate over 250 �106 irreducible representations of On. Here we might recall Major Percy MacMahon'senumeration of the number P(n) of ordered partitions of integers. He stopped at n = 200.Hardy and Ramanujan were able to develop an asymptotic form that for large n gavean exact result. Some encouragement to the development of asymptotic forms comesfrom noting that for su�ciently high order both the Riemann and Weyl scalars exhibit aunimodal distribution with respect to their minimal supporting dimensions. In much thesame way one �nds the coe�cients of the terms in the SO3 plethysms [m]
fng approximatea Wigner type distribution as m and n become large.8. Other aspects of plethysmsPlethysms arise in many other practical problems involving not only compact groupswith �nite dimensional representations but also non-compact groups having in�nite di-mensional unitary representations. For example in the nuclear symplectic Sp(6; R) shellmodel one is interested in symmetrised products of the fundamental representation[10].Here the problem is not unlike that for the master object associated with the Riemannand Weyl scalars. Here the basic problem is to obtain the Sp(6; R) irreducible representa-tions that arise from the symmetrised products of A copies of the fundamental irreducible



10 Concluding remarksrepresentation of Sp(6; R). Since the non-trivial unitary irreducible representations of theharmonic series of Sp(6; R) are necessarily of in�nite dimension the number of irreduciblerepresentations contained in a symmetrised product is itself in�nite. In that case progressis only possible by restriction to some �nite cuto�.The resolution of plethysms for Sp(6; R) has been accomplished by exploiting a comple-mentarity that exists between Sp(6; R) and the full orthogonal group O(A) together withthe use of an A�independent reduced notation for establishing O(A) # S(A) decomposi-tions. The concept of reduced notation was introduced by Murnaghan[11] and later usedby Littlewood[12] for the calculation of inner plethysms and Kronecker products for thesymmetric group. A concise treatment using the properties of S�functions has been givenby Salam and Wybourne[13].Concluding remarksI have tried to outline some of the problems associated with the computation of theproperties of groups. Attention has been focussed on the well understood case of thesymmetric group but similar problems arise in more general group stuctures. Most of theseproblems are combinatorially explosive and we cannot expect improvements in computersto have a signi�cant impact. What is needed are new approaches to the asymptoticproperties of these problems. Here the work of the St. Petersburg group of Vershikand Kerov[14]-[17] on asymptotic theory of characters of the symmetric group is perhapspointing the way to real progress. Perhaps it is not utopia we should strive for but ratherasymptopia.
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