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Abstract Certain problems in the computation of the properties of groups become combinatorially
explosive and rapidly exceed the capacity and speed of any forseeable computer developments. A number
of examples are considered. The way forward is seen in the development of theories of moments and

asymptopia.

m 1. Introduction

It is all too common for people to think that the solution to many problems in physics,
chemistry and applied mathematics will become possible once there are computers with
greater speed and memory space. The developments of the last decade tends to create
unlimited optimism as to future developments. There are however many problems that are
simple to state but can confidently be expected to be beyond all possible improvements in
computer technology. We illustrate a number of combinatorially explosive problems that
arise in computing properties of groups and applications thereof. Throughout I follow the

notations associated with Macdonald[l] and Littlewood[2].
m 2. Counting standard Young tableaux

The irreducible representations of the symmetric group S, may be labelled by ordered

partitions A = (A1, A2,..., A, of the integer n. A frame F* may be drawn as a series of left
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3. Hook lengths and dimensions for S,

adjusted boxes with Ay boxes in the first row, Ay boxes in the second row with A, boxes
in the p—th row. A given frame F* with A  n may be given a standard numbering by
inserting in the boxes the integers 1,2,... n such that the numbers in rows and columns

are strictly increasing. Thus for n =4 there are the following standard Young tableaux:-

1[2[3] 1]2[4] 1[34]
4] 3 2
112 113
314 214
1]2] 1]4]
3] 2]
4] El

Notice in the above examples that the number of standard tableaux for conjugate parti-
tions is the same.

The number of standard tableaux associated with a given frame F* is the dimension f;
of an irreducible representation {A} of the symmetric group 8,. For small values of n
counting Young tableaux is feasible but rapidly the number of possibilities becomes so
enormous that a computer implementation seems the only way out. However, we shall

shortly see that an alternative approach exists.
m 3. Hook lengths and dimensions for S,

The hook length of a given box in a frame F* is the length of the right-angled path in the
frame with that box as the upper left vertex. For example, the hook length of the marked

box in

is 8.



4. The staircase representations of Sy,

The task of calculating the dimensions f;' is greatly simplified by application of the fol-

lowing theorem:-

Theorem: To find the dimension of the representation of S, corresponding to the frame

FA, divide n! by the hook length of each box of F*.

which is the celebrated result of Frame, Robinson and Thrall[3].

!
=" 3.1
I, yex his (3-)

where h;; is the hook length of the box in the (i, ;) position.

Thus for the partition (543%221) we have the hook lengths

LO8[6]3]1]
316]4]1
6l4[2
531
311
1]
and hence a dimension
543°21 _ 18!
18 10 x 82 x63 x5 x42x33 x2
= 10720710

It is not suggested that you check the above result by explicit enumeration!
m 4. The staircase representations of S,

Among the representations of S, I want to focus on the so-called staircase representations

associated with partitions of the form a = (a,a—1,...,1) where n = @ The dimension

of these representations is readily seen to be

n!

ITi5 (20 = 2i + 1)

= (32)

The dimensions of the first twelve staircase representations are given in Table 3.1. There
it 1s seen dramatically how the dimensions rapidly become astronomical and more. At

a = 14 the staircase representation in S5 has reached

513782568580731957367019767803085320396632776099975918380



4 4. The staircase representations of Sy,

865685412418054992691200

~ 5 x 1080
Suppose the Robinson, Frame, Thrall result remained undiscovered how long would it
take to count the tableaux for the staircase representation of Sjg57 Assume we have a
hypersuper computer and a remarkable algorithm that counts standard tableaux at 109/s.

The time taken to complete the task will be ~ 107's. How long is that? The age of the

universe is ~ 10'7s and hence the total time taken is ~ 10°* times the age of the universe!.

Table 4.1 Dimensions of the first twelve staircase representations.

a n Dimension

1 1 1

2 3 2

3 6 16

4 10 768

) 15 292864

6 21 1100742656

7 28 48608795688960

8 36 29258366996258488320

9 45 273035280663535522487992320

10 5d 44261486084874072183645699204710400

11 66 138018895500079485095943559213817088756940800
12 78 9079590132732747656880081324531330222983622187548672000

Of course executing the very simple counting algorithm
t:=0; fori:=1toN dot:=t+1;

should rapidly convince you that counting must be avoided at all costs. The above
example of determining the dimension of staircase representations of S,, shows clearly the
importance of thinking about a problem before computing - a solution was found for a
seemingly intractable problem. However, not all problems in computing properties of
groups have solutions of that type. To a large extent it depends on the questions we
are asking. OQur example does however illustrate the way how quite simple problems can

become combinatorially explosive.



5. Representations of Sy

Let us now turn to problems that are combinatorially explosive and by their in-

herent nature cannot be solved in any time small compared to the age of the universe.
m 5. Representations of S,

The calculation of representation matrices pose especially severe problems even though
there often exist very simple prescriptions for the evaluation of individual matrix ele-
ments. Thus for the symmetric group 8, Young has given a complete method for any
transposition and since any element of S, can be represented as a product of transpo-
sitions all representation matrices can be systematically determined by suitable matrix
multiplication. The fundamental problem is that the dimensions of the representation
matrices are combinatorially explosive and there is neither the time, nor the matter in

the universe, to complete the calculation.

A much simpler task is the calculation of the diagonal elements of the representation
matrices but that is still a combinatorially explosive problem. Evaluating the diagonal
elements for the staircase representation for S5 for a single transposition is certainly worse
than counting to 1030, Even at n = 15 the construction of a complete representation for a
single transposition of the staircase representation involves matrices of dimension 292864
which are probably barely achievable with current computers. I believe it is futile to

attempt constructions of representations for large n.
m 6. Characters of S,

The calculation of the characters of representations of the symmetric group proceeds
much more rapidly and economically than explicit constructions of representations. This
is largely due to the existence of algorithms based upon results such as the Murnaghan-
Nakayama formula(cf. [4]) which avoid the need for explicit construction of any represen-
tation matrix elements. The programme MAPLEYV will produce the complete character
tables for &, for n = 6,...,13 with the approximate timings given in Table 6.1 for a
standard 80486PC. Clearly different machines will give different times but it is appar-

ent and not surprising that the calculation of characters proceeds more rapidly than for
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representation matrices or explicit evaluation of traces.



7. Plethysms and normal forms for tensor polynomaials

Table 6.1 Time in seconds for calculating a complete character

table for 8, using MAPLEV.

n time in seconds
6 1.3

7 2.9

8 6.4

9 12.8

10 27

11 53

12 112

13 222

The time taken for the calculation of the complete set of characteristics associated with
the staircase representations of S, using MAPLEYV for n = 10,...,28 is given in Table 6.2.
Table 6.2 Time in seconds for calculating the characters for

staircase representations of S,

n time in seconds
10 2.2

15 15

21 101

28 815

The number of elements and hence the number of matrices associated with a given repre-
sentation of S, increases as n! whereas the number of conjugacy classes and hence number
of characteristics associated with a given character increases as the number of partitions

P(n). While P(n) becomes combinatorially explosive it increases more slowly than n!.

The above simple results and conclusions have important ramifications for applications
of group theory to physical problems. In developing theories for computing properties
of physical systems it is desirable, wherever possible, to express the theories in terms of
characters rather than representations. This is well seen in recent emphasis on developing
models of complex systems by methods of moments which make use of traces of matrices

and hence characters[5,6].
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6. Characters of Sy,

m 7. Plethysms and normal forms for tensor polynomials

The operation of S—function plethysm (or outer plethysm) was introduced by Little-
wood[2] and corresponds to the formation of symmetrised powers of S—functions. It also
bears a close relationship to branching rules for restriction of an irreducible representation
of Gl,, to a subgroup Gl,,,[7]. Mathematicians[1] these days view the operation of plethysm
as a substitution of a symmetric function into a symmetric function. Fulling et al.[8]
have recently made extensive application of the operation of plethysm to the problem of
the enumeration of the scalars formed from the Riemann tensor (of a torsionless, metric-
compatible connection) by covariant differentiation, multiplication and contraction. They
determined the number of independent homogeneous scalar monomials of each order and
degree up to order twelve in derivatives of the metric. Wybourne and Meller[9] have

extended those results to order fourteen.

The master object for enumerating the Riemann scalars is

G= i ({22} + {32} + ¢4 {42} 4 .. )o™ (7.1)

m=1

For order t* there is a scalar for every partition involving only even parts. An equivalent
problem arises in the enumeration of Weyl scalars. There one is concerned with repre-
sentations of the orthogonal groups O,. In that case the master object differs from that
of Eq. (7.1) only by the replacement of the Gi,, irreducible representations by those of O,

and a Weyl scalar occurs for every O, scalar irreducible representation [0].

The number of Riemann and Weyl scalars for each even order of t* (the odd orders cannot

yield scalars) up to & = 14 is shown in Table 7.1.



Concluding remarks

Table 7.1 Numbers of Riemann and Weyl scalars up to order 14

Order Riemann Weyl
2 1 —

4 4 1

6 17 3

8 92 12
10 668 67
12 6721 H88
14 89137 7347

Table 7.1 gives a further example of a combinatorially explosive situation and serves
to focus on the need to develop alternative approaches. Had we attempted to extend
the count of Weyl scalars to the sixteenth order we would need to enumerate over 250 x
106 irreducible representations of 0,. Here we might recall Major Percy MacMahon’s
enumeration of the number P(n) of ordered partitions of integers. He stopped at n = 200.
Hardy and Ramanujan were able to develop an asymptotic form that for large n gave
an exact result. Some encouragement to the development of asymptotic forms comes
from noting that for sufficiently high order both the Riemann and Weyl scalars exhibit a
unimodal distribution with respect to their minimal supporting dimensions. In much the
same way one finds the coefficients of the terms in the SOz plethysms [m]@{n} approximate

a Wigner type distribution as m and n become large.
m 8. Other aspects of plethysms

Plethysms arise in many other practical problems involving not only compact groups
with finite dimensional representations but also non-compact groups having infinite di-
mensional unitary representations. For example in the nuclear symplectic Sp(6, R) shell
model one is interested in symmetrised products of the fundamental representation[10].
Here the problem is not unlike that for the master object associated with the Riemann
and Weyl scalars. Here the basic problem is to obtain the Sp(6, R) irreducible representa-

tions that arise from the symmetrised products of A copies of the fundamental irreducible
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Concluding remarks

representation of Sp(6, R). Since the non-trivial unitary irreducible representations of the
harmonic series of Sp(6, R) are necessarily of infinite dimension the number of irreducible
representations contained in a symmetrised product is itself infinite. In that case progress

is only possible by restriction to some finite cutoff.

The resolution of plethysms for Sp(6, R) has been accomplished by exploiting a comple-
mentarity that exists between Sp(6, R) and the full orthogonal group O(A) together with
the use of an A-independent reduced notation for establishing O(4) | S(4) decomposi-
tions. The concept of reduced notation was introduced by Murnaghan[11] and later used
by Littlewood[12] for the calculation of inner plethysms and Kronecker products for the
symmetric group. A concise treatment using the properties of S—functions has been given

by Salam and Wybourne[13].
m Concluding remarks

I have tried to outline some of the problems associated with the computation of the
properties of groups. Attention has been focussed on the well understood case of the
symmetric group but similar problems arise in more general group stuctures. Most of these
problems are combinatorially explosive and we cannot expect improvements in computers
to have a significant impact. What is needed are new approaches to the asymptotic
properties of these problems. Here the work of the St. Petersburg group of Vershik
and Kerov[14]-[17] on asymptotic theory of characters of the symmetric group is perhaps
pointing the way to real progress. Perhaps it is not utopia we should strive for but rather

asymptopia.
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