
1The Application of Symmetry ConceptstoPhysical Problems cB.G.WybourneInstytut Fizyki, Uniwersytet Miko laja Kopernikaul. Grudzi�adzka 5/787-100 Toru�nPolandLecture One I can well appreciate, Holy Father, that as soon as certain people realize that in thesebooks which I have written about the Revolutions of the spheres of the universe Iattribute certain motions to the globe of the Earth, they will at once clamour to meto be hooted o� the stage with such an opinion.Nicolaus Copernicus, On the Revolutions1.1 IntroductionIn this series of lectures I want to introduce you to the idea of the concepts of symmetry and theirapplications to physical problems. These concepts are universal in their applicability to physical problems.They are profoundly unifying concepts �nding applications in such apparently diverse topics as particle- ,nuclear- atomic-, molecular- and solid state physics. They are also the key to understanding many of theproblems involving linear, and more importantly, nonlinear di�erential equations. Symmetry also entersin many aspects art.Throughout we will emphasise practical details rather than abstract theory often referring you to theliterature for further details. Thus we will try to explains results but will not be going into formal proofs.I will be expecting you to apply these results in calculations for models of real systems. Note I say modelsof real systems. Every calculation is associated with a particular model or abstraction that can nevercorrespond exactly to a real system in its full diversity. Nevertheless, we might hope that some of ourcalculations will be a reasonable approximation to some aspects of some system.I shall assume that you have some knowledge of the quantum theory of angular momentum such ascommonly associated with the angular momentum states jJM i and the use of ladder operators. The�rst few lectures will be devoted to examples of symmetry in a variety of areas of physics with a specialemphasis on examples from nuclear and particle physics. Later we will develop applications to problemsin atomic- and solid-state physics. Those lectures will be preceded by the development of aspects of thetheory of symmetric functions and symmetry groups.1.2 Why Symmetry?Symmetry is usually associated with an action or transformation of a system or object such that aftercarrying the operation the system or object is in a state indistinguishable from that which it had priorto carrying out the action or transformation. Thus there is a close relationship between symmetry andimpossible experiments. The existence of a symmetry implies that it is impossible to devise an experimentto distinguish the before and after situation. If you succeed then the symmetry does not exist. All thegreat conservation laws are associated with the assertion that a particular experiment is impossible.Indeed in the early 1900's Emmy N�oether showed that every conservation law is associated with a certaininvariance which in turn is associated with the statement of an impossible experiment. For example, theconservation of angular momentum is associated with the statement that no experimentalist has beenable to determine a preferred direction in space. A partial list of impossible experiments is given in Table1.1.



2 Table 1.1 Impossible experiments and symmetries.Immeasurable Quantity Implied Invariance Conserved Quantity AccuracyAbsolute Position Space Translation Momentum exact(?)Absolute Time Time Displacement Energy exact(?)Absolute Direction Rotational Angular exact(?)MomentumRelative Phase of Charge Gauge Charge Q exact(?)charged and neutral TransformationsparticlesLeft and Right Space Inversion P parity violated inIndistinguishability weakinteractionsDirection of Time Reversal T - violatedTime FlowIndistinguishabilityParticle-AntiParticle Charge Conjugation C Charge Parity violated inDistinction weakinteractionsRelative phase Baryon Gauge Baryon Number B exact(?)of baryons and Transformationsother particlesRelative phase Electron Number Electron Number Le exact(?)of e� & �e and Gauge Transformationsother particlesRelative phase Muon Number Muon Number Le exact(?)of �� & �� and Gauge Transformationsother particles



3Thus the existence of a symmetry tells us what is NOT possible but does not tell us what IS possible.The existence of a symmetry rules out some possibilities.1 2 It leads to selection rules. The existence ofa symmetry constrains the form of theories used to model the system possessing an observed symmetry.We must strongly emphasise that the existence of a symmetry can only be determined by experiment andis always a tentative statement. We can never be sure that some improvement in experimental techniqueor some experiment not hitherto contemplated will reveal an inexactitude in the symmetry. As examplesconsider the parity violation experiment or the CP violation experiments of kaons.1.3 Broken symmetryIn practice very few symmetries are 'exact' and in most cases we are led to consider 'approximate'symmetries. A symmetry need not be exact to be useful. Indeed I would assert the following:Proposition: We should always strive to construct theories with the highest possible symmetry even ifthese are not exact symmetries of nature. The physics comes in the process of breaking the symmetry.Consider the case of Ce2Mg3(NO3)12 � 24H2O : Nd 3+What symmetry does the Nd 3+ ion see in the rare earth double nitrates? In free space it sees sphericalsymmetry associated with the three-dimensional rotation group SO3. The total electron angular mo-mentum J has no preferred direction in free space and is a conserved quantity. 3 Associated with theconservation of the angular momentum J is a degeneracy of (2J + 1) since each component Jz occurs atthe same energy. Switch on a magnetic �eld in the z�direction and create a locally preferred directionand the degeneracy is lifted and we observe 2J + 1 sublevels. 4Placing the Nd 3+ ion in the crystal breaks the spherical symmetry so that J ceases to be a conservedquantity - there are local preferred directions imposed by the geometrical arrangement of the variousions clustering about the Nd 3+ ion. To a �rst approximation we descend to the symmetry group of theicosahedron Kh and for J � 52 there will be a partial lifting of the(2J + 1)�fold degeneracy.The nitrate ions cluster around the vertices of a slightly distorted tetrahedron and the symmetry isapproximately that of the group of the tetrahedron, Th. Again the degeneracy is further reduced. Thesereductions in degeneracy manifest themselves in the appearance of sublevels. The actual point symmetryobserved by X�ray structural analysis is that of the trigonal point group, C3.Thus the entire breakdown of the symmetry could be described by the chain of nested subgroups 5 6SO3 � Kh � Th � C31 Kepler in his beautiful Christmas essay The Snowake is fascinated throughout by the existence of symmetry andcosmologically writes of the harmony of the spheres. Copernicus, prior to Kepler, recognises the approximate nature ofsymmetries - writing of the sphericity of the earth Although it is not immediately apparent that it is a perfect sphere, becausethe mountains project so far and the valleys are so deep, they produce very little variation in the complete roundness ofthe Earth2 Muslim theology sees only God as perfect and thus carpet chanters, recognising their own imperfection, willdeliberately make the occasional error, so that such a carpet will contain imperfections which is then consistent with theirtheology.3 Of course if we recognise that Nd 3+ possesses a nuclear magnetic moment which weakly couples the nuclearangular momentum I to the electronic angular momentum J such that the total angular momentum becomes F = I +J. Thus strictly speaking the conserved quantity is F rather than J . This is manifested in the appearance of magnetichyper�ne structure at high enough resolution.4 N.B. Lowering the symmetry of a system usually results in a partial or total lifting of the degeneracy. Technolog-ically this is very important.5 For further details see S.D.Devine, Th symmetry in rare earth double nitrates J. Chem. Phys. 47, 1844 (1967)and references therein.6 See also C. G�orlier-Walrand et al, Optical spectra and crystal �eld analysis of europium double nitrates J. Chem.Phys. 96, 5650 (1992). These authors seem unaware of the work of Devine but their data shows clear signs of highersymmetries.



4 1.4 Global and local symmetriesA symmetry may be global or local. As already seen in the previous example a local symmetry need notbe global. In most of this course we will be discussing local symmetries.1.5 Types of symmetriesThere are a wide range pf possible symmetries we might consider. Two major categories would bediscrete and continuous symmetries. Discrete symmetries, such as reections, inversions, time reversal,charge conjugation, parity, �nite rotations, permutations etc. are associated with multiplicative or phase-like quantum numbers. Continuous symmetries such as translations and rotations are associated withadditive quantum numbers (e.g. angular momentum J or linear momentum p).1.6 Symmetry and the UniverseOn a clear night, away from city lights, look up to the sky (A feat more readily accomplishedin the time of Copernicus in old Toru�n than in modern Toru�n) and you arrive at two utterly amazingand deep conclusions concerning the nature of the Universe which are in accord with more detailedobservations:- 1.The universe is almost empty.2.The universe is not empty.Matter in the universe is astonishingly rare. Radiation is in comparison superabundant there being about1018 photons for every baryon7. Why is matter so rare? Why is there any matter in the universe? Orsomewhat more anthropologically, Why can we ask these questions? Our ability to ask these questionshinges on their answer. Why is the matter in the universe predominantly of one type and does not appearin equal quantities of matter and antimatter? What is the origin of this broken symmetry between matterand antimatter? We shall return to these questions later.1.7 Some physical constantsWe will require a number of physical constants for making calculationsand estimates. The values of a number of useful physical constants are tabulated below. The precisevalues are given as well as rough values for back-of-the- envelope calculations. It is often desirable to beable to make quick estimates to get the order of magnitude of an e�ect in which case the rough valuessu�ce. It is part of being a physicist to know when a precise calculation is required and when a roughcalculation is su�cient and to know how many �gures in a calculation are su�cient. In this course wedo all our calculations in the SI units.
7 Questions of the existence of dark matter are irrelevant. Even if, as some believe, that 95% of the matter in theuniverse is unseen the existence of matter in the universe remains very rare.



5Table 1.2 Some physical constants.Quantity Symbol Precise Value Rough Valuespeed of light c 299792458ms�1 3� 108ms�1Planck's constant h 6:6260755� 10�34Js 6:6� 10�34Js�h 1:05457266� 10�34Js 10�34JsGravitational constant G 6:6725985� 10�11m3kg�1s�2 10�10m3kg�1s�2electric charge magnitude e 1:60217733� 10�19C 1:6� 10�19electron mass me 9:10083897� 10�31kg 9:1� 10�31kgelectron charge/mass eme 18� 1010Ckg�1proton mass mp 1:6726231� 10�27kg 1:7� 10�27kgproton charge/mass emp 1018Ckg�1permittivity of free space �0 8:854187� 10�12Fm�1 9� 10�12Fm�1permeability of free space �0 4� � 10�7NA�2 12:5� 10�7NA�2Bohr magneton �B e�h2me 9:2740154� 10�24JT�1 9:3� 10�24JT�1Nucleon magneton �N e�h2mp 5:0507866� 10�27JT�1 5� 10�27JT�11.8 The charge neutrality of matterHow neutral is matter? What would happen if we placed all the protons of a 68kg person in one boxand a meter away put all the electrons? We could anticipate that an attractive electric force woulddevelop between the two groups of charges. Application of the Coulomb force law readily leads to themagnitude of the force as � 1030 Newtons! Matter is neutral to an astonishing extent. This neutralityof matter hides from us the strength of the Coulomb force. From our daily experience with forces wefalsely conclude that gravity is the strongest force when in fact it is the weakest of all known forces8. Theneutrality of matter hints at another conservation law - namely charge conservation. What is the originof charge conservation and the neutrality of matter9?1.9 Classical mechanics and predictabilityBefore continuing further let us briey consider the role of predictability in classical mechanics as ulti-mately we will be interested in predicting the behaviour of systems.Aristotle is reputed to have boasted that given a suitable place and a lever he could move the earth.Laplace was even more ambitious and in his well known dictum said in e�ect Give me the initial positionsand velocities of all the particles in the Universe and I will predict the future forever. Such a statementignores the question of the precision to which the initial positions and velocities must be known. Thismay be illustrated by the following example. A perfectly elastic ball moves with a constant speed v on africtionless surface between two in�nitely rigid walls placed a distant L apart. Suppose the ball starts ata time t0 = 0 from a position x0 = 0 with constant speed v towards the second wall as illustrated below.� ! v0 x! LCan we predict the whereabouts of the ball between the walls at some later time t? This looks easy! The8 The separation of charges plays a key role in many human activities. A golfer propelling a golf ball by hitting itwith a club involves electrical forces - gravity enters only in the subsequent motion of the struck ball9 In the 1950's R. A. Lyttleton suggested that the expansion of the universe could be explained if there was a slightdi�erence in the charge on the proton from that on the electron. Subsequent precise measurements of the charge ratio haveruled out that possibility.



6 distance x travelled after t seconds is x = vt (1)The ball will return to its starting position each time it has covered a distance 2L. The number np ofcomplete periods covered in time t will be the integer part ofvt2L:The remainder r r = � vt2L � np� (2)will be 0 < r < 1. Thus evidently we know with certainty that after t seconds if 0 < r � 0:5 then the ballis a distance 2Lr to the right of its initial position and moving from left-to-right whereas if 0:5 < r � 1the ball is moving from right-to-left and is a distance 2L(1� r) from its initial position. Is this really thecase?We have assumed that the initial values of x0, t0 and v were given with in�nite precision, but even inclassical physics such a precision is unattainable. It is not a question of simply doing a better experiment.The above system is most sensitive 10to an error �v in the initial speed v as is evident from Eq. (1). Theerror �x in the position x is essentially given by�x = �vtand increases linearly with t. If �x � L then we cannot say where the ball is between the walls. Nomatter how precise we measure v and how small we reduce the error �v after a timet � L�vthe only statement we can make is that the ball is somewhere between the walls. The above exampleconstitutes a highly idealised model but illustrates a number of important points in physics which areoften overlooked:-1. In physics we are always dealing with models of real situations.2. Physics is not just sets of mathematical expressions, the variables in these expressions relateexperimentally measured quantities which carry with them uncertainties of measurement.3. In assessing a model we must consider what to put in the model and what should be excluded.114. Physics involve both objective and subjective features. It is usually a mistake to overemphasiseone or the other. 125. Problems of predictability and initial conditions 13 exist in classical mechanics and persist intoquantum mechanics where even the concept of a well-de�ned trajectory is lost.1.10 Symmetry and the classical one-dimensional harmonic oscillatorThe classical one-dimensional harmonic oscillator gives a good example of the use of symmetry consider-10 In addition small errors in the angular alignment of the ball's trajectory will eventually become serious as thelapsed time increases.11 In the above case we left out such things as the inuence of the moon, the e�ect of the interaction of measuringdevices on the system etc. As we strive for a closer correspondence with the real world we must expand our model toencompass more features of the real world.12 For an interesting discussion on the question of objectivity and subjectivity in science see M. Polanyi PersonalKnowledge.13 It was the objective of Hamilton-Jacobi mechanics to predict the time evolution of dynamical systems from aknowledge of the initial positions and velocities



7ations in the di�erential equations of physical problems.14+mgF = md2xdt2 = �kx or in suitable units �x+ x = 0 (1)A general solution is x = A cos t+ B sin t (2)We seek those in�nitesimal transformations of x and t that leave the form of the equation of motion (1)invariant.Consider a transformation that carries a point (x; t) into a point (x0; t0) such thatx0 = �(x; t; a0 + �a) t0 = 	(x; t; a0 + �a) (3)where for the identity transformation x = �(x; t; a0) and t = 	(x; t; a0). The in�nitesimal change in xand t due to the in�nitesimal variation �a of the parameter a is given by�x = ��a �t = ��a (4)where � = �(x; t) = (@�=a)a0 � = �(x; t) = (@	=a)a0 (5)If f(x; t) is an analytic function of x, t then under an in�nitesimal transformation�f = Uf�a (6)where U = �@=@x+ �@=@t (7)One may show15 that U = 8Xi=1 biXi (7)where the bi are constants of integration and the Xi are the following operators:-X1 = (1 + x2) sin t@=@x� x cos t@=@t (8a)X2 = (1� x2) sin t@=@x+ x cos t@=@t (8b)X3 = (1 + x2) cos t@=@x + x sin t@=@t (8c)X4 = (1� x2) cos t@=@x � x sin t@=@t (8d)X5 = @=@t (8e)X6 = x@=@x (8f)X7 = x cos 2t@=@x+ sin 2t@=@t (8g)X8 = �x sin 2t@=@x+ cos 2t@=@t (8h)The above set of eight operators close under commutation in the sense that[Xi; Xj] = ckijXk (9)14 For a detailed account see the book G. W. Bluman and S. Kumei, Lie Symmetries of Di�erential Equations andrecent papers by G. W. Bluman and G. J. Reid.15 see C. E. Wulfman and B. G. Wybourne, The Lie group of Newton's and Lagrange's equations for the harmonicoscillator, J. Phys. A: Math.Gen. 9 507-18 (1976)



8 where the ckij are the so-called structure constants of a Lie algebra A2. Indeed one may show that it isthe Lie algebra associated with the global Lie group of Newton's or Lagrange's equation for the oscillatorSL(3; R).Each of the operators Xi has a physical interpretation. Thus X5 is the time translation generator @=@tand leads to the observation that if f(t) is any solution of the equation of motion thenf(t � �) = f(t + �) (10)The motion is cyclic with a period 2�. In so far as the oscillator is concerned, t + 2� = t, which is ofcourse why oscillators are used as clocks!The operator X6 shows that the equation of motion of the oscillator is unchanged under a spatial changeof scale - viewing the oscillator through a magnifying glass does not change the equation of motion of theoscillator! The other operators admit a more complex interpretation associated with so-called conformaltransformations. If we used a lens to project the image of the oscillator onto a curved screen we wouldsee motion that could still be described by an equation of motion of the same form as originally but inconformally transformed variables. For example, the operator X8 would correspond to transforming tothe variables x0(x; t; a) = xeacosec tp1 + e4a cot t t0(x; t; a) = cot�1(e2a cot t) (11)1.11 Symmetry of a squareRotational point symmetryWhat can we say about the symmetry of an unadorned square? Let us assume that our squareis completely unmarked and is lying on a horizontal plane. We wish to carry out point symmetrytransformations that carry the square into a position indistinguishable from its initial position and whichleave the centre point of the square �xed.16 As an aid to visualising the symmetry transformations letus label the corners of the square with the integers 1; 2; 3; 4 as below:-1 24 E 3We have used the letter E to indicate the symmetry transformation that amounts to doing nothing - theso-called identity transformation.Performing a clockwise rotation C4, about the centre point of the square, through �2 = 90o puts thesquare into a position indistinguishable from its initial position as can be seen below:-C4 �E = C4 � 1 24 E 3 = 4 13 C4 2 = C4The inverse transformation, C�14 corresponds to performing a counterclockwise rotation through 90o,which would be equivalent to producing a clockwise rotation through 270o. Clearly we must haveC4 � C�14 = C�14 �C4 = EHowever, do not rush to the false conclusion that the successive application of two symmetry transfor-mations is commutative - we shall shortly produce a counter example!Performing the symmetry operation C4 twice corresponds to rotating the square through 180o. Thesame e�ect would be produced by performing the symmetry operation C�14 twice or a single rotation,C2, through �180o. The operation C2 is self-inverse. The complete set of rotational point symmetry16 Keeping the centre point �xed removes translational invariance from our considerations.



9transformations of the square may be designated by the set of four operators (E;C4; C�14 ; C2) and theiraction may be visualised as below:-1 24 E 3 4 13 C4 2 2 31 C�14 4 3 42 C2 1These four operators describe the elements of a group G in the sense that:-1. There exists an identity element E.2. There exists a law of combination of the elements gi such that if gi; gj 2 G then so is the elementgigj (The closure property).3. For every element gi 2 G there exists an inverse element g�1i such that g�1i 2 G and gig�1i = E.We may construct a multiplication table, a Cayley table, that summarises the combination of thegroup elements gi. Thus for the four symmetry operators (E;C4; C�14 ; C2) we have the Cayley table:-E C4 C�14 C2E E C4 C�14 C2C4 C4 C2 E C�14C�14 C�14 E C2 C4C2 C2 C�14 C4 ENotice that the table indicates the existence of a subgroup H 2 G involving just the two elements E;C2.This would be the rotational point symmetry group of an object like:-? >Inversion symmetryAre there other symmetry operations that we can perform on the square? Clearly there issymmetry with respect to an inversion i through the centre of the square buti �E = 3 42 C2 1 = C2Thus in two dimensions an inversion is equivalent to a point symmetry rotation, this is certainly not thecase for higher dimensions.Reection symmetryA larger symmetry group for the square can be obtained by considering reections perpendicularto the plane of the square. By considering their action on the identity element E we see there are fourdistinct reection symmetry operators which we shall label as (�1; �2; �1; �2) leading to:-1 42 �1 3 3 24 �2 1 2 13 �1 4 4 31 �2 2



10 The reection operators are each self-inverse. However, they do not necessarily commute. For example,�1 � �1 = C�14 whereas �1 � �1 = C4. The complete Cayley table can be constructed by looking at theproducts of pairs of group elements to yield:-E C4 C�14 C2 �1 �2 �1 �2E E C4 C�14 C2 �1 �2 �1 �2C4 C4 C2 E C�14 �1 �2 �2 �1C�14 C�14 E C2 C4 �2 �1 �1 �2C2 C2 C�14 C4 E �2 �1 �2 �1�1 �1 �2 �1 �2 E C2 C�14 C4�2 �2 �1 �2 �1 C2 E C4 C�14�1 �1 �1 �2 �2 C4 C�14 E C2�2 �2 �2 �1 �1 C�14 C4 C2 EInspection of the Cayley table permits a number of interesting observations:-1. The rotations (E;C4; C�14 ; C2) form a subgroup.2. The product of two reections is equivalent to a rotation.3. The product of a rotation and a reection is equivalent to a reection.4. In a given row or column of the table every group element occurs once and only once.Black and white symmetryIn the textile industry there exists a symmetry operation known as the counterchange where theblack parts of a pattern are changed to white and the white parts to black. This clearly breaks the sym-metry but a combination of a rotation and the counterchange operation can restore the symmetry leadingto the so-called black and white groups17. The combination of a rotation followed by a counterchangecan be noted in the example below:-=) =)rotation counterchangeI will not pursue this subject further in these lectures save to emphasise the need for imaginative thinkingto dream up new structures.17 A fascinating series of four articles by H. J. Woods, working in the Textile Physics section of Leeds University,appeared in the 1930's in the British Journal of the Textile Institute. Therein Woods classi�ed all the black and whitegroups of the plane as well as considering the symmetry groups of braids. One can also consider polychromatic groups.The subject was taken up by A. V. Shubnikov and the black and white groups became known as Shubnikov groups. Itis interesting to recall that Shubnikov was a member of a Soviet delegation that visited Leeds in the 1930's. Shubnikov,a crystallographer, failed to see the physical signi�cance of the black and white groups. It was L. Landau who noted theequivalence of the counterchange operation and spin ipping and hence their extensive application in magnetism.



11The Application of Symmetry ConceptstoPhysical Problems cLecture Two You boil it in sawdust: you salt it in glue;You condense it with locusts and tapeStill keeping one principal object in viewTo preserve its symmetrical shape.| Lewis Carroll The Hunting of the Snark2.1 IntroductionIn this lecture I want to introduce you to the role of symmetry in the description of particles and isospinas an approximate symmetry in nuclear and particle physics.2.2 The forces of physicsThe �rst attempt to unify the forces of physics was Maxwell's development of electromagnetic theorywhich uni�ed the seemingly separate electric and magnetic forces into a single coherent theory - elec-tromagnetism. At that time the only other known force was Newton's gravitational force. Both forcesare long range forces. The electromagnetic force arises from spin 1 photon exchange while the gravita-tional force is believed to be associated with spin 2 graviton exchange. As we have noted earlier theelectromagnetic force is vastly stronger than the gravitational force (Fem � 1035FG). There is also theimportant di�erence that electromagnetic forces may be attractive or repulsive whereas the gravitationalforce appears to be purely attractive. Thus the gravitational force accumulates as matter comes togetherwhereas the neutrality of matter conceals the much stronger electromagnetic forces.The discovery of radioactivity and subsequently ��decay eventually led to the recognition of a third force- the weak force. The weak force is a short range force (range � 10�15m) mediated by the exchange ofthe vector bosons W�; Z0. The electro-weak theory developed by Ward, Glashow, Weinberg, Salam andothers in the late 1960's led to a prediction of the masses of the vector bosons and later at CERN to theirdiscovery at mW� = 80:22GeV and mZ0 = 91:173GeV . The electro-weak theory gives a uni�ed theoryof electromagnetic and weak forces.The study of nuclear reactions led to the recognition of a fourth force - the strong force. The strong forceis a short range force felt only over nuclear distances. Yukawa, in the 1930's, attributed the strong forceto the exchange of a meson that was subsequently identi�ed with the pions ��; �0. With the developmentof the quark model in the early 1960's the pions were regarded as composite particles comprising quark-antiquark pairs. The forces between quarks are believed to be associated with the exchange of an octetof particles known as gluons which are evidently massless particles that engage in strong short rangeinteractions with the observed nucleon- nucleon interactions being analogous to the van der Waals forcesof molecules.2.3 Lifetimes and interactionsThe strong, electromagnetic and weak interactions are associated with very di�erent lifetimes.Typical lifetimes for decays by strong interactions are � 10�23s. A particle travelling at the speed oflight would travel a mere 3� 10�15m which is of the order of a nuclear diameter. Particles decaying viathe weak interation have typical lifetimes of � 10�10s1. Electromagnetic decays are usually shorter thanthose associated with the weak interaction. Thus the �� pions decay via the weak interaction with amean-life of 2:6� 10�8s whereas the neutral pion �0 decays via the electromagnetic interaction with themuch shorter mean-life of 8:4� 10�17s. In the former case the predominant decay is�+ ! �+ + ��whereas in the latter case �0 ! 21 The notable exception is the neutron n0 which in free space decays with a mean-life of 889.1 s.Within a nucleus the neutron is as stable as the proton, a consequence of the Pauli exclusion principle.



12 In general it is found that1. All reactions involving photons () are electromagnetic.2. All reactions involving neutrinos (�) are weak.3. All reactions involving electrons (e�) or muons (��) are electromagnetic or weak.Thus the decay �0 ! p+ + e� + �eproceeds by the weak interaction.The decay �0 ! p+ + �0involves no neutrino but the �0 has a mean-life � 2:6 � 10�10s leading to the conclusion that it issometimes possible to have decay via the weak interaction without neutrino production.2.4 Bosons and FermionsThe particles we commonly encounter in physics can be divided into two classes bosons and fermions.Bosons are associated with integer spin, examples being photons, gluons and the weak interaction bosonsZ0 and W�. Fermions are associated with half-integer spin, examples being electrons, neutrinos andquarks. Bosons establish the interactions between fermions. Thus the photon, a massless spin 1 particle,is the exchange particle associated with electromagnetic interactions. In most of atomic and molecularphysics we can restrict our attention to quantum electrodynamics (QED). The weak interactions manifestthemselves in atomic and molecular physics in very small parity violations. Bosons and fermions obeydi�erent statistics, namely Bose-Einstein and Fermi-Dirac, respectively. That requires us to constructtotally symmetric wavefunctions for many-boson systems and totally antisymmetric wavefunctions formany-fermion systems.2.5 Permutational symmetryBosons and fermions di�er with respect to their behaviour under an interchange of their position, orequivalently with respect to a rotation through 2� or 360o. We shall designate the wavefunction fora single fermion or boson as �(�) where � is an appropriate set of single particle quantum numbersassociated with some single particle solution of , for example, some central �eld potential. Thus for ahydrogen atom we might use � = fns`msm`g or � = fns`jmjg.A N�particle system will involve N�single particle wavefunctions (�i i = 1; 2; : : : ; N ) and N�setsof single particle quantum numbers (�k k = 1; 2; : : :; N ). The wavefunction, 	, for the N�particlesystem will be such that 	 = 	(�1; �2; : : : ; �N ) (2:1)For a two-particle system we could write	(�1; �2) = 1p2f�1(�1)�2(�2)� �1(�2)�2(�1)g (2:2)The positive sign corresponds to a symmetric wavefunction and the minus sign corresponds to an antisym-metric wavefunction. Note that we have permuted the quantum numbers with respect to the coordinatesof the particles. The wavefunction of a pair of fermions, unlike a pair of bosons, undergoes a change ofsign. If �1 = �2 then for identical fermions Eq.(2.2) vanishes though not for bosons. That is consistentwith the Pauli exclusion principle for identical fermions.Thus permutational symmetry, required by the indistinguishability of identical particles, leads forN�fermionsto the construction of of determinantal states to give totally antisymmetric states while for N�bosons tothe construction of permanental states to give totally symmetric states. Hence for an N�fermion systemwe have the totally antisymmetric wavefunction	(�1; �2; : : : ; �N ) = 1pN ! �������� �1(�1) �1(�2) : : : �1(�N )�2(�1) �2(�2) : : : �2(�N )... ... . . . ...�N (�1) �N (�2) : : : �N (�N ) ��������f1Ng (2:3)



13In LS�coupling basis we use � = fns`msm`g whereas in jj�coupling we would use � = fns`jmjg.The information content of the determinantal state may be fully speci�ed by the abbreviated formf�1�2 : : :�Ng (2:4)In the case of bosons we are required to construct permanental states to yield totally symmetric wave-functions, 	(�1; �2; : : : ; �N ) = 1pN ! �������� �1(�1) �1(�2) : : : �1(�N )�2(�1) �2(�2) : : : �2(�N )... ... . . . ...�N (�1) �N (�2) : : : �N (�N ) ��������fNg (2:5)The information content of the permanental state may be fully speci�ed by the abbreviated form[�1�2 : : :�N ] (2:6)2.7 Classi�cation of particlesFaced with a diversity of interactions and particles it is natural to attempt to give a systematic orderto their description. Two broad categories immediately suggest themselves, bosons and fermions. Thatclassi�es particles according to their statistics. A somewhat �ner classi�cation comes by recognisingthat the particles e�; ��; �e; �� and the photon  do not engage in strong interactions. The photon isassociated with electromagnetic interactions alone so can be put into a class of its own. The photon isa massless spin one particle and hence is a boson. The remaining particles that do not experience thestrong interaction are known as leptons and are all fermions with spin = 12 .Particles that engage in strong interactions are called hadrons Hadrons with integer spin are bosons andare called mesons whereas those with half-integer spin are fermions and are called baryons.2.8 Mass plots for baryons and mesonsOne cannot be but struck by the remarkably small di�erence in the mass of the proton and neutron(� 1:29MeV )2. They are the same to better than 1%. It is interesting to plot the masses of the low massmesons and baryons as belowm��=139:5MeV m�0=134:9MeV m�+=139:5MeVThe ��mesons with Jp = 0�
2 Throughout these lectures I shall put c = 1 and then express the masses of particles simply inMeV rather thanMeV=c2.



14 mn=939:5MeV mp=938:3MeVm0�=1115:6MeVm��=1189:4MeV m�0=1192:6MeV m�+=1197:4MeVm�� =1321:3MeV m0�=1314:9MeVBaryons with Jp = 12+m��=1230MeV m0�=1230MeV m+�=1230MeV m++� =1230MeVm���=1382:8MeV m��0=1383:7MeV m��+=1387:2MeVm��� =1535:0MeV m�0� =1531:8MeVm�
=1672:4MeVBaryons with Jp = 32+Perhaps the most striking feature of the above plots is the appearance of nearly degenerate levels similar tothe multiplets of atomic energy levels deduced from atomic spectra. It appears that we are encounteringan example of an approximate symmetry. Indeed it appears that if we could switch o� the electromagneticinteraction we would attain actual degeneracy. Perhaps even more startling is the manner in which the`levels' of the eight baryons with Jp = 12+ form an octet and those with Jp = 32+ form a decuplet. In thelatter case note how the successive levels are almost equally spaced in mass. Why?In the case of the pions note that m�+ = m�� as expected for a particle-antiparticle pair whereas the �0is less massive.2.9 Isospin multipletsHeisenberg suggested that the proton and neutron could be viewed as two states of a single particle, thenucleon. By analogy with spin, the nucleon was said to be a particle with isospin I = 12 . The projectionI3 on the third axis has the values �12 . We choose to associate the proton with the isospin projectionI3 = +12 which then requires that we associate the neutron with the isospin projection I3 = �12 .



15Having made this choice 3 we determine the isospin and its projection of all other hadrons in relationshipto the choice made for the proton. We shall return to this point shortly.We note that we can write a charge equation for the nucleonQN = I3 + 12 (2:7)where we take the absolute magintude of e as unity. We note that the neutron, while uncharged has anuclear magnetic moment � �23 that of the proton. This demands an explanation!There is convincing experimental evidence for approximate isospin conservation for strong interactions.If the strong interaction were charge independent then we would expect mirror nuclei 4 to exhibit almostidentical nuclear energy level structure with any di�erence arising from the e�ect of the much weakerCoulomb force. We show below the low energy levels of the mirror pair 11C6 and 11B5 where the similarityin the energy level structure should be self-evident.Energy EnergyMeV MeV7.306.83 6.86.756.48 5.034.85 4.464.30 2.141.90 : : : : : : : : : : : : : : : : : : :11C6 11B5Energy levels of the mirror nuclei 11C6;11B5Such a structure hints at the approximate equality of n�p � n�n � p�p forces, or equivalentlyof the charge-independence of the strong nuclear force. Nucleon-nucleon scattering experiments supplyfurther evidence. Thus we reach the conclusion thatIsospin I is conserved in strong interactions. An isospin multiplet is a set of 2I + 1 hadrons each3 I emphasise the word choice because we are free to make either choice. The important point is that having madean assignment of the isospin I and its projection I3 to the proton we must then make all assignments of I; I3 for all otherparticles relative to the proton. This is precisely the same as assigning negative charge �e to the electron. The charge ofall other particles are then measured relative to that of the electron. We could have equally well established a conventionthat gave the charge of the electron as +e. It is important in physics to clearly identify where a freedom of choice exists.The freedom of choice usually implies a conservation law. In the case of the electron charge it leads to charge conservationwhich to date appears rigorous.4 mirror nuclei are pairs of nuclei that have the same total number of nucleonsA but with the number of protonsZ of one being equal to the number of neutronsA� Z of the other. Examples are 11C6 and 11B5 or 3H1 and 3He2.



16 of which is labelled by the quantum numbers I; I3 and exhibiting an approximate 2I + 1-folddegeneracy.2.10 Isospin for pionsWe have already noted that the pions appear to form a mass triplet. This suggests that they are membersof an isospin triplet (i.e. I = 1). Convincing evidence comes from nucleon-nucleon scattering experiments.For example, the reaction p+ n! n + n+ �+conserves isospin if the �+ has I = 0 or I = 1, however the charge- independence of the strong interactionsrequires that the projections I3 have the same sum on both sides of the reaction and hence we expectI3 = 1 for the �+ and hence must have I = 1. Similar experiments lead to the conviction that the threepions are di�erent charge states of the pion which together form an isospin triplet.2.11 Isospin transformationsWe may develop a two-component isospin formalism for describing the nucleon in almost thesame way as for two-component electron spin. We shall use the letters N , p, n for the nucleon, protonand neutron respectively. and introduce the two-component spinorsp = �10� and n = �01� (2:8)and for the nucleon wave function we write5 N = �ab� = ap+ bn (2:9)Recall the Pauli spin matrices�1 = �0 11 0� ; �2 = �0 �ii 0 � ; �3 = �1 00 �1� (2:10)We readily �nd that �3p = � 1 00 �1�� 10� = �10� = pand �3n = �1 00 �1�� 01� = � 0�1� = �nThe charge equation (Eq. 2.7) requires thatI3p = 12p and I3n = �12nand hence we make the identi�cation I3 = 12�3 (2:11)and similarly I1 = 12�1 and I2 = 12�2 (2:12)Let us now introduce the isospin ladder operators by de�ningI+ = I1 + iI2 = 12(�1 + i�2) = �0 10 0� (2:13)and I� = I1 � iI2 = 12(�1 � i�2) = � 0 01 0� (2:14)Acting on the p and n states we �nd I+p = �0 10 0�� 10� = 0 (2:15)5 The complete wave function will be of the form  =  space spin isospin



17I+n = � 0 10 0�� 01��10� = p (2:16)I+p = � 0 01 0�� 10��01� = n (2:17)I+n = �0 01 0�� 01� = 0 (2:18)The operators I�; I3 form the elements of the Lie algebra associated with the group SU2.2.12 Isospin for pion-nucleon systemsThe pions form the components of an isospin triplet whereas the nucleon forms the components of anisospin doublet. We may designate an isospin state by jI;M i. Thusj1; 1i � �+; j1; 0i � �0; j1;�1i � ��Recalling the properties of angular momentum ladder operators we haveI�jI;M i = pI(I + 1)�M (M � 1)jI;M � 1i (2:19)and I3jI;M i = M jI;M i (2:20)Thus I+�� = p2�0; I+�0 = p2�+; I��+ = p2�0; I��0 = p2�� (2:21)and I�p+ = n0; I+n0 = p+ (2:22)The usual properties of angular momentum addition hold. ThusI1 + I2 = (I1 + I2) + (I1 + I2 � 1) + : : :+ jI1 � I2j (2:23)and M1 +M2 = M (2:24)Combining a nucleon, N , with a pion amounts, in isospin space combining IN = 12 with I� = 1 and henceleads to isospin multiplets with I = 12 ; 32 . The fully stretched state j32 ; 32i must correspond to �+p andhence we make the assignment j32 ; 32 i = �+p (2:25)From (2.19) I�j32 ; 32 i = p3j32 ; 12 i (2:26)but I� = I�� + Ip� and hence I�j�+pi = I��j�+pi+ Ip�j�+pi= p2j�0pi+ j�+ni (2:27)Comparison of (2.26) with (2.27) leads toj32 ; 12i = r23 j�0pi +r13 j�+ni (2:28)Further application of the step-down isospin operator leads to:-j32 ;�12i = r13 j��pi+r23 j�0ni (2:29)and j32 ;�32i = j��ni (2:30)Orthogonality then leads to j12 ; 12i = r13 j�0pi �r23 j�+ni (2:31)



18 Let us now consider a practical application of this last result to the proton-deuteron reaction.2.13 A practical application of isospin symmetryConsider the interaction of a proton with a deuteron. The deuteron has a 3S1 ground state and thusthe spin space is symmetric. With respect to isospin the deuteron is an isospin singlet with I = M = 0.Since the proton has isospin j12 ; 12 i and we assume strong interactions conserve isospin the product of thereaction must be a member of an isospin doublet. Thus we could anticipate two outcomesp+ d! �0 +3 He2 (2:32)and p+ d! �+ +3 H1 (2:33)with the mirror nuclei (3He2;3H1) forming an isospin doublet. We can write by direct analogy with(2.31) j12 ; 12i = r13 j�0 3He2i �r23 j�+ 3H1i (2:34)from which it follows that amplitude(p+ d! �+ +3 H1)amplitude(p+ d! �0 +3 He2) = �p2 (2:35)But the cross-section is proportional to the square of the amplitude and hence if isospin is conserved wepredict the ratio for the cross-sections for the two reactions is�(p+ d! �+ +3 H1)�(p+ d! �0 +3 He2) = 2 (2:36)which agrees with experiment to better than 10%.2.14 Isospin multiplets and low mass baryons and mesonsRemarkably the low mass baryons and mesons may be readily organised into isospin multiplets as shownbelow:- K0 K+� : : : : : : : : : : : : : :��� �0 �+� : : : : : : : : : : : : : :� : : : : : : : : : : : : : : : :��0� : : : : : : : : : : : : : :�K� �K0Meson Octet Jp = 0�



19n0 p+� : : : : : : : : : : : : : :��� �0 �+� : : : : : : : : : : : : : :� : : : : : : : : : : : : : : : :��0� : : : : : : : : : : : : : :��� �0
�� �0 �+ �++� : : : : : : : : : : : : : � : : : : : : : : : : : : : � : : : : : : : : : : : : : ���� ��0 ��+� : : : : : : : : : : : : : � : : : : : : : : : : : : : ���� ��0� : : : : : : : : : : : : : ��
�Baryon Octet Jp = 12+ Baryon Decuplet Jp = 32+At this stage we may well ask "Are there other quantum numbers that distinguish between the di�erentisospin multiplets?" The appearance of octets and decuplets hints at the existence of a higher symmetry.The anti-baryons arrange themselves also in octets and decuplets while the mesons, particles and anti-particles, occur in common octets and singlets but not in decuplets.In this lecture we have encountered the four forces of nature. We noted that Maxwell had uni�ed theseparate theories of electricity and magnetism into a single coherent theory known as electromagnetismand in our own time electromagnetism and the weak interaction have been uni�ed in the electro-weaktheory. Will it be possible to produce a grand uni�ed theory that uni�es the electro-weak and stronginteraction? Perhaps in some very distant past these forces were on an equal footing and as the universecooled symmetry breaking occurred with the di�erent forces taking on the characteristics we know themby today. Finally, can a super uni�ed theory including gravity be constructed? For the moment thesemust remain as unanswered questions.6Before continuing our exploration of particles we should �rst examine the properties of the symmetriesassociated with Charge conjugation, C, Parity, P, and Time reversal, T , the subject of the next lecture.

6 Wigner has suggested that perhaps the answers to these ultimate questions lie beyond human possibilities. Amouse is unlikely to ever reach even modest conclusions about the nature of the universe. Perhaps it is a distinguishingfeature of humankind that we ask such questions. Pauli's reaction to suggestions of uni�ed theories was "What God hasput asunder no man shall unite".



20 The Application of Symmetry ConceptstoPhysical Problems cLecture Three For every complex question there is a simple answer| and it's wrong.| H. L. Mencken3.1 IntroductionIn this lecture I want to introduce three fundamental symmetries that have wide ranging implicationsfor all areas of physics, namely Charge conjugation, C, Parity, P, and Time reversal, T , symmetries.These �nd there ultimate expression in the CPT theorem. Before proceeding we �rst consider someother quantum numbers that assist in labelling the various particles.3.2 Charge conservationElectrons do not appear to disappear. The experimental limit for the decaye �!= � + is > 1:5� 1025yr. Within these limits we know of no exception to the statement that charge is conservedin all reactions and hence we may label particles by their electric charge Q. We note that the di�erencein the absolute charge of the electron and proton is < 10�21e.3.3 Baryon number BThe proton appears to be a remarkably stable particle. Considering all possible modes of decay themean life of the proton is > 1:6� 1025yr while for speci�c modes of decay the mean life of the proton is> 1031yr. One might have expected decays of the typep �!= e+ + which is certainly energetically possible. Likewise the decay of protons into mesons is not observed. Theseexperimental observations strongly suggest that baryons carry a conserved quantum number, the Baryonnumber B, sometimes termed the baryonic charge. To date there is no evidence for any reactions thatviolate conservation of baryon number. Note anti-baryons carry the opposite baryon number to theirbaryon partner just like for the charge quantum number1. We make the arbitrary assignment of B = 1to baryons and B = 0 for all leptons, mesons and the photon .3.4 Lepton numbersMany other reactions that satisfy all known conservation laws do not appear to occur. For examplee� + e� �!= �� + ��The absence of such reactions suggests the conservation of a Lepton number L with Le = 1 for the electronand Le = 0 for baryons, mesons and the photon. However, the reactions�� �!= e� +  and �� �!= e� + e+ + e�are not observed. The reactions �� �! �� + ��� and �� �! e� + ��eare observed the reactions whereas the reactions�� �!= �� + �� and �� �!= e� + �eare not observed.1 Our existence hints that the baryon number cannot be absolutely conserved.



21Experimentally the neutrinos �e and �� are found to be distinct particles. Furthermore the neutrino �and the antineutrino �� are distinct2. This is seen in neutron decay, the decayn �! p+ e� + ��eoccurs whereas the decay n �!= p+ e� + �edoes not occur.There is one other known massive3 lepton, the tauon � occurs with an associated neutrino �� .The reactions involving the three types of neutrinos �e; �� and �� and the corresponding massive leptonse; � and � are consistent with three separate lepton quantum numbers, Le; L� and L� which assume thevalues given in Table 3.1. For all non-leptonic particles the lepton numbers are zero.Lepton Le L� L�e� 1 0 0e+ �1 0 0�e 1 0 0��e �1 0 0�� 0 1 0�+ 0 �1 0�� 0 1 0��� 0 �1 0�� 0 0 1�+ 0 0 �1�� 0 0 1��� 0 0 �1Table 3.1 Lepton numbersAll experimental data to date indicates that the lepton numbers, individually and collectively, are con-served. There are three families of leptons based on the electron, muon and tauon. The masses are:-me = 0:511MeV; m� = 105:66MeV; m� = 1784:1MeVThe electron appears to be stable (mean life > 1:9 � 1023yr) whereas the muon has a mean life of2:2� 10�6s and the tauon a mean life of 3� 10�11s. Remarkably, the magnetic moments of the electronand muon are identical4 to within 1 part in 106 .3.5 Particles and antiparticlesDirac's 1929 relativistic wave function for the electron admitted a 4-component spinor solution corre-sponding to left- and right-handed electron states together with left- and right-handed positron states,the positron being the antiparticle of the electron5. Experiments indicate no di�erence in mass between aparticle and its antiparticle. Particle and antiparticles have the same spin quantum number but the val-ues of all charge quantum numbers such as Q;B;Le; L�; L� ; and S are reversed in sign6. Consequently2 Remarkably the neutrino appears only as a left-handed particle �L whereas the antineutrino occurs only as aright-handed particle ��R. Technically, and we shall expand on this point later, the particle and antiparticle have oppositehelicity and leads to a gross violation of parity conservation in weak interactions.3 Here I use the word massive as opposed to massless. The photon  is a massless particle (certainly m <3� 10�33MeV , the neutrino �e is close to, if not actually, massless (certainlym�e < 8eV ). The neutrinos e; � and �are massive (i.e. have nonzero rest mass).4 The remarkable similarity of the electron and muon led I. Rabi to exclaim "Who ordered this?".5 Again the choice of particle and antiparticle is arbitrary. We make the choice by assuming we are matter andthat what we call an electron is a particle. The object that annihilates the electron we take as the positron. Antimatterappears to be very rare in the universe.6 S is the strangeness quantum number which we shall shortly introduce.



22 the magnetic moments of a particle and its antiparticle are of the opposite sign. Particles whose chargequantum numbers are all zero are their own antiparticles as is the case for the neutral pion �0 and thephoton .73.6 Parity and spatial inversion symmetryIn Lecture one we mentioned briey inversion symmetry in regard to a square in two-dimensions. Therewe saw it was equivalent to a point symmetry rotation through 180o. In three-dimensions the situationis quite di�erent. A spatial inversion cannot be reduced to a set of rotations in 3-space. By a spatialinversion I we mean a symmetry transformation P such that(r; t) P�!(�r; t) (3:1)The operator P is commonly referred to as the Parity operator 8.3.7 Parity and spherical harmonicsThe spherical harmonics Y`m(�; �) assume particular importance in the theory of angular momentumwave functions. In the usual spherical coordinates we have� P�!� � �; and � P�!� + � (3:2)The spherical harmonics are proportional to the Legendre polynomialssinjmj �P m̀(cos �)eim� (3:3)Under the parity operation we then haveY`m(�; �) P�!Y`m(� � �; � + �) = (�1)`Y`m(�; �) (3:4)and hence we conclude that under the parity operation P the orbital part of the wave function is odd oreven as is the orbital quantum number `. For an n�particle state the parity has the eigenvalue(�1)Pni=1 `i (3:5)Parity conservation amounts to asserting that the Hamiltonian commutes with the parity operator P.Acting on a state of well-de�ned parity p twice givesP2j i = p2j i = j i (3:6)and hence we may take the eigenvalues of the parity operator P as �1. Note carefully the distinctionbetween states and operators. The parity of angular momentum states can be even, p = +1 or odd,p = �1 whereas the angular momentum operator ` = r x p is of even parity since under Pr P�!� r and p P�!� p (3:7)7 It is interesting to note that antimatter, in the form of positrons, is produced in the human body. The averagehuman body contains about 100gm of potassium of which 0:0117% is in the form of the radioactive isotope 40K19 whichhas a half-life of 1:3� 109yr 89:3% of the decays involve the �� process40K19 !40 Ca20 + e� + ��ewhile the rest involve either the electron capture EC process40K19EC! 40Ar18 + �eor the �+ process 40K19!40 Ar18 + e+ + �eThe positron annihilates with an electron to produce two 0:511MeV gammas. This latter phenomena has been used inagricultural research to determine the fat content of live pigs. Radioactive potassium is one of the principal sources ofradioactive decay in the human body producing about 5000Bq.8 NB. The parity operator is very di�erent from that of the angular momentum operator. The former is associatedwith multiplicative eigenvalues while the latter is associated with additive eigenvalues. The parity operator is always adiscrete operator whereas the angular momentum can be a continuous operator. Angular momentum conservation arisesfrom the assumption that there is no preferred direction in space. Spatial inversion is a less obvious property of space andindeed less fundamental.



23Likewise, spin and charge are even parity operators whereas the electric �eld E is of odd parity. Recallingthat B = r�A and E = �r�� @A@t (3:8)we may conclude that the magnetic �eld vector B is of even parity.3.8 Intrinsic parity of particlesWe have deduced an orbital parity for angular momentum states but have not considered the possibilitythat some particles may possess an intrinsic parity. Suppose we have a two-particle system such that	12 =  1 2 (3:9)then if P 1 = p1 1 and P 2 = p2 2 (3:10)then P	12 = p1p2(�1)`12	12 (3:11)where `12 is the orbital angular momentum between particles 1 and 2, and p1 and p2 are the intrinsicparities.The intrinsic parity of a third particle, say Z3, may be determined by studying a scattering processX1 + Y2 ! X1 + Y2 + Z3 (3:12)Then if parity is conserved 	�12P	12 = 	�123P	123 (3:13)and p1p2(�1)`12 = p1p2p3(�1)L123and hence p3 = (�1)L123+`12 (3:14)Such a process for determining the intrinsic parity of a particle is only possible if the particle Z3 can becreated singly. This rules out the possibility of de�ning, for example, an intrinsic parity for any chargedparticle since due to charge conservation one cannot create a single charged particle.A more useful concept is that of the relative parity of particles. Consider the processX1 + Y +2 ! X1 + Z+3 (3:15)where Y and Z carry a positive charge. In that case we have for parity conservationp1p2(�1)`12 = p1p3(�1)`13and hence the parity of Y (p2) relative to that of Z (p3) isp2 = (�1)`13�`12p3Again we are free to make a choice and then de�ne the relative parities of other particles. If we chooseto take the proton (p), neutron (n) and lambda (�) as having even parity then we can make assignmentsto other particles by detailed analysis of reactions typi�ed by Eq.(3.15). In general it may be shown thatfor all bosons the particle and antiparticle have the same parity whereas for fermions the particle andantiparticle are of opposite parity. This means that for bosons the particle and antiparticle may appearin the same isospin multiplet whereas for fermions the particle and antiparticle must appear in di�erentisospin multiplets.The photon has negative intrinsic parity as follows from the fact that the photon is associatedwith the 4�vector potential (A; �) and under a spatial inversionA P�!�A and � P�!� (3:16)Recall that the photon is a massless spin 1 particle that can occur in both right-handed and left-handedpolarisations.



24 The pions are massive spin 0 particles with negative intrinsic parity. This would be consistentwith regarding the pions as composite particles made up of fermion-antifermion pairs.3. 9 Parity selection rulesParity appears to be conserved in all electromagnetic and strong interactions but not in weak interactions.In almost all of solid state, atomic and molecular physics weak interactions are of no signi�cance and ifa centre of inversion exists the states will have well de�ned parity. This is certainly the case for atomsand for crystals with cubic symmetry. In the case of electric dipole transitions the relevant interactionoperator is of the form er and is thus an odd parity operator. Parity conservation for electromagneticinteractions then forbids9 electric dipole transitions between states of the same parity. Thus, for example,in an atom it is not possible to have electric dipole transitions between states of the fn con�gurations ofthe lanthanides or actinides. Place the corresponding ion in a crystalline environment lacking a centre ofinversion and it is possible for the crystal �eld to mix states of opposite parity and previously forbiddentransitions become allowed, albeit weakly.The electric quadrupole is quadratic in r2 and z2 and hence is a parity even operator and can onlycouple between states of the same parity. The magnetic dipole operator involves the angular momentumoperators L and S which are of even parity so also can only couple between states of the same parity.3.10 Time reversal invarianceUnder time reversal T (r; t) T�!(r;�t) (3:17)Consider a system with a HamiltonianH and satisfying the Schr�odinger equationH (r; t) = i@ (r; t)@t (3:18)If under time reversal H T�!H for the time reversed systemH (r;�t) = �i@ (r;�t)@t (3:19)It is apparent from inspection of Eqs. (3.18) and (3.19) that  (r; t) and  (r;�t) satisfy di�erent equations.It is the complex conjugate wave function  �(r; t) that satis�es (3.19). IndeedH� �(r; t) = �i@ �(r; t)@t (3:20)There is a fundamental di�erence between time inversion and spatial inversion. In the latter case we canconstruct states that are eigenstates of the parity operator P and in appropriate situations there is awell de�ned parity quantum number p = �1. Under time inversion T a wave function is changed intoits complex conjugate and hence a state cannot be an eigenstate of T and there cannot be an associatedconserved quantum number.Under time reversal p T�!� pand hence the motion of objects is reversed. As a consequence the time reversal operation changes thesign of angular momentum operators and since the directions of currents are reversed so is the directionof the magnetic �eld B.3.11 Charge conjugationThe operation of Charge conjugation C replaces a given particle by its antiparticle. Thus C changes thesign of all charges (Q;B;L;S). The electric �eld E is associated with static charges while the magnetic�eld B is associated with currents and henceE C�!� E and B C�!B (3:21)We summarise the operations of C;P; T in Table 3.2.Table 3.2 Transformations under C;P and T .9 Note we use the word forbids since a selection rule tells what is forbidden but not what is permitted.



25Quantity C P Tr r �r rt t t �tp p � p � pL = r x p L L � LS S S �SE �E �E EB �B B �BQ �Q Q Q3.12 The CPT theoremSchwinger, L�uders and Pauli have established a remarkable theorem known as the CPT theoremwhich states that any quantum �eld theory compatible with special relativity and which assumes onlylocal interactions is invariant under the combined action of CPT including all orderings of the threeoperators. This means that while there may be noninvariance with with any of the individual operatorsthere cannot be, within the assumptions of the theorem, noninvariance with the triple product. Thus ifthere is noninvariance with respect to CP then there will consequently be noninvariance with respect toT but not for CPT .As an example consider the action of C and P on the left-handed neutrino �L as illustrated below. Underthe action of P the left-handed neutrino is turned into the non-existent right-handed neutrino �R whileunder charge conjugation it is turned into the non-existent left-handed antineutrino ��L. However, underthe joint action of CP we obtain the observed right-handed antineutrino ��R. Since CP invariance ismaintained in weak interactions then if the CPT theorem holds then weak interactions would also betime reversal T invariant. �L P������������������! �RC?????????????????y C ?????????????????y��L P������������������! ��R



26 3.13 Time reversal invariance and Kramer's theoremLet us now expand on the idea of time reversal to obtain Kramer's theorem that plays an important rolein solid state physics. In our earlier discussion we made not explicit reference to spin and found thatthe action of T was simply to transform the Schr�odinger wave function  into its complex conjugate  �.Assuming H to be real then H = E T�!H � = E � (3:22)The decision as to whether we obtain degeneracy or not will rest on whether the set  � is, or is not,linearly independent of the set  for a particular energy. In carrying out the action of T we mustremember to reverse the direction of any magnetic �eld in H. This will be automatically satis�ed ifthe �eld is produced by part of the quantum system under consideration - the reversal of momenta willautomatically lead to a reversal of the �elds. Suppose, however, that the �eld B is an external �eld. Inthat case the �eld must be explicitly reversed. The wave function  � eim`� goes into  � � e�im`�.In the absence of a magnetic �eld these two solutions should yield the same energy. In the case of anexternal magnetic �eld this need not be the case.If we consider the inclusion of spin the situation is somewhat changed. First we note that T is not a linearor unitary operator. If c is a complex number then T (c ) = c�T  whereas for a unitary transformationlinearity requires that T (c ) = cT  which is not the case here. Rather T is an antilinear operator. Ifthe operator also preserves the magnitude of the scalar product such that j(T �; T �)j = j(�; �)j then theoperator T is an antiunitary operator. Thus we should not treat the time reversal operator as simplyhaving the action of complex conjugation. Let us use K to denote the operation of complex conjugation.Clearly K2 = I where now I is the identity operator.The product of any two antiunitary operators is a unitary operator, say U . Let us writeT K = U (3:23)Left multiplying both sides by K yields T = UK (3:24)from which we may conclude that the most general form for T is to take it as the product of a unitaryoperator U and the antiunitary operator of complex conjugation K. Consider the following matrixoperations T 2 = UKUK = UU� = cE (3:25)with E being the unit matrix. Noting the unitarity of U we haveU = c(U�)�1 = c ~UNow take the transpose of the above ~U = cU = c2 ~UThus c2 = 1 and hence c = �1. Therefore the matrix U must be either totally symmetric or antisymmetricin taking its transpose. Thus Eq. (3.25) becomesT 2 = �E (3:26)and hence we are restricted to T 2 = � (3:27)For a spinless Schr�odinger equation we have T = K and only the positive solution is possible.We can distinguish two classes of operators, those Oe involving only even powers of time and thoseOo involving only odd powers of time. The �rst class would include ordinary coordinate operators andaccelerations while the second class would include linear momentum and angular momentum operators.Clearly T Oe = OeT and T Oo = �OoT (3:28)Recalling that T = UK and noting, for example, that for the linear momentum p= �ir we see fromEq. (3.28) that U commutes with any multiplication by and di�erentiation with respect to the spatialcoordinates and hence at most U has an e�ect on spin variables.



27Recall the Pauli spin matrices, Eq. (2.10),�1 = �0 11 0� ; �2 = �0 �ii 0 � ; �3 = �1 00 �1� (2:10)�1 and �3 are real while �2 is pure imaginary. We have already noted that the time reversal operator Tanticommutes with the spin s and hence its three components si i.e.T si = �siT i = 1; 2; 3 (3:29)but T sk = UKsk = UskK = �skUK k = 1; 3 (3:30)and T s2 = UKs2 = �Us2K = �s2UK (3:31)Thus U commutes with s2 and anticommutes with s1 and s3. Hence we may obtain a representation ofthe operator U for a system of n spins with the correct commutation properties by choosingU = �12�22 : : : �n2 (3:32)to give T = �12�22 : : : �n2K (3:33)Remembering that sk = 12�kand writing the third component of the spin of the i�th particle as si3 = �12 we have for an n�particlesystem T  (r1; s13; : : : ; rn; sn3) = (�i)2Pi si3 (r1;�s13; : : : ; rn;�sn3) (3:34)We thus obtain two possibilitiesT 2 =  n even or T 2 = � n odd (3:35)We can now almost immediately obtain Kramer's theorem10 which states thatIn the absence of a magnetic �eld all energy levels of a system containing an odd number ofelectrons must be at least doubly degenerate regardless of how low the symmetry is.Thus a pure electric �eld cannot remove all the degeneracy for a system involving an odd number ofelectrons.Proof of Kramer's TheoremFor an odd number of electrons T 2 = � and consequently T  is orthogonal to  and by time-reversalsymmetry T  must have the same energy as  and hence there must be at least two-fold degeneracy 11.10 Kramer's theorem has important technological consequences as it makes a prediction of a situation where 2-folddegeneracy is assured. Degeneracy can be lifted in a controlled manner by application of an external magnetic �eld. Asecond oscillatory magnetic �eld can be applied to induce transitions between the split levels. This is of importance inmicrowave communications and nuclear magnetic resonance imaging techniques in medicine.11 The orthogonality of T  and  may be proven by �rst considering two functions  and �.(T  ; T �) = (UK ;UK�) = (K ;K�) = ( ; �)� = (�;  )Therefore (T  ;  ) = (T  ; T 2 ) = (T  ;� ) = �(T  ;  )and hence (T  ;  ) = 0.



28 The Application of Symmetry ConceptstoPhysical Problems cLecture Four4.1 IntroductionIn this lecture I want to introduce you to the elements of the quark model of hadrons (i.e. mesons andbaryons). Ultimately we seek to describe the properties of hadrons in terms of sub structures based onmore fundamental entities. Scattering experiments involving the collision of electrons with protons probethe substructure of the proton and in the late 1950's it was clear that the nucleon was composite made upof partons, a phrase introduced by R. P. Feynman. What should we take as these fundamental entities orpartons? Remember mesons have integer spin and are bosons whereas baryons have half-integer spin andare fermions. If we wish to build both mesons and baryons out of the same entities and if these entitiesare not themselves mesons or baryons then we should take the basic entities as fermions since we maycombine fermions to form bosons but not the converse.1 Let us �rst see if we can describe the propertiesof the pions and nucleon in terms of some basic entities.4.2 Enter the u and d quarksWe noted in the previous lecture that the pions have a negative intrinsic parity with �+ and �� beinga particle-antiparticle pair. Furthermore fermions and antifermions have opposite parity and hence itis reasonable to suggest that the mesons are made up of coupled pairs of fermionic and antifermionicpartons. A minimal assumption for the baryons is that they involve the interaction of three fermionsand the antibaryons three antifermions. We assume that the fermions are of spin 1/2, that allows us toconstruct mesons of spin 0 and 1 and baryons of spin 1/2 and 3/2. The pions form an isospin triplet (I =1) so we shall assume a pair of basic entities that form an isospin doublet (I = 1/2). Let us call this pairof particles quarks2 and designate the I3 = 1=2 quark by the letter u (the "up quark") and the I3 = �1=2quark by the letter d (the "down quark") with electric charges qu and qd respectively. The correspondingantiquarks �u and �d will have opposite signs for their charge and isospin projection.4.3 Quark chargesThe �+ meson has Q = 1, I = 1, J = 0 and I3 = 1 which would be compatible with the assignment�+ � u �dif we take Q = 1 = qu � qd (4:1)The proton has Q = 1, I = 1=2, J = 1=2 and I3 = 1=2 which would be compatible with the assignmentp � uudwith Q = 1 = 2qu + qd (4:2)Solving Eq.(4.1) and (4.2) gives the quark charges (in units of +e) asqu = 2=3 and qd = �1=3 (4:3)It follows also that the quarks carry a baryonic charge B = 1=3 giving the baryonic charge of the nucleonas B = 1 and that of the pion as B = 0.4.4 Building � mesons1 If magnetic monopoles exist, and to date there is no evidence for their existence, then it is possible to combinebosonic particles known as dyons (particles containing both electric and magnetic charge) to form fermions. The conceptof the magnetic monopole was introduced by Dirac to explain electric charge quantisation.2 The name quark was introduced by M. Gell-Mann from James Joyce's book Ulysses "three quarks for MasterMark". It is not derived from the German soft quark cheese.



29It is useful to regard the u and d quarks as forming a two component isospin spinor and likewisefor �u and �d. For reasons of phase consistency we shall write these two spinors as�ud� and �� �d�u � (4:4)We then have the isospin operationsI�jui = jdi and I+jdi = jui (4:5a)and I+j�ui = �j �di and I�j �di = �j�ui (4:5b)The basic ansatz for constructing mesons out of quarks is:Mesons are formed by coupling a quark to an antiquarkTo construct the three pions let us take for �+j�+i = �ju �di (4:6)The wavefunction for the �0 is found by acting with I� on both sides of Eq.(4.6) and rememberingEq.(4.5) to give I�j�+i = p2j�0i(i1� + i2�)� ju �di = �jd �di + ju�ui (4:7)leading to3 j�0i = 1p2(ju�ui � jd �di) (4:8)In a similar fashion the wavefunction of the �� is found to be��i = jd�ui (4:9)Note we could construct the wavefunction of a second neutral meson �0 by demanding it beorthogonal to that of the �0 to give j�0i = 1p2(ju�ui+ jd�di) (4:10)The wavefunctions for the two neutral mesons involve quark-antiquark pairs of the same typewhereas the charged mesons involve di�erent types. The charged �-mesons have a meanlife of 2:6�10�8swhereas the �0 meson has a meanlife of 8:4 � 10�17s. The charged pions decay via the weak interac-tion whereas the neutral pion decays by electromagnetic interaction giving rise to particle-antiparticleannihilation.4.5 Baryon wavefunctionsThe corresponding ansatz for constructing baryons out of quarks is:Baryons (Anti-baryons) are constructed out of a triplet of quarks (anti-quarks)We have already suggested the proton is built out of the quark con�guration uud and the neu-tron udd. Magnetic moment measurements are consistent with the quarks having zero orbital angularmomentum in their groundstate. Let us temporarily suspend our belief in the Pauli exclusion principleand ask what particle would the quark con�guration uuu correspond to? It would involve a charge of twounits with a total isospin projection of 3/2 suggesting an isospin quartet multiplet completely symmetricin the spin space with J = 3/2. Could this be a member of the multiplet involving the four particles(��;�0;�+;�++)?Let us consider a particle �++ in a spin state with J = 3=2 and maximal spin projection J3 = 3=2.Ignoring the Pauli exclusion principle, the only possible way of constructing such a state out of u and dquarks is to make the assignment j�++3=2; 3=2i = j+u+u+ui (4:11)3 As we shall see later, in the case of the neutral pion we are ignoring the possibility of other quarks being involvedsuch as the "strange quark" s.



30 where the 3=2 refer to the respective isospin and spin projections while the + signs placed over the quarksindicate the quark spin projection sz = +1=2 (We will later use � for sz = �1=2.). Remembering Eq.(4.5), we can apply the isospin operator I� to both sides of Eq. (4.11) to giveI�j�++3=2; 3=2i = p3j�+1=2; 3=2i (4:12a)and I�j+u+u+ui+ j+d+u+ui+ j+u+d+ui + j+u+u+di=j+u+u+di3 (4:12b)where by the last line we understand we are to take all three distinct permutations of the orderings ofthe three quarks. Note that stepping down in isospin changes the charge of the particle by one unit.Comparison of Eq. (4.12a) with (4.12b) givesj�+1=2; 3=2i = 1p3 j+u+u+di3 (4:13)How is this wavefunction related to that of the proton? Let us �rst apply a spin step down operator J�to both sides of Eq. (4.13) to get J�j�+1=2; 3=2i = p3j�+1=2; 1=2i (4:14a)and J� 1p3 j+u+u+di3 = 1p3(j+u�u+di6 + (j+u+u�di3) (4:14b)Comparison of Eq. (4.14a) with (4.14b) givesj�+1=2; 1=2i = 13(j+u�u+di6 + j+u+u�di3) (4:15)4.6 The nucleon wavefunctionsThe proton has isospin I = 1=2 with isospin projection I3 = +1=2 and spin J = 1=2 and hencethe proton state jp+1=2; 1=2i should be orthogonal to the state formed in Eq. (4.15) and hence of theform jp+1=2; 1=2i = aj+u�u+di6 + bj+u+u�di3 (4:16)The coe�cients a and b may be evaluated by noting that orthogonality requires 6a+ 3b = 0 and henceb = �2a while normalisation requires a2 + b2 = 1 and hence choosing the phase of a as positive givesjp+1=2; 1=2i= 1p18(j+u�u+di6 � 2j+u+u�di3 (4:17)The corresponding state for the neutron may be found by applying the isospin step-down operator I� toboth sides of Eq. (4.17) to givejn0 � 1=2; 1=2i = 1p18(�j+d�d+ui6 + 2j+d+d�ui3 (4:18)Eqs.(4.17) and (4.18) give us a quark description of the nucleon. In our next lecture we shall use thisknowledge to compute the ratio of the magnetic moment of the proton to that of the neutron which willgive us our �rst experimental test.



31The Application of Symmetry ConceptstoPhysical Problems cLecture Five5.1 IntroductionIn Lecture Four we introduced a quark model based on just two quarks (u; d) and their correspondingantiquarks (�u; �d). We then constructed wavefunctions for the proton and neutron in terms of theirconstituent quarks as jp+1=2; 1=2i= 1p18(j+u�u+di6 � 2j+u+u�di3) (4:17)and jn0 � 1=2; 1=2i = 1p18(�j+d�d+ui6 + 2j+d+d�ui3) (4:18)In today's lecture I want to use this knowledge to calculate the ratio of the magnetic moment of theproton to that of the neutron.5.2 Assumptions in the calculation of quark magnetic momentsThe magnetic moment of an electron is proportional to its charge e and inversely proportional to its massm. If isospin were exactly conserved we would have mu = md. We shall assume isopspin conservation.Let us, by analogy, assume that the quarks carry a magnetic moment proportional to their charge. Wewish to calculate a ratio and hence will ignore the mass term. We calculate the ratio for the same spinprojection Jz = 1=2 for the proton and neutron. Let sz denote the spin projection of a single quark, thenthe magnetic moments should be proportional to the matrix elements of the operator�z = 3Xi=1 qiszi (5:1)We have the single quark matrix elementsh�ujqszj�ui = �13 and h�djqszj�di = �16 (5:2)



32 5.3 Calculation of the proton-neutron magnetic moment ratioLet us �rst consider the proton wavefunction of Eq. (4.17). Forming the matrix element of the operatorgiven in Eq. (5.1) we havehp+1=2; 1=2j�zjp+1=2; 1=2i = 118h+u�u+d6 � 2+u+u�d3j�zj+u�u+d6 � 2+u+u�d3i (5:3a)= 118(h+u�u+d6j�zj+u�u+d6i+ 4h+u+u�d3j�zj+u+u�d3i) (5:3b)= 118(6h+djqszj+di+ 4� 3� 2h+ujqszj+ui + 4� 3h�djqszj�di) (5:3c)= 118(24h+ujqszj+ui � 6h+djqszj+di) (5:3d)= 118(24� 13 � 6� �16 ) (5:3e)= 12 (5:3f)Similarly for the neutron wavefunction given by Eq. (4.18) we havehn0 � 1=2; 1=2j�zjn0 � 1=2; 1=2i == 118h�+d�d+u6 + 2+d+d�u3j�zj � +d�d+u6 + 2+d+d�u3i (5:4a)= 118(h+d�d+u6j�zj+d�d+u6i+ 4h+d+d�u3j�zj+d+d�u3i) (5:4b)= 118(6h+ujqszj+ui+ 4� 3� 2h+djqszj+di + 4� 3h�ujqsz j�ui) (5:4c)= 118(24h+djqsz j+di � 6h+ujqszj+ui) (5:4d)= 118(24� �16 � 6� 13) (5:3e)= �13 (5:4f)Comparison of Eq. (5.3f) with Eq. (5.4f) leads immediately to�p�n calc = �32 = �1:5 (5:5a)which may be compared with the experimental value of (see page 81 of the Particle Properties Databooklet) �p�n expt = �1:46 (5:5b)Importantly, we have obtained a reasonable magnitude, with the correct sign.The introduction of just two quarks has given a surprisingly good account of the nucleon and the pion.We now see how it is possible to have the neutron as an electrically neutral particle and yet have a sizablemagnetic moment. We have also seen a reason for the di�erence in the lifetime of the charged and neutral�-mesons. However, two quarks are not su�cient to describe all of the observed baryons and mesonsand we have not explained the observed groupings of mesons into octets and singlets and the baryonsinto octets and decuplets. Nor have we explained our apparent disregard of the Pauli exclusion principle.This is seen most strongly in the maximal spin state of the �++ baryon. In the latter case we needto introduce the colour quantum numbers and in the former the strange quark s. This we shall do inLecture Six.



33The Application of Symmetry ConceptstoPhysical Problems cLecture Six6.1 IntroductionIn Lecture Four we introduced a quark model based on just two quarks (u; d) and their correspondingantiquarks (�u; �d). This led to a model for describing the pions, nucleons and � particles but was not richenough to describe other members of the meson octet or baryon octet and decuplet. A richer schemecomes by introduction of the strange quark s and its antiparticle �s.6.2 Strange ParticlesThe possibility of an additional quantum number capable of distinguishing di�erent isospin multipletspre-dates the quark model. In 1954 it became possible to bombard pions on protons and observe thereaction �� + p! � + K0 (6� 1)The two neutral particles decayed as � ! p+ �� (6� 2)K0 ! �+ + �� (6� 3)The cross-sections measured for (6-1) were consistent with the process occurring via the strong interactionwhereas the subsequent decays were of times normally associated with weak interactions. This behaviourseemed at the time strange with � and K being termed strange particles. It was suggested that there mustbe an additional quantum number S (strangeness) that is conserved in strong interactions but broken inweak interactions. The pions, nucleons and �'s were assigned strangeness S = 0 and the strange particlessuch as �;�;�;K; : : : are assigned S 6= 0.If Eq.(6-1) is to conserve strangeness and the �� and p have S = 0 then the strangeness on the right-hand-side must sum to zero. This will be the case if we arbitrarily assign S = �1 to the � and S = +1to the K0. The decays given in Eq. (6-2) and (6-3) involve strangeness violation withjSj = 1 (6� 4)States of a given isospin multiplet have the same strangeness quantum number S allowing us to assignS = +1 to K+ and S = �1 to �K0 and K�. The assignment of strangeness to the �� particle follows bynoting that its decay proceeds in two steps:- �� ! � + ��� ! p+ ��Each step involves a change of strangeness of �1 leading to the assignment of S = �2 to the isospindoublet ��;�06.3 The Gell�Mann-Nishijima Charge EquationThe charges Q of the non-strange particles are observed to satisfy the equationQ = I3 + 12B (6� 5)The � particle has been assigned S = �1 with I3 = 0 and B = 1 suggesting that both strange andnon-strange particles satisfy the so-called Gell�Mann-Nishijima relationQ = I3 + 12(B + S) (6� 6)= I3 + Y=2 (6� 7)where Y is known as the hypercharge.6.4 The Quark Triplet and Anti-Quark Anti-Triplet



34 The introduction of strangeness requires that our very simple two-quark model be extended by theintroduction of a third quark, the strange quark s with strangeness S = �1. The Gell�Mann-Nishijimarelation requires Qs = �13 and isospin I = 0. Note that the strange quark has the same charge as that ofthe down quark d. This suggests a grouping of particles into multiplets based upon their charge Q insteadof isospin - the so-called U�spin multiplets. States belonging to a given U�spin would be expected tohave similar electromagnetic properties. Thus the d; s quarks form a U�spin doublet with the u�quarkbeing a U�spin singlet.6.5 The U�spin AlgebraJust as with isospin we may construct a U�spin algebra such thatU3jU;MU i = MU jU;MU i (6� 8a)U�jU;MU i = pU (U + 1)�MU (MU � 1)jU;MU � 1i (6 � 8b)U2jU;MU i = U (U + 1)jU;MUi (6� 8c)Assigning the d�quark to MU = +12 we then haveU�jdi = jsi (6� 9a)U+jsi = 0 (6 � 9b)U�jui = 0 (6� 9c)U+j �di = �j�si (6� 9d)6.6 Strange MesonsWe earlier deduced that j�+i = �ju �di (6� 10a)j�0i = 1p2(ju�ui � jd �di) (6� 10b)j��i = jd�ui (6� 10c)which are all non-strange mesons. Applying U+ to Eq. (6-10a) and noting Eq. (6-9d) we have



35U+j�+i = jK+i= ju�siand hence we have the assignment jK+i = ju�si (6 � 11)We can now obtain the wavefunction for the K0 meson by applying the isospin step-down operator I�to Eq. (6-11) to give I�jK+i = jK0i= jd�si (6 � 12)With the three quarks u; d; s and three anti-quarks we may construct three orthogonal linear combinationsof the pairs u�u, d �d, and s�s. One linear combination has already been found and identi�ed with that ofthe non-strange meson �0. A complete scalar strange meson, �0, with isospin I = 0 may be written asj�0i = 1p3(ju�ui+ jd�di+ js�si) (6 � 13)A state corresponding to the strange meson, �, arises by forming a linear combination that is orthogonalto the wavefunctions given by Eq. (6-10b) and (6-13) to givej�i = 1p6(2js�si � ju�ui � jd�di) (6 � 14)Finally we have the two kaons j �K0i = �js �di and jK�i = js�ui (6 � 15)Recall earlier the meson octet drawn earlierK0 K+� : : : : : : : : : : : :��� �0 �+� : : : : : : : : : : : : : : : : : � : : : : : : : : : : : :��0� : : : : : : : : : : : :�K� �K0Meson Octet Jp = 0�In terms of coupled quark-antiquark pairs we have the equivalent diagramd�s u�s� : : : : : : : : : : : : : : : :��u �d �0 d�u� : : : : : : : : : : : : : : : : : � : : : : : : : : : : : :��0� : : : : : : : : : : : : : :�s�u �s �dMeson Octet Jp = 0�



36 where the quark composition of the two neutral mesons, �0 and �0, are given in Eqs. (6-10b) and (6-14)respectively. The other neutral strange meson, �0 occurs as a singlet. Altogether we have formed a nonetof mesons (an octet plus a singlet). The particles at the top of the octet have strangeness S = +1 whilethe two at the bottom have S = �1. All the particles on the central line have S = 0. Thus the � and �0are said to have hidden strangeness.6.7 The Baryon Octets and DecupletsWith three quarks u; d; s we can form a total of 27 particles from triplets of these quarks as seenin the table below. quarks I3 S Q Number of Baryonsuuu 32 0 2 1uud 12 0 1 3udd �12 0 0 3ddd �32 0 �1 1uus 1 �1 1 3dds �1 �1 �1 3uds 0 �1 0 6uss 12 �2 0 3dss �12 �2 �1 3sss 0 �3 �1 1There is one baryon for each independent quark wavefunction. Thus for uds we can form six independentorthonormal sets of quark wavefunctions. It is instructive to make a plot of isospin projection, I3, versusstrangeness , S, as overleaf. The diagram can be resolved into a decuplet, two octets and a singlet corre-sponding to 3 x 3 x 3 = 1 + 8 + 8 + 10We have already identi�ed the quark composition of the �++ asj�++I = 32 ; I3 = 32 ; J = 32 ; J3 = 32 i � j+u+u+ui (6 � 16)From that one state we may construct all the other states of the decuplet from a systematic applicationof the isospin ladder operators,I� to move along the states of a given isospin, I, and �xed strangeness,S, and angular momentum, J; J3. Application of the U�spin ladder operators U� allow us to changethe strangeness quantum number S and hence move from one isospin multiplet to another. Note thatchanging the isospin projection I3 changes the charge, Q, in steps of one unit while changing the U�spinprojection, U3, changes the strangeness, S in steps of unity.



37The 27 baryons - a plot of isospin projection I3 versus strangeness S.
The quark composition for the baryon decuplet with J = 32+



38 Note that a change in strangeness involves the replacement of a non-strange quark, u or d, by a strangequark, s. With isospin conservation we would have mu = md and we would expect the mass of thestrange quark to be greater than that of the up-down quarks. Hence we could predict that the massintervals in the baryon decuplet will be approximately equal as is indeed the case.m� = 1232MeV; m�� = 1385MeV; m�� = 1530MeV; m
 = 1672MeVThe preceding plot may be compared with our earlier representation of the baryon decuplet given below�� �0 �+ �++� : : : : : : : : : : : : : � : : : : : : : : : : : : : � : : : : : : : : : : : : : ���� ��0 ��+� : : : : : : : : : : : : : � : : : : : : : : : : : : : ���� ��0� : : : : : : : : : : : : : ��
�The baryon decuplet with J = 32+Concluding RemarksIn the preceding lectures I have endeavoured to introduce you to a small part of the role of symmetryin physics with mainly examples drawn from particle physics using chiey your knowledge of angularmomentum theory. Throughout, but without explicit statement, we have been using the theory of thegroup of rotations in two (SO2) and three (SO3) dimensions and their associated Lie algebras and inour discussion of spin the group of special unitary transformations (SU2) and its Lie algebra A1. Inthe background of our discussion of the singlets, octets and decuplets of the hadrons and the quarktriplets and antitriplets has been the Lie algebras associated with two important group structures (SU3)and (SU2 � U1). Importantly, we note that methods developed in one area of physics can �nd similarapplications in other seemingly very dissimilar areas of physics. While we stop here the never-endingstory does not .....


