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Lecture One
I can well appreciate, Holy Father, that as soon as certain people realize that in these
books which I have written about the Revolutions of the spheres of the universe I
attribute certain motions to the globe of the Earth, they will at once clamour to me
to be hooted off the stage with such an opinion.

Nicolaus Copernicus, On the Revolutions

1.1 Introduction

In this series of lectures I want to introduce you to the idea of the concepts of symmetry and their
applications to physical problems. These concepts are universal in their applicability to physical problems.
They are profoundly unifying concepts finding applications in such apparently diverse topics as particle- ,
nuclear- atomic-, molecular- and solid state physics. They are also the key to understanding many of the
problems involving linear, and more importantly, nonlinear differential equations. Symmetry also enters
in many aspects art.

Throughout we will emphasise practical details rather than abstract theory often referring you to the
literature for further details. Thus we will try to explains results but will not be going into formal proofs.
I will be expecting you to apply these results in calculations for models of real systems. Note I say models
of real systems. Every calculation is associated with a particular model or abstraction that can never
correspond exactly to a real system in its full diversity. Nevertheless, we might hope that some of our
calculations will be a reasonable approximation to some aspects of some system.

I shall assume that you have some knowledge of the quantum theory of angular momentum such as
commonly associated with the angular momentum states |JM〉 and the use of ladder operators. The
first few lectures will be devoted to examples of symmetry in a variety of areas of physics with a special
emphasis on examples from nuclear and particle physics. Later we will develop applications to problems
in atomic- and solid-state physics. Those lectures will be preceded by the development of aspects of the
theory of symmetric functions and symmetry groups.

1.2 Why Symmetry?

Symmetry is usually associated with an action or transformation of a system or object such that after
carrying the operation the system or object is in a state indistinguishable from that which it had prior
to carrying out the action or transformation. Thus there is a close relationship between symmetry and
impossible experiments. The existence of a symmetry implies that it is impossible to devise an experiment
to distinguish the before and after situation. If you succeed then the symmetry does not exist. All the
great conservation laws are associated with the assertion that a particular experiment is impossible.
Indeed in the early 1900’s Emmy Nöether showed that every conservation law is associated with a certain
invariance which in turn is associated with the statement of an impossible experiment. For example, the
conservation of angular momentum is associated with the statement that no experimentalist has been
able to determine a preferred direction in space. A partial list of impossible experiments is given in Table
1.1.
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Table 1.1 Impossible experiments and symmetries.

Immeasurable Quantity Implied Invariance Conserved Quantity Accuracy

Absolute Position Space Translation Momentum exact(?)

Absolute Time Time Displacement Energy exact(?)

Absolute Direction Rotational Angular exact(?)

Momentum

Relative Phase of Charge Gauge Charge Q exact(?)

charged and neutral Transformations

particles

Left and Right Space Inversion P parity violated in

Indistinguishability weak

interactions

Direction of Time Reversal T - violated

Time Flow

Indistinguishability

Particle-AntiParticle Charge Conjugation C Charge Parity violated in

Distinction weak

interactions

Relative phase Baryon Gauge Baryon Number B exact(?)

of baryons and Transformations

other particles

Relative phase Electron Number Electron Number Le exact(?)

of e− & νe and Gauge Transformations

other particles

Relative phase Muon Number Muon Number Le exact(?)

of µ− & νµ and Gauge Transformations

other particles
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Thus the existence of a symmetry tells us what is NOT possible but does not tell us what IS possible.
The existence of a symmetry rules out some possibilities.1 2 It leads to selection rules. The existence of
a symmetry constrains the form of theories used to model the system possessing an observed symmetry.
We must strongly emphasise that the existence of a symmetry can only be determined by experiment and
is always a tentative statement. We can never be sure that some improvement in experimental technique
or some experiment not hitherto contemplated will reveal an inexactitude in the symmetry. As examples
consider the parity violation experiment or the CP violation experiments of kaons.

1.3 Broken symmetry

In practice very few symmetries are ’exact’ and in most cases we are led to consider ’approximate’
symmetries. A symmetry need not be exact to be useful. Indeed I would assert the following:

Proposition: We should always strive to construct theories with the highest possible symmetry even if
these are not exact symmetries of nature. The physics comes in the process of breaking the symmetry.

Consider the case of

Ce2Mg3(NO3)12 · 24H2O : Nd 3+

What symmetry does the Nd 3+ ion see in the rare earth double nitrates? In free space it sees spherical
symmetry associated with the three-dimensional rotation group SO3. The total electron angular mo-
mentum J has no preferred direction in free space and is a conserved quantity. 3 Associated with the
conservation of the angular momentum J is a degeneracy of (2J + 1) since each component Jz occurs at
the same energy. Switch on a magnetic field in the z−direction and create a locally preferred direction
and the degeneracy is lifted and we observe 2J + 1 sublevels. 4

Placing the Nd 3+ ion in the crystal breaks the spherical symmetry so that J ceases to be a conserved
quantity - there are local preferred directions imposed by the geometrical arrangement of the various
ions clustering about the Nd 3+ ion. To a first approximation we descend to the symmetry group of the
icosahedron Kh and for J ≥ 5

2
there will be a partial lifting of the

(2J + 1)−fold degeneracy.

The nitrate ions cluster around the vertices of a slightly distorted tetrahedron and the symmetry is
approximately that of the group of the tetrahedron, Th. Again the degeneracy is further reduced. These
reductions in degeneracy manifest themselves in the appearance of sublevels. The actual point symmetry
observed by X−ray structural analysis is that of the trigonal point group, C3.

Thus the entire breakdown of the symmetry could be described by the chain of nested subgroups 5 6

SO3 ⊃ Kh ⊃ Th ⊃ C3

1 Kepler in his beautiful Christmas essay The Snowflake is fascinated throughout by the existence of symmetry and

cosmologically writes of the harmony of the spheres. Copernicus, prior to Kepler, recognises the approximate nature of

symmetries - writing of the sphericity of the earth Although it is not immediately apparent that it is a perfect sphere, because

the mountains project so far and the valleys are so deep, they produce very little variation in the complete roundness of

the Earth
2 Muslim theology sees only God as perfect and thus carpet chanters, recognising their own imperfection, will

deliberately make the occasional error, so that such a carpet will contain imperfections which is then consistent with their

theology.
3 Of course if we recognise that Nd 3+ possesses a nuclear magnetic moment which weakly couples the nuclear

angular momentum I to the electronic angular momentum J such that the total angular momentum becomes F = I +

J. Thus strictly speaking the conserved quantity is F rather than J . This is manifested in the appearance of magnetic

hyperfine structure at high enough resolution.
4 N.B. Lowering the symmetry of a system usually results in a partial or total lifting of the degeneracy. Technolog-

ically this is very important.
5 For further details see S.D.Devine, Th symmetry in rare earth double nitrates J. Chem. Phys. 47, 1844 (1967)

and references therein.
6 See also C. Görlier-Walrand et al, Optical spectra and crystal field analysis of europium double nitrates J. Chem.

Phys. 96, 5650 (1992). These authors seem unaware of the work of Devine but their data shows clear signs of higher

symmetries.
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1.4 Global and local symmetries

A symmetry may be global or local. As already seen in the previous example a local symmetry need not
be global. In most of this course we will be discussing local symmetries.

1.5 Types of symmetries

There are a wide range pf possible symmetries we might consider. Two major categories would be
discrete and continuous symmetries. Discrete symmetries, such as reflections, inversions, time reversal,
charge conjugation, parity, finite rotations, permutations etc. are associated with multiplicative or phase-
like quantum numbers. Continuous symmetries such as translations and rotations are associated with
additive quantum numbers (e.g. angular momentum J or linear momentum p).

1.6 Symmetry and the Universe

On a clear night, away from city lights, look up to the sky (A feat more readily accomplished
in the time of Copernicus in old Toruń than in modern Toruń) and you arrive at two utterly amazing
and deep conclusions concerning the nature of the Universe which are in accord with more detailed
observations:-

1.The universe is almost empty.
2.The universe is not empty.

Matter in the universe is astonishingly rare. Radiation is in comparison superabundant there being about
1018 photons for every baryon7. Why is matter so rare? Why is there any matter in the universe? Or
somewhat more anthropologically, Why can we ask these questions? Our ability to ask these questions
hinges on their answer. Why is the matter in the universe predominantly of one type and does not appear
in equal quantities of matter and antimatter? What is the origin of this broken symmetry between matter
and antimatter? We shall return to these questions later.

1.7 Some physical constants We will require a number of physical constants for making calculations
and estimates. The values of a number of useful physical constants are tabulated below. The precise
values are given as well as rough values for back-of-the- envelope calculations. It is often desirable to be
able to make quick estimates to get the order of magnitude of an effect in which case the rough values
suffice. It is part of being a physicist to know when a precise calculation is required and when a rough
calculation is sufficient and to know how many figures in a calculation are sufficient. In this course we
do all our calculations in the SI units.

7 Questions of the existence of dark matter are irrelevant. Even if, as some believe, that 95% of the matter in the

universe is unseen the existence of matter in the universe remains very rare.
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Table 1.2 Some physical constants.

Quantity Symbol Precise Value Rough Value

speed of light c 299792458ms−1 3 × 108ms−1

Planck’s constant h 6.6260755× 10−34Js 6.6 × 10−34Js
h̄ 1.05457266× 10−34Js 10−34Js

Gravitational constant G 6.6725985× 10−11m3kg−1s−2 10−10m3kg−1s−2

electric charge magnitude e 1.60217733× 10−19C 1.6 × 10−19

electron mass me 9.10083897× 10−31kg 9.1 × 10−31kg
electron charge/mass e

me
18 × 1010Ckg−1

proton mass mp 1.6726231× 10−27kg 1.7 × 10−27kg
proton charge/mass e

mp
1018Ckg−1

permittivity of free space ǫ0 8.854187× 10−12Fm−1 9 × 10−12Fm−1

permeability of free space µ0 4π × 10−7NA−2 12.5 × 10−7NA−2

Bohr magneton µB
eh̄

2me
9.2740154× 10−24JT−1 9.3 × 10−24JT−1

Nucleon magneton µN
eh̄

2mp
5.0507866× 10−27JT−1 5 × 10−27JT−1

1.8 The charge neutrality of matter

How neutral is matter? What would happen if we placed all the protons of a 68kg person in one box
and a meter away put all the electrons? We could anticipate that an attractive electric force would
develop between the two groups of charges. Application of the Coulomb force law readily leads to the
magnitude of the force as ∼ 1030 Newtons! Matter is neutral to an astonishing extent. This neutrality
of matter hides from us the strength of the Coulomb force. From our daily experience with forces we
falsely conclude that gravity is the strongest force when in fact it is the weakest of all known forces8. The
neutrality of matter hints at another conservation law - namely charge conservation. What is the origin
of charge conservation and the neutrality of matter9?

1.9 Classical mechanics and predictability

Before continuing further let us briefly consider the role of predictability in classical mechanics as ulti-
mately we will be interested in predicting the behaviour of systems.

Aristotle is reputed to have boasted that given a suitable place and a lever he could move the earth.
Laplace was even more ambitious and in his well known dictum said in effect Give me the initial positions
and velocities of all the particles in the Universe and I will predict the future forever. Such a statement
ignores the question of the precision to which the initial positions and velocities must be known. This
may be illustrated by the following example. A perfectly elastic ball moves with a constant speed v on a
frictionless surface between two infinitely rigid walls placed a distant L apart. Suppose the ball starts at
a time t0 = 0 from a position x0 = 0 with constant speed v towards the second wall as illustrated below.

• → v
0 x→ L

Can we predict the whereabouts of the ball between the walls at some later time t? This looks easy! The

8 The separation of charges plays a key role in many human activities. A golfer propelling a golf ball by hitting it

with a club involves electrical forces - gravity enters only in the subsequent motion of the struck ball
9 In the 1950’s R. A. Lyttleton suggested that the expansion of the universe could be explained if there was a slight

difference in the charge on the proton from that on the electron. Subsequent precise measurements of the charge ratio have

ruled out that possibility.
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distance x travelled after t seconds is

x = vt (1)

The ball will return to its starting position each time it has covered a distance 2L. The number np of
complete periods covered in time t will be the integer part of

vt

2L
.

The remainder r

r =

(

vt

2L
− np

)

(2)

will be 0 < r < 1. Thus evidently we know with certainty that after t seconds if 0 < r ≤ 0.5 then the ball
is a distance 2Lr to the right of its initial position and moving from left-to-right whereas if 0.5 < r ≤ 1
the ball is moving from right-to-left and is a distance 2L(1− r) from its initial position. Is this really the
case?

We have assumed that the initial values of x0, t0 and v were given with infinite precision, but even in
classical physics such a precision is unattainable. It is not a question of simply doing a better experiment.
The above system is most sensitive 10to an error δv in the initial speed v as is evident from Eq. (1). The
error δx in the position x is essentially given by

δx = δvt

and increases linearly with t. If δx ≥ L then we cannot say where the ball is between the walls. No
matter how precise we measure v and how small we reduce the error δv after a time

t ∼ L

δv

the only statement we can make is that the ball is somewhere between the walls. The above example
constitutes a highly idealised model but illustrates a number of important points in physics which are
often overlooked:-

1. In physics we are always dealing with models of real situations.

2. Physics is not just sets of mathematical expressions, the variables in these expressions relate
experimentally measured quantities which carry with them uncertainties of measurement.

3. In assessing a model we must consider what to put in the model and what should be excluded.11

4. Physics involve both objective and subjective features. It is usually a mistake to overemphasise
one or the other. 12

5. Problems of predictability and initial conditions 13 exist in classical mechanics and persist into
quantum mechanics where even the concept of a well-defined trajectory is lost.

1.10 Symmetry and the classical one-dimensional harmonic oscillator

The classical one-dimensional harmonic oscillator gives a good example of the use of symmetry consider-

10 In addition small errors in the angular alignment of the ball’s trajectory will eventually become serious as the

lapsed time increases.
11 In the above case we left out such things as the influence of the moon, the effect of the interaction of measuring

devices on the system etc. As we strive for a closer correspondence with the real world we must expand our model to

encompass more features of the real world.
12 For an interesting discussion on the question of objectivity and subjectivity in science see M. Polanyi Personal

Knowledge.
13 It was the objective of Hamilton-Jacobi mechanics to predict the time evolution of dynamical systems from a

knowledge of the initial positions and velocities
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ations in the differential equations of physical problems.14

©
⇓
mg

F = md2x
dt2

= −kx
or in suitable units

ẍ+ x = 0
(1)

A general solution is
x = A cos t+B sin t (2)

We seek those infinitesimal transformations of x and t that leave the form of the equation of motion (1)
invariant.

Consider a transformation that carries a point (x, t) into a point (x′, t′) such that

x′ = Φ(x, t, a0 + δa) t′ = Ψ(x, t, a0 + δa) (3)

where for the identity transformation x = Φ(x, t, a0) and t = Ψ(x, t, a0). The infinitesimal change in x
and t due to the infinitesimal variation δa of the parameter a is given by

δx = ξδa δt = ηδa (4)

where
ξ = ξ(x, t) = (∂Φ/a)a0

η = η(x, t) = (∂Ψ/a)a0
(5)

If f(x, t) is an analytic function of x, t then under an infinitesimal transformation

δf = Ufδa (6)

where
U = ξ∂/∂x+ η∂/∂t (7)

One may show15 that

U =

8
∑

i=1

biXi (7)

where the bi are constants of integration and the Xi are the following operators:-

X1 = (1 + x2) sin t∂/∂x− x cos t∂/∂t (8a)

X2 = (1 − x2) sin t∂/∂x+ x cos t∂/∂t (8b)

X3 = (1 + x2) cos t∂/∂x+ x sin t∂/∂t (8c)

X4 = (1 − x2) cos t∂/∂x− x sin t∂/∂t (8d)

X5 = ∂/∂t (8e)

X6 = x∂/∂x (8f)

X7 = x cos 2t∂/∂x+ sin 2t∂/∂t (8g)

X8 = −x sin 2t∂/∂x+ cos 2t∂/∂t (8h)

The above set of eight operators close under commutation in the sense that

[Xi, Xj ] = ckijXk (9)

14 For a detailed account see the book G. W. Bluman and S. Kumei, Lie Symmetries of Differential Equations and

recent papers by G. W. Bluman and G. J. Reid.
15 see C. E. Wulfman and B. G. Wybourne, The Lie group of Newton’s and Lagrange’s equations for the harmonic

oscillator, J. Phys. A: Math.Gen. 9 507-18 (1976)
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where the ckij are the so-called structure constants of a Lie algebra A2. Indeed one may show that it is
the Lie algebra associated with the global Lie group of Newton’s or Lagrange’s equation for the oscillator
SL(3, R).

Each of the operators Xi has a physical interpretation. Thus X5 is the time translation generator ∂/∂t
and leads to the observation that if f(t) is any solution of the equation of motion then

f(t− π) = f(t+ π) (10)

The motion is cyclic with a period 2π. In so far as the oscillator is concerned, t + 2π = t, which is of
course why oscillators are used as clocks!

The operator X6 shows that the equation of motion of the oscillator is unchanged under a spatial change
of scale - viewing the oscillator through a magnifying glass does not change the equation of motion of the
oscillator! The other operators admit a more complex interpretation associated with so-called conformal
transformations. If we used a lens to project the image of the oscillator onto a curved screen we would
see motion that could still be described by an equation of motion of the same form as originally but in
conformally transformed variables. For example, the operator X8 would correspond to transforming to
the variables

x′(x, t, a) =
xeacosec t√
1 + e4a cot t

t′(x, t, a) = cot−1(e2a cot t) (11)

1.11 Symmetry of a square

Rotational point symmetry

What can we say about the symmetry of an unadorned square? Let us assume that our square
is completely unmarked and is lying on a horizontal plane. We wish to carry out point symmetry
transformations that carry the square into a position indistinguishable from its initial position and which
leave the centre point of the square fixed.16 As an aid to visualising the symmetry transformations let
us label the corners of the square with the integers 1, 2, 3, 4 as below:-

1 2

4 E 3

We have used the letter E to indicate the symmetry transformation that amounts to doing nothing - the
so-called identity transformation.

Performing a clockwise rotation C4, about the centre point of the square, through π
2

= 90o puts the
square into a position indistinguishable from its initial position as can be seen below:-

C4 × E = C4 ×

1 2

4 E 3

=

4 1

3 C4 2

= C4

The inverse transformation, C−1
4 corresponds to performing a counterclockwise rotation through 90o,

which would be equivalent to producing a clockwise rotation through 270o. Clearly we must have

C4 × C−1
4 = C−1

4 × C4 = E

However, do not rush to the false conclusion that the successive application of two symmetry transfor-
mations is commutative - we shall shortly produce a counter example!

Performing the symmetry operation C4 twice corresponds to rotating the square through 180o. The
same effect would be produced by performing the symmetry operation C−1

4 twice or a single rotation,
C2, through ±180o. The operation C2 is self-inverse. The complete set of rotational point symmetry

16 Keeping the centre point fixed removes translational invariance from our considerations.
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transformations of the square may be designated by the set of four operators (E,C4, C
−1
4 , C2) and their

action may be visualised as below:-

1 2

4 E 3

4 1

3 C4 2

2 3

1 C−1
4 4

3 4

2 C2 1

These four operators describe the elements of a group G in the sense that:-

1. There exists an identity element E.

2. There exists a law of combination of the elements gi such that if gi, gj ∈ G then so is the element
gigj (The closure property).

3. For every element gi ∈ G there exists an inverse element g−1
i such that g−1

i ∈ G and gig
−1
i = E.

We may construct a multiplication table, a Cayley table, that summarises the combination of the
group elements gi. Thus for the four symmetry operators (E,C4, C

−1
4 , C2) we have the Cayley table:-

E C4 C−1
4 C2

E E C4 C−1
4 C2

C4 C4 C2 E C−1
4

C−1
4 C−1

4 E C2 C4

C2 C2 C−1
4 C4 E

Notice that the table indicates the existence of a subgroup H ∈ G involving just the two elements E,C2.
This would be the rotational point symmetry group of an object like:-

?

¿

Inversion symmetry

Are there other symmetry operations that we can perform on the square? Clearly there is
symmetry with respect to an inversion i through the centre of the square but

i× E =

3 4

2 C2 1

= C2

Thus in two dimensions an inversion is equivalent to a point symmetry rotation, this is certainly not the
case for higher dimensions.

Reflection symmetry

A larger symmetry group for the square can be obtained by considering reflections perpendicular
to the plane of the square. By considering their action on the identity element E we see there are four
distinct reflection symmetry operators which we shall label as (σ1, σ2, ρ1, ρ2) leading to:-

1 4

2 σ1 3

3 2

4 σ2 1

2 1

3 ρ1 4

4 3

1 ρ2 2



10

The reflection operators are each self-inverse. However, they do not necessarily commute. For example,
σ1 × ρ1 = C−1

4 whereas ρ1 × σ1 = C4. The complete Cayley table can be constructed by looking at the
products of pairs of group elements to yield:-

E C4 C−1
4 C2 σ1 σ2 ρ1 ρ2

E E C4 C−1
4 C2 σ1 σ2 ρ1 ρ2

C4 C4 C2 E C−1
4 ρ1 ρ2 σ2 σ1

C−1
4 C−1

4 E C2 C4 ρ2 ρ1 σ1 σ2

C2 C2 C−1
4 C4 E σ2 σ1 ρ2 ρ1

σ1 σ1 ρ2 ρ1 σ2 E C2 C−1
4 C4

σ2 σ2 ρ1 ρ2 σ1 C2 E C4 C−1
4

ρ1 ρ1 σ1 σ2 ρ2 C4 C−1
4 E C2

ρ2 ρ2 σ2 σ1 ρ1 C−1
4 C4 C2 E

Inspection of the Cayley table permits a number of interesting observations:-

1. The rotations (E,C4, C
−1
4 , C2) form a subgroup.

2. The product of two reflections is equivalent to a rotation.

3. The product of a rotation and a reflection is equivalent to a reflection.

4. In a given row or column of the table every group element occurs once and only once.

Black and white symmetry

In the textile industry there exists a symmetry operation known as the counterchange where the
black parts of a pattern are changed to white and the white parts to black. This clearly breaks the sym-
metry but a combination of a rotation and the counterchange operation can restore the symmetry leading
to the so-called black and white groups17. The combination of a rotation followed by a counterchange
can be noted in the example below:-

=⇒ =⇒

rotation counterchange

I will not pursue this subject further in these lectures save to emphasise the need for imaginative thinking
to dream up new structures.

17 A fascinating series of four articles by H. J. Woods, working in the Textile Physics section of Leeds University,

appeared in the 1930’s in the British Journal of the Textile Institute. Therein Woods classified all the black and white

groups of the plane as well as considering the symmetry groups of braids. One can also consider polychromatic groups.

The subject was taken up by A. V. Shubnikov and the black and white groups became known as Shubnikov groups. It

is interesting to recall that Shubnikov was a member of a Soviet delegation that visited Leeds in the 1930’s. Shubnikov,

a crystallographer, failed to see the physical significance of the black and white groups. It was L. Landau who noted the

equivalence of the counterchange operation and spin flipping and hence their extensive application in magnetism.
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The Application of Symmetry Concepts

to

Physical Problems
c©

Lecture Two

You boil it in sawdust: you salt it in glue;

You condense it with locusts and tape

Still keeping one principal object in view

To preserve its symmetrical shape.

— Lewis Carroll The Hunting of the Snark

2.1 Introduction

In this lecture I want to introduce you to the role of symmetry in the description of particles and isospin
as an approximate symmetry in nuclear and particle physics.

2.2 The forces of physics

The first attempt to unify the forces of physics was Maxwell’s development of electromagnetic theory
which unified the seemingly separate electric and magnetic forces into a single coherent theory - elec-
tromagnetism. At that time the only other known force was Newton’s gravitational force. Both forces
are long range forces. The electromagnetic force arises from spin 1 photon exchange while the gravita-
tional force is believed to be associated with spin 2 graviton exchange. As we have noted earlier the
electromagnetic force is vastly stronger than the gravitational force (Fem ∼ 1035FG). There is also the
important difference that electromagnetic forces may be attractive or repulsive whereas the gravitational
force appears to be purely attractive. Thus the gravitational force accumulates as matter comes together
whereas the neutrality of matter conceals the much stronger electromagnetic forces.

The discovery of radioactivity and subsequently β−decay eventually led to the recognition of a third force
- the weak force. The weak force is a short range force (range ∼ 10−15m) mediated by the exchange of
the vector bosons W±, Z0. The electro-weak theory developed by Ward, Glashow, Weinberg, Salam and
others in the late 1960’s led to a prediction of the masses of the vector bosons and later at CERN to their
discovery at mW± = 80.22GeV and mZ0 = 91.173GeV . The electro-weak theory gives a unified theory
of electromagnetic and weak forces.

The study of nuclear reactions led to the recognition of a fourth force - the strong force. The strong force
is a short range force felt only over nuclear distances. Yukawa, in the 1930’s, attributed the strong force
to the exchange of a meson that was subsequently identified with the pions π±, π0. With the development
of the quark model in the early 1960’s the pions were regarded as composite particles comprising quark-
antiquark pairs. The forces between quarks are believed to be associated with the exchange of an octet
of particles known as gluons which are evidently massless particles that engage in strong short range
interactions with the observed nucleon- nucleon interactions being analogous to the van der Waals forces
of molecules.

2.3 Lifetimes and interactions

The strong, electromagnetic and weak interactions are associated with very different lifetimes.
Typical lifetimes for decays by strong interactions are ∼ 10−23s. A particle travelling at the speed of
light would travel a mere 3 × 10−15m which is of the order of a nuclear diameter. Particles decaying via
the weak interation have typical lifetimes of ∼ 10−10s1. Electromagnetic decays are usually shorter than
those associated with the weak interaction. Thus the π± pions decay via the weak interaction with a
mean-life of 2.6× 10−8s whereas the neutral pion π0 decays via the electromagnetic interaction with the
much shorter mean-life of 8.4 × 10−17s. In the former case the predominant decay is

π+ → µ+ + νµ

whereas in the latter case

π0 → 2γ

1 The notable exception is the neutron n0 which in free space decays with a mean-life of 889.1 s.
Within a nucleus the neutron is as stable as the proton, a consequence of the Pauli exclusion principle.
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In general it is found that

1. All reactions involving photons (γ) are electromagnetic.

2. All reactions involving neutrinos (ν) are weak.

3. All reactions involving electrons (e±) or muons (µ±) are electromagnetic or weak.

Thus the decay

Λ0 → p+ + e− + νe

proceeds by the weak interaction.

The decay

Λ0 → p+ + π0

involves no neutrino but the Λ0 has a mean-life ∼ 2.6 × 10−10s leading to the conclusion that it is
sometimes possible to have decay via the weak interaction without neutrino production.

2.4 Bosons and Fermions

The particles we commonly encounter in physics can be divided into two classes bosons and fermions.
Bosons are associated with integer spin, examples being photons, gluons and the weak interaction bosons
Z0 and W±. Fermions are associated with half-integer spin, examples being electrons, neutrinos and
quarks. Bosons establish the interactions between fermions. Thus the photon, a massless spin 1 particle,
is the exchange particle associated with electromagnetic interactions. In most of atomic and molecular
physics we can restrict our attention to quantum electrodynamics (QED). The weak interactions manifest
themselves in atomic and molecular physics in very small parity violations. Bosons and fermions obey
different statistics, namely Bose-Einstein and Fermi-Dirac, respectively. That requires us to construct
totally symmetric wavefunctions for many-boson systems and totally antisymmetric wavefunctions for
many-fermion systems.

2.5 Permutational symmetry

Bosons and fermions differ with respect to their behaviour under an interchange of their position, or
equivalently with respect to a rotation through 2π or 360o. We shall designate the wavefunction for
a single fermion or boson as φ(α) where α is an appropriate set of single particle quantum numbers
associated with some single particle solution of , for example, some central field potential. Thus for a
hydrogen atom we might use α = {nsℓmsmℓ} or α = {nsℓjmj}.

A N−particle system will involve N−single particle wavefunctions (φi i = 1, 2, . . . , N) and N−sets
of single particle quantum numbers (αk k = 1, 2, . . . , N). The wavefunction, Ψ, for the N−particle
system will be such that

Ψ = Ψ(φ1, φ2, . . . , φN ) (2.1)

For a two-particle system we could write

Ψ(φ1, φ2) =
1√
2
{φ1(α1)φ2(α2) ± φ1(α2)φ2(α1)} (2.2)

The positive sign corresponds to a symmetric wavefunction and the minus sign corresponds to an antisym-
metric wavefunction. Note that we have permuted the quantum numbers with respect to the coordinates
of the particles. The wavefunction of a pair of fermions, unlike a pair of bosons, undergoes a change of
sign. If α1 = α2 then for identical fermions Eq.(2.2) vanishes though not for bosons. That is consistent
with the Pauli exclusion principle for identical fermions.

Thus permutational symmetry, required by the indistinguishability of identical particles, leads forN−fermions
to the construction of of determinantal states to give totally antisymmetric states while for N−bosons to
the construction of permanental states to give totally symmetric states. Hence for an N−fermion system
we have the totally antisymmetric wavefunction

Ψ(φ1, φ2, . . . , φN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

φ1(α1) φ1(α2) . . . φ1(αN )
φ2(α1) φ2(α2) . . . φ2(αN )

...
...

. . .
...

φN (α1) φN (α2) . . . φN (αN )

∣

∣

∣

∣

∣

∣

∣

∣

{1N}

(2.3)
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In LS−coupling basis we use α = {nsℓmsmℓ} whereas in jj−coupling we would use α = {nsℓjmj}.

The information content of the determinantal state may be fully specified by the abbreviated form

{α1α2 . . . αN} (2.4)

In the case of bosons we are required to construct permanental states to yield totally symmetric wave-
functions,

Ψ(φ1, φ2, . . . , φN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

φ1(α1) φ1(α2) . . . φ1(αN )
φ2(α1) φ2(α2) . . . φ2(αN )

...
...

. . .
...

φN (α1) φN (α2) . . . φN (αN )

∣

∣

∣

∣

∣

∣

∣

∣

{N}

(2.5)

The information content of the permanental state may be fully specified by the abbreviated form

[α1α2 . . . αN ] (2.6)

2.7 Classification of particles

Faced with a diversity of interactions and particles it is natural to attempt to give a systematic order
to their description. Two broad categories immediately suggest themselves, bosons and fermions. That
classifies particles according to their statistics. A somewhat finer classification comes by recognising
that the particles e±, µ±, νe, νµ and the photon γ do not engage in strong interactions. The photon is
associated with electromagnetic interactions alone so can be put into a class of its own. The photon is
a massless spin one particle and hence is a boson. The remaining particles that do not experience the
strong interaction are known as leptons and are all fermions with spin = 1

2
.

Particles that engage in strong interactions are called hadrons Hadrons with integer spin are bosons and
are called mesons whereas those with half-integer spin are fermions and are called baryons.

2.8 Mass plots for baryons and mesons

One cannot be but struck by the remarkably small difference in the mass of the proton and neutron
(∼ 1.29MeV )2. They are the same to better than 1%. It is interesting to plot the masses of the low mass
mesons and baryons as below

m
π−=139.5MeV

m
π0=134.9MeV

m
π+=139.5MeV

The π−mesons with Jp = 0−

2 Throughout these lectures I shall put c = 1 and then express the masses of particles simply in MeV rather than

MeV/c2.
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mn=939.5MeV mp=938.3MeV

m0
Λ=1115.6MeV

m
Σ−=1189.4MeV m

Σ0=1192.6MeV
m

Σ+=1197.4MeV

m
−

Ξ
=1321.3MeV

m0
Ξ=1314.9MeV

Baryons with Jp = 1

2

+

m
−

∆
=1230MeV m0

∆=1230MeV m
+

∆
=1230MeV m

++

∆
=1230MeV

m
Σ∗−=1382.8MeV m

Σ∗0=1383.7MeV
m

Σ∗+=1387.2MeV

m
∗−

Ξ
=1535.0MeV

m∗0
Ξ =1531.8MeV

m
−

Ω
=1672.4MeV

Baryons with Jp = 3

2

+

Perhaps the most striking feature of the above plots is the appearance of nearly degenerate levels similar to
the multiplets of atomic energy levels deduced from atomic spectra. It appears that we are encountering
an example of an approximate symmetry. Indeed it appears that if we could switch off the electromagnetic
interaction we would attain actual degeneracy. Perhaps even more startling is the manner in which the

‘levels’ of the eight baryons with Jp = 1

2

+
form an octet and those with Jp = 3

2

+
form a decuplet. In the

latter case note how the successive levels are almost equally spaced in mass. Why?

In the case of the pions note that mπ+ = mπ− as expected for a particle-antiparticle pair whereas the π0

is less massive.

2.9 Isospin multiplets

Heisenberg suggested that the proton and neutron could be viewed as two states of a single particle, the
nucleon. By analogy with spin, the nucleon was said to be a particle with isospin I = 1

2
. The projection

I3 on the third axis has the values ± 1

2
. We choose to associate the proton with the isospin projection

I3 = + 1

2
which then requires that we associate the neutron with the isospin projection I3 = − 1

2
.
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Having made this choice 3 we determine the isospin and its projection of all other hadrons in relationship
to the choice made for the proton. We shall return to this point shortly.

We note that we can write a charge equation for the nucleon

QN = I3 +
1

2
(2.7)

where we take the absolute magintude of e as unity. We note that the neutron, while uncharged has a
nuclear magnetic moment ∼ − 2

3
that of the proton. This demands an explanation!

There is convincing experimental evidence for approximate isospin conservation for strong interactions.
If the strong interaction were charge independent then we would expect mirror nuclei 4 to exhibit almost
identical nuclear energy level structure with any difference arising from the effect of the much weaker
Coulomb force. We show below the low energy levels of the mirror pair 11C6 and 11B5 where the similarity
in the energy level structure should be self-evident.

Energy Energy
MeV MeV

7.30

6.83
6.8

6.75

6.48

5.03

4.85

4.46

4.30

2.14

1.90

. . . . . . . . . . . . . . . . . . .
11C6

11B5

Energy levels of the mirror nuclei 11C6,
11B5

Such a structure hints at the approximate equality of n−p ∼ n−n ∼ p−p forces, or equivalently
of the charge-independence of the strong nuclear force. Nucleon-nucleon scattering experiments supply
further evidence. Thus we reach the conclusion that

Isospin I is conserved in strong interactions. An isospin multiplet is a set of 2I + 1 hadrons each

3 I emphasise the word choice because we are free to make either choice. The important point is that having made

an assignment of the isospin I and its projection I3 to the proton we must then make all assignments of I, I3 for all other

particles relative to the proton. This is precisely the same as assigning negative charge −e to the electron. The charge of

all other particles are then measured relative to that of the electron. We could have equally well established a convention

that gave the charge of the electron as +e. It is important in physics to clearly identify where a freedom of choice exists.

The freedom of choice usually implies a conservation law. In the case of the electron charge it leads to charge conservation

which to date appears rigorous.
4

mirror nuclei are pairs of nuclei that have the same total number of nucleons A but with the number of protons

Z of one being equal to the number of neutrons A− Z of the other. Examples are 11C6 and 11B5 or 3H1 and 3He2.
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of which is labelled by the quantum numbers I, I3 and exhibiting an approximate 2I + 1-fold
degeneracy.

2.10 Isospin for pions

We have already noted that the pions appear to form a mass triplet. This suggests that they are members
of an isospin triplet (i.e. I = 1). Convincing evidence comes from nucleon-nucleon scattering experiments.
For example, the reaction

p+ n→ n+ n+ π+

conserves isospin if the π+ has I = 0 or I = 1, however the charge- independence of the strong interactions
requires that the projections I3 have the same sum on both sides of the reaction and hence we expect
I3 = 1 for the π+ and hence must have I = 1. Similar experiments lead to the conviction that the three
pions are different charge states of the pion which together form an isospin triplet.

2.11 Isospin transformations

We may develop a two-component isospin formalism for describing the nucleon in almost the
same way as for two-component electron spin. We shall use the letters N , p, n for the nucleon, proton
and neutron respectively. and introduce the two-component spinors

p =

(

1
0

)

and n =

(

0
1

)

(2.8)

and for the nucleon wave function we write5

ψN =

(

a
b

)

= ap+ bn (2.9)

Recall the Pauli spin matrices

τ1 =

(

0 1
1 0

)

, τ2 =

(

0 −i
i 0

)

, τ3 =

(

1 0
0 −1

)

(2.10)

We readily find that

τ3p =

(

1 0
0 −1

) (

1
0

)

=

(

1
0

)

= p

and

τ3n =

(

1 0
0 −1

) (

0
1

)

=

(

0
−1

)

= −n

The charge equation (Eq. 2.7) requires that

I3p =
1

2
p and I3n = −1

2
n

and hence we make the identification

I3 =
1

2
τ3 (2.11)

and similarly

I1 =
1

2
τ1 and I2 =

1

2
τ2 (2.12)

Let us now introduce the isospin ladder operators by defining

I+ = I1 + iI2 =
1

2
(τ1 + iτ2) =

(

0 1
0 0

)

(2.13)

and

I− = I1 − iI2 =
1

2
(τ1 − iτ2) =

(

0 0
1 0

)

(2.14)

Acting on the p and n states we find

I+p =

(

0 1
0 0

) (

1
0

)

= 0 (2.15)

5 The complete wave function will be of the form ψ = ψspaceψspinψisospin
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I+n =

(

0 1
0 0

) (

0
1

) (

1
0

)

= p (2.16)

I+p =

(

0 0
1 0

) (

1
0

) (

0
1

)

= n (2.17)

I+n =

(

0 0
1 0

) (

0
1

)

= 0 (2.18)

The operators I±, I3 form the elements of the Lie algebra associated with the group SU2.

2.12 Isospin for pion-nucleon systems

The pions form the components of an isospin triplet whereas the nucleon forms the components of an
isospin doublet. We may designate an isospin state by |I,M〉. Thus

|1, 1〉 ∼ π+, |1, 0〉 ∼ π0, |1,−1〉 ∼ π−

Recalling the properties of angular momentum ladder operators we have

I±|I,M〉 =
√

I(I + 1) −M(M ± 1)|I,M ± 1〉 (2.19)

and
I3|I,M〉 = M |I,M〉 (2.20)

Thus
I+π

− =
√

2π0, I+π
0 =

√
2π+, I−π

+ =
√

2π0, I−π
0 =

√
2π− (2.21)

and
I−p

+ = n0, I+n
0 = p+ (2.22)

The usual properties of angular momentum addition hold. Thus

I1 + I2 = (I1 + I2) + (I1 + I2 − 1) + . . .+ |I1 − I2| (2.23)

and
M1 +M2 = M (2.24)

Combining a nucleon, N , with a pion amounts, in isospin space combining IN = 1

2
with Iπ = 1 and hence

leads to isospin multiplets with I = 1

2
, 3

2
. The fully stretched state | 3

2
, 3

2
〉 must correspond to π+p and

hence we make the assignment

|3
2
,

3

2
〉 = π+p (2.25)

From (2.19)

I−|
3

2
,

3

2
〉 =

√
3|3

2
,

1

2
〉 (2.26)

but I− = Iπ
− + Ip

− and hence

I−|π+p〉 = Iπ
−|π+p〉 + Ip

−|π+p〉
=

√
2|π0p〉 + |π+n〉 (2.27)

Comparison of (2.26) with (2.27) leads to

|3
2
,

1

2
〉 =

√

2

3
|π0p〉 +

√

1

3
|π+n〉 (2.28)

Further application of the step-down isospin operator leads to:-

|3
2
,−1

2
〉 =

√

1

3
|π−p〉 +

√

2

3
|π0n〉 (2.29)

and

|3
2
,−3

2
〉 = |π−n〉 (2.30)

Orthogonality then leads to

|1
2
,

1

2
〉 =

√

1

3
|π0p〉 −

√

2

3
|π+n〉 (2.31)
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Let us now consider a practical application of this last result to the proton-deuteron reaction.

2.13 A practical application of isospin symmetry

Consider the interaction of a proton with a deuteron. The deuteron has a 3S1 ground state and thus
the spin space is symmetric. With respect to isospin the deuteron is an isospin singlet with I = M = 0.
Since the proton has isospin | 1

2
, 1

2
〉 and we assume strong interactions conserve isospin the product of the

reaction must be a member of an isospin doublet. Thus we could anticipate two outcomes

p+ d→ π0 +3 He2 (2.32)

and

p+ d→ π+ +3 H1 (2.33)

with the mirror nuclei (3He2,
3H1) forming an isospin doublet. We can write by direct analogy with

(2.31)

|1
2
,

1

2
〉 =

√

1

3
|π0 3He2〉 −

√

2

3
|π+ 3H1〉 (2.34)

from which it follows that

amplitude(p+ d→ π+ +3 H1)

amplitude(p+ d→ π0 +3 He2)
= −

√
2 (2.35)

But the cross-section is proportional to the square of the amplitude and hence if isospin is conserved we
predict the ratio for the cross-sections for the two reactions is

σ(p+ d→ π+ +3 H1)

σ(p+ d→ π0 +3 He2)
= 2 (2.36)

which agrees with experiment to better than 10%.

2.14 Isospin multiplets and low mass baryons and mesons

Remarkably the low mass baryons and mesons may be readily organised into isospin multiplets as shown
below:-

K0 K+

• . . . . . . . . . . . . . .•

Π− Π0 Π+

• . . . . . . . . . . . . . .⊙ . . . . . . . . . . . . . . . .•
η0

• . . . . . . . . . . . . . .•
K− K̄0

Meson Octet Jp = 0−
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n0 p+

• . . . . . . . . . . . . . .•

Σ− Σ0 Σ+

• . . . . . . . . . . . . . .⊙ . . . . . . . . . . . . . . . .•
Λ0

• . . . . . . . . . . . . . .•
Ξ− Ξ0

∆− ∆0 ∆+ ∆++

• . . . . . . . . . . . . . • . . . . . . . . . . . . . • . . . . . . . . . . . . . •

Σ∗− Σ∗0 Σ∗+

• . . . . . . . . . . . . . • . . . . . . . . . . . . . •

Ξ∗− Ξ∗0

• . . . . . . . . . . . . . •

•
Ω−

Baryon Octet Jp =
1

2

+

Baryon Decuplet Jp =
3

2

+

At this stage we may well ask ”Are there other quantum numbers that distinguish between the different
isospin multiplets?” The appearance of octets and decuplets hints at the existence of a higher symmetry.
The anti-baryons arrange themselves also in octets and decuplets while the mesons, particles and anti-
particles, occur in common octets and singlets but not in decuplets.

In this lecture we have encountered the four forces of nature. We noted that Maxwell had unified the
separate theories of electricity and magnetism into a single coherent theory known as electromagnetism
and in our own time electromagnetism and the weak interaction have been unified in the electro-weak
theory. Will it be possible to produce a grand unified theory that unifies the electro-weak and strong
interaction? Perhaps in some very distant past these forces were on an equal footing and as the universe
cooled symmetry breaking occurred with the different forces taking on the characteristics we know them
by today. Finally, can a super unified theory including gravity be constructed? For the moment these
must remain as unanswered questions.6

Before continuing our exploration of particles we should first examine the properties of the symmetries
associated with Charge conjugation, C, Parity, P , and Time reversal, T , the subject of the next lecture.

6 Wigner has suggested that perhaps the answers to these ultimate questions lie beyond human possibilities. A

mouse is unlikely to ever reach even modest conclusions about the nature of the universe. Perhaps it is a distinguishing

feature of humankind that we ask such questions. Pauli’s reaction to suggestions of unified theories was ”What God has

put asunder no man shall unite”.
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The Application of Symmetry Concepts

to

Physical Problems
c©

Lecture Three

For every complex question there is a simple answer

— and it’s wrong.

— H. L. Mencken

3.1 Introduction

In this lecture I want to introduce three fundamental symmetries that have wide ranging implications
for all areas of physics, namely Charge conjugation, C, Parity, P , and Time reversal, T , symmetries.
These find there ultimate expression in the CPT theorem. Before proceeding we first consider some
other quantum numbers that assist in labelling the various particles.

3.2 Charge conservation

Electrons do not appear to disappear. The experimental limit for the decay

e −→/ ν + γ

is > 1.5× 1025yr. Within these limits we know of no exception to the statement that charge is conserved
in all reactions and hence we may label particles by their electric charge Q. We note that the difference
in the absolute charge of the electron and proton is < 10−21e.

3.3 Baryon number B
The proton appears to be a remarkably stable particle. Considering all possible modes of decay the
mean life of the proton is > 1.6 × 1025yr while for specific modes of decay the mean life of the proton is
> 1031yr. One might have expected decays of the type

p −→/ e+ + γ

which is certainly energetically possible. Likewise the decay of protons into mesons is not observed. These
experimental observations strongly suggest that baryons carry a conserved quantum number, the Baryon
number B, sometimes termed the baryonic charge. To date there is no evidence for any reactions that
violate conservation of baryon number. Note anti-baryons carry the opposite baryon number to their
baryon partner just like for the charge quantum number1. We make the arbitrary assignment of B = 1
to baryons and B = 0 for all leptons, mesons and the photon γ.

3.4 Lepton numbers

Many other reactions that satisfy all known conservation laws do not appear to occur. For example

e− + e− −→/ π− + π−

The absence of such reactions suggests the conservation of a Lepton number L with Le = 1 for the electron
and Le = 0 for baryons, mesons and the photon. However, the reactions

µ± −→/ e± + γ and µ± −→/ e± + e+ + e−

are not observed. The reactions

π− −→ µ− + ν̄µ and π− −→ e− + ν̄e

are observed the reactions whereas the reactions

π− −→/ µ− + νµ and π− −→/ e− + νe

are not observed.

1 Our existence hints that the baryon number cannot be absolutely conserved.
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Experimentally the neutrinos νe and νµ are found to be distinct particles. Furthermore the neutrino ν
and the antineutrino ν̄ are distinct2. This is seen in neutron decay, the decay

n −→ p+ e− + ν̄e

occurs whereas the decay
n −→/ p+ e− + νe

does not occur.

There is one other known massive3 lepton, the tauon τ occurs with an associated neutrino ντ .
The reactions involving the three types of neutrinos νe, νµ and ντ and the corresponding massive leptons
e, µ and τ are consistent with three separate lepton quantum numbers, Le, Lµ and Lτ which assume the
values given in Table 3.1. For all non-leptonic particles the lepton numbers are zero.

Lepton Le Lµ Lτ

e− 1 0 0
e+ −1 0 0
νe 1 0 0
ν̄e −1 0 0

µ− 0 1 0
µ+ 0 −1 0
νµ 0 1 0
ν̄µ 0 −1 0

τ− 0 0 1
τ+ 0 0 −1
ντ 0 0 1
ν̄τ 0 0 −1

Table 3.1 Lepton numbers

All experimental data to date indicates that the lepton numbers, individually and collectively, are con-
served. There are three families of leptons based on the electron, muon and tauon. The masses are:-

me = 0.511MeV, mµ = 105.66MeV, mτ = 1784.1MeV

The electron appears to be stable (mean life > 1.9 × 1023yr) whereas the muon has a mean life of
2.2× 10−6s and the tauon a mean life of 3× 10−11s. Remarkably, the magnetic moments of the electron
and muon are identical4 to within 1 part in 106 .

3.5 Particles and antiparticles

Dirac’s 1929 relativistic wave function for the electron admitted a 4-component spinor solution corre-
sponding to left- and right-handed electron states together with left- and right-handed positron states,
the positron being the antiparticle of the electron5. Experiments indicate no difference in mass between a
particle and its antiparticle. Particle and antiparticles have the same spin quantum number but the val-
ues of all charge quantum numbers such as Q,B,Le, Lµ, Lτ , and S are reversed in sign6. Consequently

2 Remarkably the neutrino appears only as a left-handed particle νL whereas the antineutrino occurs only as a

right-handed particle ν̄R. Technically, and we shall expand on this point later, the particle and antiparticle have opposite

helicity and leads to a gross violation of parity conservation in weak interactions.
3 Here I use the word massive as opposed to massless. The photon γ is a massless particle (certainly mγ <

3 × 10−33MeV , the neutrino νe is close to, if not actually, massless (certainly mνe
< 8eV ). The neutrinos e, µ and τ

are massive (i.e. have nonzero rest mass).
4 The remarkable similarity of the electron and muon led I. Rabi to exclaim ”Who ordered this?”.
5 Again the choice of particle and antiparticle is arbitrary. We make the choice by assuming we are matter and

that what we call an electron is a particle. The object that annihilates the electron we take as the positron. Antimatter

appears to be very rare in the universe.
6 S is the strangeness quantum number which we shall shortly introduce.
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the magnetic moments of a particle and its antiparticle are of the opposite sign. Particles whose charge
quantum numbers are all zero are their own antiparticles as is the case for the neutral pion π0 and the
photon γ.7

3.6 Parity and spatial inversion symmetry

In Lecture one we mentioned briefly inversion symmetry in regard to a square in two-dimensions. There
we saw it was equivalent to a point symmetry rotation through 180o. In three-dimensions the situation
is quite different. A spatial inversion cannot be reduced to a set of rotations in 3-space. By a spatial
inversion I we mean a symmetry transformation P such that

(r, t)
P−→(−r, t) (3.1)

The operator P is commonly referred to as the Parity operator 8.

3.7 Parity and spherical harmonics

The spherical harmonics Yℓm(θ, φ) assume particular importance in the theory of angular momentum
wave functions. In the usual spherical coordinates we have

θ
P−→π − θ, and φ

P−→π + φ (3.2)

The spherical harmonics are proportional to the Legendre polynomials

sin|m| θPm
ℓ (cos θ)eimφ (3.3)

Under the parity operation we then have

Yℓm(θ, φ)
P−→Yℓm(π − θ, π + φ) = (−1)ℓYℓm(θ, φ) (3.4)

and hence we conclude that under the parity operation P the orbital part of the wave function is odd or
even as is the orbital quantum number ℓ. For an n−particle state the parity has the eigenvalue

(−1)
∑

n

i=1
ℓi (3.5)

Parity conservation amounts to asserting that the Hamiltonian commutes with the parity operator P .
Acting on a state of well-defined parity p twice gives

P2|ψ〉 = p2|ψ〉 = |ψ〉 (3.6)

and hence we may take the eigenvalues of the parity operator P as ±1. Note carefully the distinction
between states and operators. The parity of angular momentum states can be even, p = +1 or odd,
p = −1 whereas the angular momentum operator ℓ = r x p is of even parity since under P

r
P−→− r and p

P−→− p (3.7)

7 It is interesting to note that antimatter, in the form of positrons, is produced in the human body. The average

human body contains about 100gm of potassium of which 0.0117% is in the form of the radioactive isotope 40K19 which

has a half-life of 1.3 × 109yr 89.3% of the decays involve the β− process

40K19 →40 Ca20 + e− + ν̄e

while the rest involve either the electron capture EC process

40K19
EC→ 40Ar18 + νe

or the β+ process
40K19 →40 Ar18 + e+ + νe

The positron annihilates with an electron to produce two 0.511MeV gammas. This latter phenomena has been used in

agricultural research to determine the fat content of live pigs. Radioactive potassium is one of the principal sources of

radioactive decay in the human body producing about 5000Bq.
8 NB. The parity operator is very different from that of the angular momentum operator. The former is associated

with multiplicative eigenvalues while the latter is associated with additive eigenvalues. The parity operator is always a

discrete operator whereas the angular momentum can be a continuous operator. Angular momentum conservation arises

from the assumption that there is no preferred direction in space. Spatial inversion is a less obvious property of space and

indeed less fundamental.
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Likewise, spin and charge are even parity operators whereas the electric field E is of odd parity. Recalling
that

B = ∇× A and E = −∇φ− ∂A

∂t
(3.8)

we may conclude that the magnetic field vector B is of even parity.

3.8 Intrinsic parity of particles

We have deduced an orbital parity for angular momentum states but have not considered the possibility
that some particles may possess an intrinsic parity. Suppose we have a two-particle system such that

Ψ12 = ψ1ψ2 (3.9)

then if

Pψ1 = p1ψ1 and Pψ2 = p2ψ2 (3.10)

then

PΨ12 = p1p2(−1)ℓ12Ψ12 (3.11)

where ℓ12 is the orbital angular momentum between particles 1 and 2, and p1 and p2 are the intrinsic
parities.

The intrinsic parity of a third particle, say Z3, may be determined by studying a scattering process

X1 + Y2 → X1 + Y2 + Z3 (3.12)

Then if parity is conserved

Ψ∗
12PΨ12 = Ψ∗

123PΨ123 (3.13)

and

p1p2(−1)ℓ12 = p1p2p3(−1)L123

and hence

p3 = (−1)L123+ℓ12 (3.14)

Such a process for determining the intrinsic parity of a particle is only possible if the particle Z3 can be
created singly. This rules out the possibility of defining, for example, an intrinsic parity for any charged
particle since due to charge conservation one cannot create a single charged particle.

A more useful concept is that of the relative parity of particles. Consider the process

X1 + Y +
2 → X1 + Z+

3 (3.15)

where Y and Z carry a positive charge. In that case we have for parity conservation

p1p2(−1)ℓ12 = p1p3(−1)ℓ13

and hence the parity of Y (p2) relative to that of Z (p3) is

p2 = (−1)ℓ13−ℓ12p3

Again we are free to make a choice and then define the relative parities of other particles. If we choose
to take the proton (p), neutron (n) and lambda (Λ) as having even parity then we can make assignments
to other particles by detailed analysis of reactions typified by Eq.(3.15). In general it may be shown that
for all bosons the particle and antiparticle have the same parity whereas for fermions the particle and
antiparticle are of opposite parity. This means that for bosons the particle and antiparticle may appear
in the same isospin multiplet whereas for fermions the particle and antiparticle must appear in different
isospin multiplets.

The photon has negative intrinsic parity as follows from the fact that the photon is associated
with the 4−vector potential (A, φ) and under a spatial inversion

A
P−→− A and φ

P−→φ (3.16)

Recall that the photon is a massless spin 1 particle that can occur in both right-handed and left-handed
polarisations.
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The pions are massive spin 0 particles with negative intrinsic parity. This would be consistent
with regarding the pions as composite particles made up of fermion-antifermion pairs.

3. 9 Parity selection rules

Parity appears to be conserved in all electromagnetic and strong interactions but not in weak interactions.
In almost all of solid state, atomic and molecular physics weak interactions are of no significance and if
a centre of inversion exists the states will have well defined parity. This is certainly the case for atoms
and for crystals with cubic symmetry. In the case of electric dipole transitions the relevant interaction
operator is of the form er and is thus an odd parity operator. Parity conservation for electromagnetic
interactions then forbids9 electric dipole transitions between states of the same parity. Thus, for example,
in an atom it is not possible to have electric dipole transitions between states of the fn configurations of
the lanthanides or actinides. Place the corresponding ion in a crystalline environment lacking a centre of
inversion and it is possible for the crystal field to mix states of opposite parity and previously forbidden
transitions become allowed, albeit weakly.

The electric quadrupole is quadratic in r2 and z2 and hence is a parity even operator and can only
couple between states of the same parity. The magnetic dipole operator involves the angular momentum
operators L and S which are of even parity so also can only couple between states of the same parity.

3.10 Time reversal invariance

Under time reversal T
(r, t)

T−→(r,−t) (3.17)

Consider a system with a Hamiltonian H and satisfying the Schrödinger equation

Hψ(r, t) = i
∂ψ(r, t)

∂t
(3.18)

If under time reversal H T−→H for the time reversed system

Hψ(r,−t) = −i∂ψ(r,−t)
∂t

(3.19)

It is apparent from inspection of Eqs. (3.18) and (3.19) that ψ(r, t) and ψ(r,−t) satisfy different equations.
It is the complex conjugate wave function ψ∗(r, t) that satisfies (3.19). Indeed

H∗ψ∗(r, t) = −i∂ψ
∗(r, t)

∂t
(3.20)

There is a fundamental difference between time inversion and spatial inversion. In the latter case we can
construct states that are eigenstates of the parity operator P and in appropriate situations there is a
well defined parity quantum number p = ±1. Under time inversion T a wave function is changed into
its complex conjugate and hence a state cannot be an eigenstate of T and there cannot be an associated
conserved quantum number.

Under time reversal

p
T−→− p

and hence the motion of objects is reversed. As a consequence the time reversal operation changes the
sign of angular momentum operators and since the directions of currents are reversed so is the direction
of the magnetic field B.

3.11 Charge conjugation

The operation of Charge conjugation C replaces a given particle by its antiparticle. Thus C changes the
sign of all charges (Q,B,L,S). The electric field E is associated with static charges while the magnetic
field B is associated with currents and hence

E C−→− E and B C−→B (3.21)

We summarise the operations of C,P , T in Table 3.2.
Table 3.2 Transformations under C,P and T .

9 Note we use the word forbids since a selection rule tells what is forbidden but not what is permitted.
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Quantity C P T
r r −r r

t t t −t
p p − p − p

L = r x p L L − L

S S S −S

E −E −E E
B −B B −B
Q −Q Q Q

3.12 The CPT theorem

Schwinger, Lüders and Pauli have established a remarkable theorem known as the CPT theorem
which states that any quantum field theory compatible with special relativity and which assumes only
local interactions is invariant under the combined action of CPT including all orderings of the three
operators. This means that while there may be noninvariance with with any of the individual operators
there cannot be, within the assumptions of the theorem, noninvariance with the triple product. Thus if
there is noninvariance with respect to CP then there will consequently be noninvariance with respect to
T but not for CPT .

As an example consider the action of C and P on the left-handed neutrino νL as illustrated below. Under
the action of P the left-handed neutrino is turned into the non-existent right-handed neutrino νR while
under charge conjugation it is turned into the non-existent left-handed antineutrino ν̄L. However, under
the joint action of CP we obtain the observed right-handed antineutrino ν̄R. Since CP invariance is
maintained in weak interactions then if the CPT theorem holds then weak interactions would also be
time reversal T invariant.

νL
P−−−−−−−−−−−−−−−−−−→ νR

C



































y

C



































y

ν̄L
P−−−−−−−−−−−−−−−−−−→ ν̄R
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3.13 Time reversal invariance and Kramer’s theorem

Let us now expand on the idea of time reversal to obtain Kramer’s theorem that plays an important role
in solid state physics. In our earlier discussion we made not explicit reference to spin and found that
the action of T was simply to transform the Schrödinger wave function ψ into its complex conjugate ψ∗.
Assuming H to be real then

Hψ = Eψ
T−→Hψ∗ = Eψ∗ (3.22)

The decision as to whether we obtain degeneracy or not will rest on whether the set ψ∗ is, or is not,
linearly independent of the set ψ for a particular energy. In carrying out the action of T we must
remember to reverse the direction of any magnetic field in H. This will be automatically satisfied if
the field is produced by part of the quantum system under consideration - the reversal of momenta will
automatically lead to a reversal of the fields. Suppose, however, that the field B is an external field. In
that case the field must be explicitly reversed. The wave function ψ ∼ eimℓφ goes into ψ∗ ∼ e−imℓφ.
In the absence of a magnetic field these two solutions should yield the same energy. In the case of an
external magnetic field this need not be the case.

If we consider the inclusion of spin the situation is somewhat changed. First we note that T is not a linear
or unitary operator. If c is a complex number then T (cψ) = c∗T ψ whereas for a unitary transformation
linearity requires that T (cψ) = cT ψ which is not the case here. Rather T is an antilinear operator. If
the operator also preserves the magnitude of the scalar product such that |(T φ, T φ)| = |(φ, φ)| then the
operator T is an antiunitary operator. Thus we should not treat the time reversal operator as simply
having the action of complex conjugation. Let us use K to denote the operation of complex conjugation.
Clearly K2 = I where now I is the identity operator.

The product of any two antiunitary operators is a unitary operator, say U . Let us write

T K = U (3.23)

Left multiplying both sides by K yields

T = UK (3.24)

from which we may conclude that the most general form for T is to take it as the product of a unitary
operator U and the antiunitary operator of complex conjugation K. Consider the following matrix
operations

T 2 = UKUK = UU∗ = cE (3.25)

with E being the unit matrix. Noting the unitarity of U we have

U = c(U∗)−1 = cŨ

Now take the transpose of the above

Ũ = cU = c2Ũ
Thus c2 = 1 and hence c = ±1. Therefore the matrix U must be either totally symmetric or antisymmetric
in taking its transpose. Thus Eq. (3.25) becomes

T 2 = ±E (3.26)

and hence we are restricted to

T 2ψ = ±ψ (3.27)

For a spinless Schrödinger equation we have T = K and only the positive solution is possible.

We can distinguish two classes of operators, those Oe involving only even powers of time and those
Oo involving only odd powers of time. The first class would include ordinary coordinate operators and
accelerations while the second class would include linear momentum and angular momentum operators.
Clearly

T Oe = OeT and T Oo = −OoT (3.28)

Recalling that T = UK and noting, for example, that for the linear momentum p= −i∇ we see from
Eq. (3.28) that U commutes with any multiplication by and differentiation with respect to the spatial
coordinates and hence at most U has an effect on spin variables.
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Recall the Pauli spin matrices, Eq. (2.10),

τ1 =

(

0 1
1 0

)

, τ2 =

(

0 −i
i 0

)

, τ3 =

(

1 0
0 −1

)

(2.10)

τ1 and τ3 are real while τ2 is pure imaginary. We have already noted that the time reversal operator T
anticommutes with the spin s and hence its three components si i.e.

T si = −siT i = 1, 2, 3 (3.29)

but
T sk = UKsk = UskK = −skUK k = 1, 3 (3.30)

and
T s2 = UKs2 = −Us2K = −s2UK (3.31)

Thus U commutes with s2 and anticommutes with s1 and s3. Hence we may obtain a representation of
the operator U for a system of n spins with the correct commutation properties by choosing

U = τ12τ22 . . . τn2 (3.32)

to give
T = τ12τ22 . . . τn2K (3.33)

Remembering that

sk =
1

2
τk

and writing the third component of the spin of the i−th particle as si3 = ± 1

2
we have for an n−particle

system

T ψ(r1, s13, . . . , rn, sn3) = (−i)2
∑

i
si3ψ(r1,−s13, . . . , rn,−sn3) (3.34)

We thus obtain two possibilities

T 2ψ = ψ n even or T 2ψ = −ψ n odd (3.35)

We can now almost immediately obtain Kramer’s theorem10 which states that

In the absence of a magnetic field all energy levels of a system containing an odd number of
electrons must be at least doubly degenerate regardless of how low the symmetry is.

Thus a pure electric field cannot remove all the degeneracy for a system involving an odd number of
electrons.

Proof of Kramer’s Theorem

For an odd number of electrons T 2ψ = −ψ and consequently T ψ is orthogonal to ψ and by time-reversal
symmetry T ψ must have the same energy as ψ and hence there must be at least two-fold degeneracy 11.

10 Kramer’s theorem has important technological consequences as it makes a prediction of a situation where 2-fold

degeneracy is assured. Degeneracy can be lifted in a controlled manner by application of an external magnetic field. A

second oscillatory magnetic field can be applied to induce transitions between the split levels. This is of importance in

microwave communications and nuclear magnetic resonance imaging techniques in medicine.
11 The orthogonality of T ψ and ψ may be proven by first considering two functions ψ and φ.

(T ψ, T φ) = (UKψ,UKφ) = (Kψ,Kφ) = (ψ, φ)∗ = (φ, ψ)

Therefore
(T ψ, ψ) = (T ψ, T 2ψ) = (T ψ,−ψ) = −(T ψ, ψ)

and hence (T ψ, ψ) = 0.
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The Application of Symmetry Concepts

to

Physical Problems
c©

Lecture Four

4.1 Introduction

In this lecture I want to introduce you to the elements of the quark model of hadrons (i.e. mesons and
baryons). Ultimately we seek to describe the properties of hadrons in terms of sub structures based on
more fundamental entities. Scattering experiments involving the collision of electrons with protons probe
the substructure of the proton and in the late 1950’s it was clear that the nucleon was composite made up
of partons, a phrase introduced by R. P. Feynman. What should we take as these fundamental entities or
partons? Remember mesons have integer spin and are bosons whereas baryons have half-integer spin and
are fermions. If we wish to build both mesons and baryons out of the same entities and if these entities
are not themselves mesons or baryons then we should take the basic entities as fermions since we may
combine fermions to form bosons but not the converse.1 Let us first see if we can describe the properties
of the pions and nucleon in terms of some basic entities.

4.2 Enter the u and d quarks

We noted in the previous lecture that the pions have a negative intrinsic parity with π+ and π− being
a particle-antiparticle pair. Furthermore fermions and antifermions have opposite parity and hence it
is reasonable to suggest that the mesons are made up of coupled pairs of fermionic and antifermionic
partons. A minimal assumption for the baryons is that they involve the interaction of three fermions
and the antibaryons three antifermions. We assume that the fermions are of spin 1/2, that allows us to
construct mesons of spin 0 and 1 and baryons of spin 1/2 and 3/2. The pions form an isospin triplet (I =
1) so we shall assume a pair of basic entities that form an isospin doublet (I = 1/2). Let us call this pair
of particles quarks2 and designate the I3 = 1/2 quark by the letter u (the ”up quark”) and the I3 = −1/2
quark by the letter d (the ”down quark”) with electric charges qu and qd respectively. The corresponding
antiquarks ū and d̄ will have opposite signs for their charge and isospin projection.

4.3 Quark charges

The π+ meson has Q = 1, I = 1, J = 0 and I3 = 1 which would be compatible with the assignment

π+ ∼ ud̄

if we take

Q = 1 = qu − qd (4.1)

The proton has Q = 1, I = 1/2, J = 1/2 and I3 = 1/2 which would be compatible with the assignment

p ∼ uud

with

Q = 1 = 2qu + qd (4.2)

Solving Eq.(4.1) and (4.2) gives the quark charges (in units of +e) as

qu = 2/3 and qd = −1/3 (4.3)

It follows also that the quarks carry a baryonic charge B = 1/3 giving the baryonic charge of the nucleon
as B = 1 and that of the pion as B = 0.

4.4 Building π mesons

1 If magnetic monopoles exist, and to date there is no evidence for their existence, then it is possible to combine

bosonic particles known as dyons (particles containing both electric and magnetic charge) to form fermions. The concept

of the magnetic monopole was introduced by Dirac to explain electric charge quantisation.
2 The name quark was introduced by M. Gell-Mann from James Joyce’s book Ulysses ”three quarks for Master

Mark”. It is not derived from the German soft quark cheese.
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It is useful to regard the u and d quarks as forming a two component isospin spinor and likewise
for ū and d̄. For reasons of phase consistency we shall write these two spinors as

(

u
d

)

and

(

−d̄
ū

)

(4.4)

We then have the isospin operations

I−|u〉 = |d〉 and I+|d〉 = |u〉 (4.5a)

and
I+|ū〉 = −|d̄〉 and I−|d̄〉 = −|ū〉 (4.5b)

The basic ansatz for constructing mesons out of quarks is:
Mesons are formed by coupling a quark to an antiquark

To construct the three pions let us take for π+

|π+〉 = −|ud̄〉 (4.6)

The wavefunction for the π0 is found by acting with I− on both sides of Eq.(4.6) and remembering
Eq.(4.5) to give

I−|π+〉 =
√

2|π0〉
(i1− + i2−) − |ud̄〉 = −|dd̄〉 + |uū〉 (4.7)

leading to3

|π0〉 =
1√
2

(|uū〉 − |dd̄〉) (4.8)

In a similar fashion the wavefunction of the π− is found to be

π−〉 = |dū〉 (4.9)

Note we could construct the wavefunction of a second neutral meson η0 by demanding it be
orthogonal to that of the π0 to give

|η0〉 =
1√
2

(|uū〉 + |dd̄〉) (4.10)

The wavefunctions for the two neutral mesons involve quark-antiquark pairs of the same type
whereas the charged mesons involve different types. The charged π-mesons have a meanlife of 2.6×10−8s
whereas the π0 meson has a meanlife of 8.4 × 10−17s. The charged pions decay via the weak interac-
tion whereas the neutral pion decays by electromagnetic interaction giving rise to particle-antiparticle
annihilation.

4.5 Baryon wavefunctions

The corresponding ansatz for constructing baryons out of quarks is:

Baryons (Anti-baryons) are constructed out of a triplet of quarks (anti-quarks)

We have already suggested the proton is built out of the quark configuration uud and the neu-
tron udd. Magnetic moment measurements are consistent with the quarks having zero orbital angular
momentum in their groundstate. Let us temporarily suspend our belief in the Pauli exclusion principle
and ask what particle would the quark configuration uuu correspond to? It would involve a charge of two
units with a total isospin projection of 3/2 suggesting an isospin quartet multiplet completely symmetric
in the spin space with J = 3/2. Could this be a member of the multiplet involving the four particles
(∆−,∆0,∆+,∆++)?

Let us consider a particle ∆++ in a spin state with J = 3/2 and maximal spin projection J3 = 3/2.
Ignoring the Pauli exclusion principle, the only possible way of constructing such a state out of u and d
quarks is to make the assignment

|∆++3/2, 3/2〉 = |+u+
u

+
u〉 (4.11)

3 As we shall see later, in the case of the neutral pion we are ignoring the possibility of other quarks being involved

such as the ”strange quark” s.
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where the 3/2 refer to the respective isospin and spin projections while the + signs placed over the quarks
indicate the quark spin projection sz = +1/2 (We will later use − for sz = −1/2.). Remembering Eq.
(4.5), we can apply the isospin operator I− to both sides of Eq. (4.11) to give

I−|∆++3/2, 3/2〉 =
√

3|∆+1/2, 3/2〉 (4.12a)

and

I−|
+
u

+
u

+
u〉 + |

+

d
+
u

+
u〉 + |+u

+

d
+
u〉 + |+u+

u
+

d〉

=|+u+
u

+

d〉3 (4.12b)

where by the last line we understand we are to take all three distinct permutations of the orderings of
the three quarks. Note that stepping down in isospin changes the charge of the particle by one unit.

Comparison of Eq. (4.12a) with (4.12b) gives

|∆+1/2, 3/2〉 =
1√
3
|+u+
u

+

d〉3 (4.13)

How is this wavefunction related to that of the proton? Let us first apply a spin step down operator J−
to both sides of Eq. (4.13) to get

J−|∆+1/2, 3/2〉 =
√

3|∆+1/2, 1/2〉 (4.14a)

and

J−
1√
3
|+u+
u

+

d〉3 =
1√
3

(|+u−u
+

d〉6 + (|+u+
u
−

d〉3) (4.14b)

Comparison of Eq. (4.14a) with (4.14b) gives

|∆+1/2, 1/2〉 =
1

3
(|+u−

u
+

d〉6 + |+u+
u
−

d〉3) (4.15)

4.6 The nucleon wavefunctions

The proton has isospin I = 1/2 with isospin projection I3 = +1/2 and spin J = 1/2 and hence
the proton state |p+1/2, 1/2〉 should be orthogonal to the state formed in Eq. (4.15) and hence of the
form

|p+1/2, 1/2〉 = a|+u−u
+

d〉6 + b|+u+
u
−

d〉3 (4.16)

The coefficients a and b may be evaluated by noting that orthogonality requires 6a+ 3b = 0 and hence
b = −2a while normalisation requires a2 + b2 = 1 and hence choosing the phase of a as positive gives

|p+1/2, 1/2〉 =
1√
18

(|+u−
u

+

d〉6 − 2|+u+
u
−

d〉3 (4.17)

The corresponding state for the neutron may be found by applying the isospin step-down operator I− to
both sides of Eq. (4.17) to give

|n0 − 1/2, 1/2〉 =
1√
18

(−|
+

d
−

d
+
u〉6 + 2|

+

d
+

d
−
u〉3 (4.18)

Eqs.(4.17) and (4.18) give us a quark description of the nucleon. In our next lecture we shall use this
knowledge to compute the ratio of the magnetic moment of the proton to that of the neutron which will
give us our first experimental test.
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The Application of Symmetry Concepts

to

Physical Problems
c©

Lecture Five

5.1 Introduction

In Lecture Four we introduced a quark model based on just two quarks (u, d) and their corresponding
antiquarks (ū, d̄). We then constructed wavefunctions for the proton and neutron in terms of their
constituent quarks as

|p+1/2, 1/2〉 =
1√
18

(|+u−u
+

d〉6 − 2|+u+
u
−

d〉3) (4.17)

and

|n0 − 1/2, 1/2〉 =
1√
18

(−|
+

d
−

d
+
u〉6 + 2|

+

d
+

d
−
u〉3) (4.18)

In today’s lecture I want to use this knowledge to calculate the ratio of the magnetic moment of the
proton to that of the neutron.

5.2 Assumptions in the calculation of quark magnetic moments

The magnetic moment of an electron is proportional to its charge e and inversely proportional to its mass
m. If isospin were exactly conserved we would have mu = md. We shall assume isopspin conservation.
Let us, by analogy, assume that the quarks carry a magnetic moment proportional to their charge. We
wish to calculate a ratio and hence will ignore the mass term. We calculate the ratio for the same spin
projection Jz = 1/2 for the proton and neutron. Let sz denote the spin projection of a single quark, then
the magnetic moments should be proportional to the matrix elements of the operator

µz =
3

∑

i=1

qiszi
(5.1)

We have the single quark matrix elements

〈±u|qsz|
±
u〉 = ±1

3
and 〈

±

d|qsz|
±

d〉 = ∓1

6
(5.2)
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5.3 Calculation of the proton-neutron magnetic moment ratio

Let us first consider the proton wavefunction of Eq. (4.17). Forming the matrix element of the operator
given in Eq. (5.1) we have

〈p+1/2, 1/2|µz|p+1/2, 1/2〉 =
1

18
〈+u−u

+

d6 − 2
+
u

+
u
−

d3|µz|
+
u
−
u

+

d6 − 2
+
u

+
u
−

d3〉 (5.3a)

=
1

18
(〈+u−u

+

d6|µz |
+
u
−
u

+

d6〉 + 4〈+u+
u
−

d3|µz |
+
u

+
u
−

d3〉) (5.3b)

=
1

18
(6〈

+

d|qsz|
+

d〉 + 4 × 3 × 2〈+u|qsz|
+
u〉 + 4 × 3〈

−

d|qsz |
−

d〉)
(5.3c)

=
1

18
(24〈+u|qsz |

+
u〉 − 6〈

+

d|qsz|
+

d〉) (5.3d)

=
1

18
(24 × 1

3
− 6 × −1

6
) (5.3e)

=
1

2
(5.3f)

Similarly for the neutron wavefunction given by Eq. (4.18) we have

〈n0 − 1/2, 1/2|µz|n0 − 1/2, 1/2〉 ==
1

18
〈−

+

d
−

d
+
u6 + 2

+

d
+

d
−
u3|µz| −

+

d
−

d
+
u6 + 2

+

d
+

d
−
u3〉 (5.4a)

=
1

18
(〈

+

d
−

d
+
u6|µz|

+

d
−

d
+
u6〉 + 4〈

+

d
+

d
−
u3|µz|

+

d
+

d
−
u3〉) (5.4b)

=
1

18
(6〈+u|qsz |

+
u〉 + 4 × 3 × 2〈

+

d|qsz |
+

d〉 + 4 × 3〈−u|qsz|
−
u〉)

(5.4c)

=
1

18
(24〈

+

d|qsz|
+

d〉 − 6〈+u|qsz|
+
u〉) (5.4d)

=
1

18
(24 × −1

6
− 6 × 1

3
) (5.3e)

=
−1

3
(5.4f)

Comparison of Eq. (5.3f) with Eq. (5.4f) leads immediately to

µp

µn calc

=
−3

2
= −1.5 (5.5a)

which may be compared with the experimental value of (see page 81 of the Particle Properties Data
booklet)

µp

µn expt

= −1.46 (5.5b)

Importantly, we have obtained a reasonable magnitude, with the correct sign.

The introduction of just two quarks has given a surprisingly good account of the nucleon and the pion.
We now see how it is possible to have the neutron as an electrically neutral particle and yet have a sizable
magnetic moment. We have also seen a reason for the difference in the lifetime of the charged and neutral
π-mesons. However, two quarks are not sufficient to describe all of the observed baryons and mesons
and we have not explained the observed groupings of mesons into octets and singlets and the baryons
into octets and decuplets. Nor have we explained our apparent disregard of the Pauli exclusion principle.
This is seen most strongly in the maximal spin state of the ∆++ baryon. In the latter case we need
to introduce the colour quantum numbers and in the former the strange quark s. This we shall do in
Lecture Six.
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Lecture Six

6.1 Introduction

In Lecture Four we introduced a quark model based on just two quarks (u, d) and their corresponding
antiquarks (ū, d̄). This led to a model for describing the pions, nucleons and ∆ particles but was not rich
enough to describe other members of the meson octet or baryon octet and decuplet. A richer scheme
comes by introduction of the strange quark s and its antiparticle s̄.

6.2 Strange Particles

The possibility of an additional quantum number capable of distinguishing different isospin multiplets
pre-dates the quark model. In 1954 it became possible to bombard pions on protons and observe the
reaction

π− + p→ Λ +K0 (6 − 1)

The two neutral particles decayed as

Λ → p+ π− (6 − 2)

K0 → π+ + π− (6 − 3)

The cross-sections measured for (6-1) were consistent with the process occurring via the strong interaction
whereas the subsequent decays were of times normally associated with weak interactions. This behaviour
seemed at the time strange with Λ and K being termed strange particles. It was suggested that there must
be an additional quantum number S (strangeness) that is conserved in strong interactions but broken in
weak interactions. The pions, nucleons and ∆’s were assigned strangeness S = 0 and the strange particles
such as Λ,Ξ,Σ,K, . . . are assigned S 6= 0.

If Eq.(6-1) is to conserve strangeness and the π− and p have S = 0 then the strangeness on the right-
hand-side must sum to zero. This will be the case if we arbitrarily assign S = −1 to the Λ and S = +1
to the K0. The decays given in Eq. (6-2) and (6-3) involve strangeness violation with

|S| = 1 (6 − 4)

States of a given isospin multiplet have the same strangeness quantum number S allowing us to assign
S = +1 to K+ and S = −1 to K̄0 and K−. The assignment of strangeness to the Ξ− particle follows by
noting that its decay proceeds in two steps:-

Ξ− → Λ + π−

Λ → p+ π−

Each step involves a change of strangeness of −1 leading to the assignment of S = −2 to the isospin
doublet Ξ−,Ξ0

6.3 The Gell−Mann-Nishijima Charge Equation

The charges Q of the non-strange particles are observed to satisfy the equation

Q = I3 +
1

2
B (6 − 5)

The Λ particle has been assigned S = −1 with I3 = 0 and B = 1 suggesting that both strange and
non-strange particles satisfy the so-called Gell−Mann-Nishijima relation

Q = I3 +
1

2
(B + S) (6 − 6)

= I3 + Y/2 (6 − 7)

where Y is known as the hypercharge.

6.4 The Quark Triplet and Anti-Quark Anti-Triplet
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The introduction of strangeness requires that our very simple two-quark model be extended by the
introduction of a third quark, the strange quark s with strangeness S = −1. The Gell−Mann-Nishijima
relation requires Qs = − 1

3
and isospin I = 0. Note that the strange quark has the same charge as that of

the down quark d. This suggests a grouping of particles into multiplets based upon their charge Q instead
of isospin - the so-called U−spin multiplets. States belonging to a given U−spin would be expected to
have similar electromagnetic properties. Thus the d, s quarks form a U−spin doublet with the u−quark
being a U−spin singlet.

6.5 The U−spin Algebra

Just as with isospin we may construct a U−spin algebra such that

U3|U,MU〉 = MU |U,MU 〉 (6 − 8a)

U±|U,MU〉 =
√

U(U + 1) −MU (MU ± 1)|U,MU ± 1〉 (6 − 8b)

U2|U,MU〉 = U(U + 1)|U,MU〉 (6 − 8c)

Assigning the d−quark to MU = + 1

2
we then have

U−|d〉 = |s〉 (6 − 9a)

U+|s〉 = 0 (6 − 9b)

U±|u〉 = 0 (6 − 9c)

U+|d̄〉 = −|s̄〉 (6 − 9d)

6.6 Strange Mesons

We earlier deduced that

|π+〉 = −|ud̄〉 (6 − 10a)

|π0〉 =
1√
2

(|uū〉 − |dd̄〉) (6 − 10b)

|π−〉 = |dū〉 (6 − 10c)

which are all non-strange mesons. Applying U+ to Eq. (6-10a) and noting Eq. (6-9d) we have
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U+|π+〉 = |K+〉
= |us̄〉

and hence we have the assignment

|K+〉 = |us̄〉 (6 − 11)

We can now obtain the wavefunction for the K0 meson by applying the isospin step-down operator I−
to Eq. (6-11) to give

I−|K+〉 = |K0〉
= |ds̄〉 (6 − 12)

With the three quarks u, d, s and three anti-quarks we may construct three orthogonal linear combinations
of the pairs uū, dd̄, and ss̄. One linear combination has already been found and identified with that of
the non-strange meson π0. A complete scalar strange meson, η′, with isospin I = 0 may be written as

|η′〉 =
1√
3

(|uū〉 + |dd̄〉 + |ss̄〉) (6 − 13)

A state corresponding to the strange meson, η, arises by forming a linear combination that is orthogonal
to the wavefunctions given by Eq. (6-10b) and (6-13) to give

|η〉 =
1√
6

(2|ss̄〉 − |uū〉 − |dd̄〉) (6 − 14)

Finally we have the two kaons

|K̄0〉 = −|sd̄〉 and |K−〉 = |sū〉 (6 − 15)

Recall earlier the meson octet drawn earlier

K0 K+

• . . . . . . . . . . . .•

π− π0 π+

• . . . . . . . . . . . . . . . . .⊙ . . . . . . . . . . . .•
η0

• . . . . . . . . . . . .•
K− K̄0

Meson Octet Jp = 0−

In terms of coupled quark-antiquark pairs we have the equivalent diagram

ds̄ us̄
• . . . . . . . . . . . . . . . .•

−ud̄ π0 dū
• . . . . . . . . . . . . . . . . .⊙ . . . . . . . . . . . .•

η0

• . . . . . . . . . . . . . .•
sū −sd̄

Meson Octet Jp = 0−
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where the quark composition of the two neutral mesons, π0 and η0, are given in Eqs. (6-10b) and (6-14)
respectively. The other neutral strange meson, η′ occurs as a singlet. Altogether we have formed a nonet
of mesons (an octet plus a singlet). The particles at the top of the octet have strangeness S = +1 while
the two at the bottom have S = −1. All the particles on the central line have S = 0. Thus the η and η′

are said to have hidden strangeness.

6.7 The Baryon Octets and Decuplets

With three quarks u, d, s we can form a total of 27 particles from triplets of these quarks as seen
in the table below.

quarks I3 S Q Number of Baryons

uuu 3

2
0 2 1

uud 1

2
0 1 3

udd − 1

2
0 0 3

ddd − 3

2
0 −1 1

uus 1 −1 1 3
dds −1 −1 −1 3
uds 0 −1 0 6
uss 1

2
−2 0 3

dss − 1

2
−2 −1 3

sss 0 −3 −1 1

There is one baryon for each independent quark wavefunction. Thus for uds we can form six independent
orthonormal sets of quark wavefunctions. It is instructive to make a plot of isospin projection, I3, versus
strangeness , S, as overleaf. The diagram can be resolved into a decuplet, two octets and a singlet corre-
sponding to 3 x 3 x 3 = 1 + 8 + 8 + 10

We have already identified the quark composition of the ∆++ as

|∆++I =
3

2
, I3 =

3

2
, J =

3

2
, J3 =

3

2
〉 ∼ |+u+

u
+
u〉 (6 − 16)

From that one state we may construct all the other states of the decuplet from a systematic application
of the isospin ladder operators,I± to move along the states of a given isospin, I, and fixed strangeness,
S, and angular momentum, J, J3. Application of the U−spin ladder operators U± allow us to change
the strangeness quantum number S and hence move from one isospin multiplet to another. Note that
changing the isospin projection I3 changes the charge, Q, in steps of one unit while changing the U−spin
projection, U3, changes the strangeness, S in steps of unity.
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The 27 baryons - a plot of isospin projection I3 versus strangeness S.

The quark composition for the baryon decuplet with J = 3

2

+
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Note that a change in strangeness involves the replacement of a non-strange quark, u or d, by a strange
quark, s. With isospin conservation we would have mu = md and we would expect the mass of the
strange quark to be greater than that of the up-down quarks. Hence we could predict that the mass
intervals in the baryon decuplet will be approximately equal as is indeed the case.

m∆ = 1232MeV, mΣ∗ = 1385MeV, mΞ∗ = 1530MeV, mΩ = 1672MeV

The preceding plot may be compared with our earlier representation of the baryon decuplet given below

∆− ∆0 ∆+ ∆++

• . . . . . . . . . . . . . • . . . . . . . . . . . . . • . . . . . . . . . . . . . •

Σ∗− Σ∗0 Σ∗+

• . . . . . . . . . . . . . • . . . . . . . . . . . . . •

Ξ∗− Ξ∗0

• . . . . . . . . . . . . . •

•
Ω−

The baryon decuplet with J = 3

2

+

Concluding Remarks

In the preceding lectures I have endeavoured to introduce you to a small part of the role of symmetry
in physics with mainly examples drawn from particle physics using chiefly your knowledge of angular
momentum theory. Throughout, but without explicit statement, we have been using the theory of the
group of rotations in two (SO2) and three (SO3) dimensions and their associated Lie algebras and in
our discussion of spin the group of special unitary transformations (SU2) and its Lie algebra A1. In
the background of our discussion of the singlets, octets and decuplets of the hadrons and the quark
triplets and antitriplets has been the Lie algebras associated with two important group structures (SU3)
and (SU2 × U1). Importantly, we note that methods developed in one area of physics can find similar
applications in other seemingly very dissimilar areas of physics. While we stop here the never-ending
story does not .....


