

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Bassano Vacchini

Dipartimento di Fisica "Aldo Pontremoli" Università degli Studi di Milano

INFN Sezione di Milano 52nd Symposium on Mathematical Physics Torun (online) June 2021

Outline + Take home message

Open quantum systems

Bipartite setting

$$\begin{split} H &= H_S + H_E + H_I \\ \rho_{SE} &\in \mathcal{T}(\mathcal{H}_S \otimes \mathcal{H}_E) \qquad H \in \mathcal{B}(\mathcal{H}_S \otimes \mathcal{H}_E) \end{split}$$

Reduced dynamics

Correlations $\rho_{SE}(t) \neq \rho_S(t) \otimes \rho_E(t)$

[Davies, 1976; Alicki & Lendi, 1987; Breuer & Petruccione, 2002; Rivas & Huelga, 2012]

Quantum process

Time dependent collection of evolution maps

$$\Phi(t)[\rho_{S}(0)] = \operatorname{Tr}_{E}(U(t)\rho_{S}(0) \otimes \rho_{E}U^{\dagger}(t)) = \sum_{\alpha,\beta} K_{\alpha,\beta}(t)\rho_{S}(0)K_{\alpha,\beta}^{\dagger}(t)$$

emergence of complete positivity

Quantum process

stochasticity of the dynamics due to interaction with the environment

on top of

intrinsic probabilistic quantum description

[Stinespring PAMS 1955; Hellwig & Kraus CMP 1969; Kraus LNP 1983]

Markov process

Semigroup of (CPT) maps $\Lambda(t)\Lambda(s) = \Lambda(t+s) \qquad t, s \ge 0$ $\Lambda(t) = \exp(\mathscr{L}t)$ $\frac{d}{dt}\rho(t) = \mathscr{L}\rho(t)$ Iff GKSL generator

$$\mathcal{L}\rho = -i[H,\rho] + \sum_{k} \gamma_{k}[A_{k}\rho A_{k}^{\dagger} - \frac{1}{2}\{A_{k}^{\dagger}A_{k},\rho\}] \qquad \gamma_{k} \ge 0$$

[Kossakowski, RMP & Bull. Acad. Pol. Sci. 1972; Gorini, Kossakowski & Sudarshan, JMP 1976; Lindblad, CMP 1976]

Beyond Markovian dynamics*

Process viewpoint

 $P_n(t_n, x_n; t_{n-1}, x_{n-1}; \dots t_1, x_1) \qquad t_n \ge t_{n-1} \ge \dots \ge t_1 \ge 0$

[Lindblad CMP 1979; B. V. & al. NJP 2011; Milz & Modi, arXiv 2020; Giarmatzi & Costa, QUANTUM 2021]

Divisibility viewpoint

$$\Phi(t,\tau)\Phi(\tau,s) = \Phi(t,s)$$
 $t \ge \tau \ge s \ge 0$

[Rivas, Huelga & Plenio, PRL 2010; Rivas, Huelga & Plenio, RMP 2014]

```
Trajectory viewpoint
```

 $|\psi(t)\rangle \qquad t \ge 0$

[Piilo & al., PRL 2008; Smirne & al., PRL 2020; Donvil & Muratore-Ginanneschi, arXiv 2021]

Distinguishability viewpoint

 $D(\rho_1(t),\rho_2(t)) \qquad t \ge 0$

[Breuer, Laine & Piilo, PRL 2009; Breuer, Laine, Piilo & B.V., RMP 2016] * Equations and references are a guide for the eye

Trace distance

Trace norm natural metric on the space of quantum states

$$\begin{split} D(\rho_1,\rho_2) &= \frac{1}{2} \|\rho_1 - \rho_2\| \qquad 0 \leqslant D \leqslant 1 \\ D(\rho_1,\rho_2) &= 0 \iff \rho_1 = \rho_2 \qquad D(\rho_1,\rho_2) = 1 \iff \rho_1 \perp \rho_2 \end{split}$$

(C)PT maps contractions for the trace distance

$$D(\Phi\rho_1,\Phi\rho_2) \leq D(\rho_1,\rho_2)$$

Triangle inequality

$$\begin{split} D(\varrho,\sigma) - D(\varrho,\tau) &\leq D(\sigma,\tau) \\ D(\varrho,\sigma) - D(\eta,\sigma) &\leq D(\varrho,\eta) \end{split}$$

[Kossakowski Bull. Acad. Pol. Sci. 1972; Ruskai, RMP 1994]

Markovian versus non-Markovian dynamics

Monotonic loss of distinguishability

as in the presence of a well-defined composition law $D(\rho_1(t), \rho_2(t)) \leq D(\rho_1(s), \rho_2(s)) \quad \forall t \geq s \quad \forall \rho_1(0), \rho_2(0) \in \mathcal{S}(\mathcal{H})$

Dynamics is said to be Markovian

[Breuer, Laine & Piilo, PRL 2009; Breuer, Laine, Piilo & B.V. RMP 2016]

INFN Istino Nazionate di Fisica Nucleare

Markovian versus non-Markovian dynamics

Revival of distinguishability

e.g. due to revival in physical property

 $\exists \rho_1(0), \rho_2(0) \in \mathcal{S}(\mathcal{H}) \quad \exists t \geq s \quad D(\rho_1(t), \rho_2(t)) > D(\rho_1(s), \rho_2(s))$

Dynamics is said to be non-Markovian

[Breuer, Laine & Piilo, PRL 2009; Breuer, Laine, Piilo & B.V. RMP 2016]

Information backflow

Internal vs external information

 $\mathcal{I}_{int}(t) = \mathsf{D}(\rho_S^1(t), \rho_S^2(t)) \quad \mathcal{I}_{ext}(t) = \mathsf{D}(\rho_{SE}^1(t), \rho_{SE}^2(t)) - \mathsf{D}(\rho_S^1(t), \rho_S^2(t))$

so that

$$\mathcal{I}_{int}(t) + \mathcal{I}_{ext}(t) = \text{cost}$$
$$\frac{d}{dt}\mathcal{I}_{int}(t) = -\frac{d}{dt}\mathcal{I}_{ext}(t)$$

Non-Markovian behaviour associated to

$$\begin{aligned} \mathcal{I}_{int}(t) - \mathcal{I}_{int}(s) &\geq 0 \quad \text{for} \quad t \geq s \\ \mathcal{I}_{ext}(t) - \mathcal{I}_{ext}(s) \leqslant 0 \quad \text{for} \quad t \geq s \end{aligned}$$

[Breuer, Laine, Piilo & B.V. RMP 2016; Laine & al. EPL 2010; Campbell & al. NJP 2019]

Information backflow

Internal vs external information

$$\mathcal{I}_{int}(t) - \mathcal{I}_{int}(s) = \mathcal{I}_{ext}(s) - \mathcal{I}_{ext}(t) \leq \mathcal{I}_{ext}(s)$$

leads to bound on revivals based on external information at previous times comparing states with product of their marginals and comparing environmental marginals

[Breuer, Laine, Piilo & B.V. RMP 2016; Laine & al. EPL 2010; Campbell & al. NJP 2019]

Distinguishing states

Quantum divergence

Divergence as difference quantifier between classical or quantum probability distributions

Relaxing symmetry and triangle inequality

Relevant property of quantum divergence Contractivity under (C)PT maps

$$f(\Phi[\varrho], \Phi[\sigma]) \leqslant f(\varrho, \sigma) \Longrightarrow \begin{cases} f(\mathscr{U}[\varrho], \mathscr{U}[\sigma]) = f(\varrho, \sigma) \\ f(\varrho \otimes \eta, \sigma \otimes \eta) = f(\varrho, \sigma) \end{cases}$$

Crucially unitary evolution, partial trace, assignment map are (C)PT transformation

Boundedness

 $0 \leqslant \mathsf{f}(\varrho, \sigma) \leqslant \mathsf{cost}$

Microscopic interpretation

Triangle-like inequality

Assume validity of inequalities

$$\begin{split} \mathsf{f}(\varrho, \sigma) - \mathsf{f}(\varrho, \tau) &\leqslant \phi_R \left(\mathsf{f}(\sigma, \tau) \right) \leqslant \phi \left(\mathsf{f}(\sigma, \tau) \right) \\ \mathsf{f}(\varrho, \sigma) - \mathsf{f}(\eta, \sigma) &\leqslant \phi_L \left(\mathsf{f}(\varrho, \eta) \right) \leqslant \phi \left(\mathsf{f}(\varrho, \eta) \right) \end{split}$$

with monotonic subadditive function ϕ s.t. $\phi(0) = 0$

Sufficient condition to derive the bound

 $f(\varrho_{s}(t), \sigma_{s}(t)) - f(\varrho_{s}(s), \sigma_{s}(s)) \leq \phi \circ \phi \left(f(\varrho_{E}(s), \sigma_{E}(s)) + \phi \left(f(\varrho(s), \varrho_{s}(s) \otimes \varrho_{E}(s)) + \phi \left(f(\sigma(s), \sigma_{s}(s) \otimes \sigma_{E}(s)\right) + \phi \left(f(\sigma(s), \sigma_{S}(s)$

Connecting distinguishability revivals with correlations and environment changes

Quantum divergence \rightarrow distance

- Information viewpoint on non-Markovianity in open quantum systems
- Entropic bounds on information flow
- Reduced vs microscopic dynamics

Telescopic relative entropy

Regularize quantum relative entropy

$$\begin{split} S(\varrho,\sigma) &= \mathrm{Tr}\varrho \log \varrho - \mathrm{Tr}\varrho \log \sigma \\ \mathsf{S}_{\mu}(\varrho,\sigma) &= \frac{1}{\log(1/\mu)} S(\varrho,\mu\varrho + (1-\mu)\sigma) \\ \mu &\in (0,1) \end{split}$$

Telescopic relative entropy or quantum skew divergence

Boundedness $0 \leq S_{\mu}(\varrho, \sigma) \leq 1$

Contractivity under (C)PT maps $S_{\mu}(\Phi[\varrho], \Phi[\sigma]) \leq S_{\mu}(\varrho, \sigma)$

[Audenaert arXiv 2011; Audenaert, JMP 2014]

Telescopic relative entropy

Joint convexity

$$\begin{split} \mathsf{S}_{\mu}(\lambda\rho_{1} + (1-\lambda)\rho_{2}, \lambda\sigma_{1} + (1-\lambda)\sigma_{2}) \\ \leqslant \lambda \mathsf{S}_{\mu}(\rho_{1}, \sigma_{1}) + (1-\lambda)\mathsf{S}_{\mu}(\rho_{2}, \sigma_{2}) \end{split}$$

Triangle-like inequalities

$$\begin{split} \mathsf{S}_{\mu}(\varrho,\sigma) - \mathsf{S}_{\mu}(\eta,\sigma) &\leqslant \frac{\mathsf{D}(\varrho,\eta)}{\log(1/\mu)} \log\left(1 + \frac{1}{\mathsf{D}(\varrho,\eta)} \frac{1-\mu}{\mu}\right) \\ \mathsf{S}_{\mu}(\varrho,\sigma) - \mathsf{S}_{\mu}(\varrho,\tau) &\leqslant \frac{1}{\log(1/\mu)} \log\left(1 + \mathsf{D}(\sigma,\tau) \frac{1-\mu}{\mu}\right) \end{split}$$

[Audenaert arXiv 2011; Audenaert, JMP 2014]

Telescopic relative entropy

Telescopic Pinsker inequality

$$\mathsf{D}(\varrho, \sigma) \leqslant \frac{\sqrt{\log(1/\mu)/2}}{1-\mu} \sqrt{\mathsf{S}_{\mu}(\varrho, \sigma)}$$

together with estimate $\log(1+x) \leq \sqrt{x}$

leads to triangle-like inequalities

$$\begin{split} &\mathsf{S}_{\boldsymbol{\mu}}(\boldsymbol{\varrho},\boldsymbol{\sigma})-\mathsf{S}_{\boldsymbol{\mu}}(\boldsymbol{\varrho},\boldsymbol{\tau}) \leqslant \boldsymbol{\phi}\left(\mathsf{S}_{\boldsymbol{\mu}}(\boldsymbol{\sigma},\boldsymbol{\tau})\right) \\ &\mathsf{S}_{\boldsymbol{\mu}}(\boldsymbol{\varrho},\boldsymbol{\sigma})-\mathsf{S}_{\boldsymbol{\mu}}(\boldsymbol{\eta},\boldsymbol{\sigma}) \leqslant \boldsymbol{\phi}\left(\mathsf{S}_{\boldsymbol{\mu}}(\boldsymbol{\varrho},\boldsymbol{\eta})\right) \end{split}$$

with

$$\phi(x) = \kappa(\mu) \sqrt[4]{x}$$
 $\kappa(\mu) = 1 / \sqrt[4]{2\mu^2 \log^3(1/\mu)}$

[Megier, Smirne & B.V., PRL 2021]

Entropic bound on information flow

Telescopic relative entropy

Straightforward upper bound can be improved to

$$\begin{split} \mathsf{S}_{\mu}(\varrho_{s}(t),\sigma_{s}(t)) - \mathsf{S}_{\mu}(\varrho_{s}(s),\sigma_{s}(s)) &\leq \kappa(\mu) \left(\sqrt[4]{\mathsf{S}_{\mu}(\varrho_{E}(s),\sigma_{E}(s))} + \sqrt[4]{\mathsf{S}_{\mu}(\varrho(s),\varrho_{s}(s)\otimes\varrho_{E}(s))} + \sqrt[4]{\mathsf{S}_{\mu}(\sigma(s),\sigma_{s}(s)\otimes\sigma_{E}(s))}\right) \end{split}$$

where

$$\kappa(\mu) = 1 / \sqrt[4]{2\mu^2 \log^3(1/\mu)}$$

with minimum value

$$\kappa = (4e^3/27)^{1/4} \approx 1.31$$
 at $\mu = e^{-3/2}$

[Megier, Smirne & B.V., PRL 2021]

Symmetrized telescopic relative entropy

Boundedness of telescopic relative entropy makes it natural to symmetrize

$$\bar{\mathsf{S}}_{\mu}(\varrho,\sigma) = \frac{1}{2} \left(\mathsf{S}_{\mu}(\varrho,\sigma) + \mathsf{S}_{\mu}(\sigma,\varrho) \right)$$

Special value $\mu = 1/2$ recovers quantum Jensen-Shannon divergence

$$\bar{\mathsf{S}}_{\mu}(\varrho,\sigma) \equiv \mathsf{J}(\varrho,\sigma) = \frac{1}{2} \left(S\left(\varrho,\frac{\varrho+\sigma}{2}\right) + S\left(\sigma,\frac{\varrho+\sigma}{2}\right) \right)$$

Square root of divergence recently proven to be distance

$$\sqrt{J(\varrho, \sigma)} - \sqrt{J(\varrho, \tau)} \leqslant \sqrt{J(\sigma, \tau)} \qquad \phi(x) = x$$
$$\sqrt{J(\varrho, \sigma)} - \sqrt{J(\eta, \sigma)} \leqslant \sqrt{J(\varrho, \eta)} \qquad \phi(x) = x$$

[Virosztek, AdvMat 2021; Sra, LinAlgAppl 2021]

Entropic bound on information flow

Quantum Jensen-Shannon divergence

For the symmetrised case and $\mu = 1/2$ taking the square root we can further improve using distance property

$$\sqrt{\mathsf{J}(\varrho_{s}(t),\sigma_{s}(t))} - \sqrt{\mathsf{J}(\varrho_{s}(s),\sigma_{s}(s))} \leqslant \sqrt{\mathsf{J}(\varrho_{E}(s),\sigma_{E}(s))} + \sqrt{\mathsf{J}(\varrho(s),\varrho_{s}(s)\otimes\varrho_{E}(s))} + \sqrt{\mathsf{J}(\sigma(s),\sigma_{s}(s)\otimes\sigma_{E}(s))}$$

Square root of quantum Jensen-Shannon divergence provides entropy based divergence sharing distance behavior of trace distance but sensitive to non-unital contribution

Dephasing spin star model

Revival due to correlations only

Spin star model

$$H_I = \sum_k g_k \sigma_z \otimes \sigma_z^k$$

Jaynes-Cummings model

Divergences and bounds comparison

Two-level system interacting with a bosonic mode

$$H_I = g(\sigma_+ \otimes a + \sigma_- \otimes a^{\dagger})$$

Phase-covariant dynamics

Behavior with respect to translations

Qubit phase covariant dynamics with long-lasting oscillations in non-unital component

$$\varrho(t) = \frac{1}{2} \Big[1 + r(t)\sigma_z + \eta_{\perp}(t)(v_x\sigma_x + v_y\sigma_y) + \eta_{\parallel}(t)v_z\sigma_z \Big] \quad v_i = \text{Tr}\{\sigma_i \varrho(0)\}$$

Avoid resorting to Generalized trace distance

$$|p_1 - p_2| \le ||p_1 \rho_1 - p_2 \rho_2|| \le 1$$

$$p_1, p_2 \ge 0, \quad p_1 + p_2 = 1$$

[Chruscinski, Kossakowski & Rivas, PRA 2011; Wißmann, Breuer & B.V., PRA 2015]

- Information viewpoint on non-Markovianity in open quantum systems
- Entropic bounds on information flow
- Reduced vs microscopic dynamics

Reduced vs microscopic description

Relevance and role of microscopic description

Quantum information viewpoint on quantum non-Markovianity based on local observations

Local signature of microscopic dynamics

[Tamascelli, Smirne, Huelga & Plenio, PRL 2018; Smirne, Megier & B.V., QUANTUM 2021]

Reduced vs microscopic description

Different system-environment interaction

Consider system coupled to the same environment initialized in different states, with different coupling terms

$$H_{SE} = H_S + H_E + H_I \qquad \qquad \varrho_E(0)$$
$$H_{SE} = H_S + \bar{H}_E + \bar{H}_I \qquad \qquad \bar{\varrho}_E(0)$$

Same reduced dynamics

Constrain reduced dynamics to be the same for all initial system states

$$\operatorname{Tr}_{E} \{ U_{SE} \varrho_{S}(0) \otimes \varrho_{E}(0) U_{SE}^{\dagger} \} = \operatorname{Tr}_{E} \{ \overline{U}_{SE} \varrho_{S}(0) \otimes \overline{\varrho}_{E}(0) \overline{U}_{SE}^{\dagger} \}$$
$$\forall \varrho_{S}(0) \in \mathcal{S}(\mathscr{H})$$

[Smirne, Megier & B.V., QUANTUM 2021]

Simplify setting to obtain exact result

$$H_{I} = \sum_{n} |n\rangle \langle n| \otimes B_{n} \qquad \bar{H}_{I} = \sum_{n} |n\rangle \langle n| \otimes \bar{B}_{n}$$

Condition for same reduced dynamics becomes

$$\mathrm{Tr}_{E}\mathrm{e}^{-iBt}\varrho_{E}(0) = \mathrm{Tr}_{E}\mathrm{e}^{-i\bar{B}t}\bar{\varrho}_{E}(0) \iff \mathrm{Tr}_{E}B^{k}\varrho_{E}(0) = \bar{B}^{k}\bar{\varrho}_{E}(0)$$

Satisfied for the choice

$$\begin{split} \rho_E(0) &= \frac{1}{2} \left(1 + \alpha \cdot \sigma \right) & B = g \eta \cdot \sigma \\ \bar{\rho}_E(0) &= \frac{1}{2} \left(1 + \bar{\alpha} \cdot \sigma \right) & \bar{B} = g \bar{\eta} \cdot \sigma \end{split} \qquad \Longleftrightarrow \qquad \alpha \cdot \eta = \bar{\alpha} \cdot \bar{\eta} \end{split}$$

[Smirne, Megier & B.V., QUANTUM 2021]

Generalized dephasing model

NFN

- Non-Markovianity and quantum info viewpoint
- Divergences of distance and entropic type
- Telescopic entropy and Jensen-Shannon
- Same reduced dynamics with different interactions and bath

N. Megier, A. Smirne and B. Vacchini Entropic bounds on information backflow arXiv:2101.02720 to appear in PRL

A. Smirne, N. Megier and B. Vacchini On the connection between microscopic description and memory effects in open quantum system dynamics <u>arXiv:2101.07282</u> Quantum, **5** 439 (2021)

Thanks for your attention!

Unimi N. Megier A. Smirne

Collaborations H.-P. Breuer S. Campbell

UNIVERSITÀ DEGLI STUDI di Milano

