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New physics!!

1/24



New “physics”??
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The Second Law is special

“The law that entropy always increases holds, I think,

the supreme position among the laws of Nature. [. . . ]

If your theory is found to be against the Second Law of

Thermodynamics I can give you no hope; there is nothing

for it to collapse in deepest humiliation.”

A.S. Eddington

“[. . . ] the only physical theory of universal content con-

cerning which I am convinced that, within the framework

of the applicability of its basic concepts, it will never be

overthrown.” A. Einstein
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Have you read a work of Shakespeare’s?

“Once or twice I have been provoked and have

asked the company how many of them could

describe the Second Law of Thermodynamics.

The response was cold: it was also negative.

Yet I was asking something which is about the

equivalent of: Have you read a work of Shake-

speare’s?” C.P. Snow
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The “to be or not to be” of thermodynamics

Clausius Inequality

〈∆Stot〉≥ 0

Why should the above inequality be so “special”? What does it

really say?

That is the question.
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That is the question!

“ No one understands entropy

very well.”

von Neumann (apocryphal)
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The Second Law “without entropy”

Clausius’ inequality (1865):

〈W 〉 ≥ ∆F

Jarzynski’s equality (1997):〈
e−βW

〉
= e−β∆F

Jarzynski =⇒ Clausius
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The Second Law and irreversibility

Crooks’ fluctation theorem (1999)

PF (W )

PR(−W )
= eβ(W−∆F )

Crooks =⇒ Jarzynski =⇒ Clausius
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Usual explanation

Crooks’ theorem, and hence Jarzynski’s relation, and hence the

Second Law, all rely on two assumptions satisfied at equilibrium:

1. thermal equilibrium: initial distribution is P (ξ) ∝ e−βε(ξ)

2. microscopic reversibility: molecular processes and their

reverses occur at the same rate
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But, again: why does the Second Law

feel so “special” then?

Is that because of some kind of “special”

microscopic balancing mechanism?
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A hint from Ed Jaynes

“To understand and like thermo

we need to see it, not as an ex-

ample of the n-body equations of

motion, but as an example of the

logic of scientific inference.”

E.T. Jaynes (1984)

First idea: reverse process as Bayesian retrodiction
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The Bayes-Laplace Rule

Inverse Probability Formula

P(H|D)︸ ︷︷ ︸
inv. prob.

∝ P(D|H)︸ ︷︷ ︸
likelihood

P(H)︸ ︷︷ ︸
prior

where H is a hypothesis, D is the result

of observation (i.e., evidence)

postmodern Bayesianism!
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Meanings of the inverse probability

• it is the main tool of Bayesian statistics for problems like:

◦ estimation (e.g.: how many red balls are in an urn?)

◦ decision (e.g.: is ACME’s stock a good investment? should I

buy some?)

◦ predictive inference (e.g.: weather forecasts)

◦ retrodictive inference (e.g.: what kind of stellar event

possibly caused the Crab Nebula?)

• it measures the degree of belief that a rational agent should have

in one hypothesis, among other mutually exclusive ones, given the

data
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Noisy data and uncertain evidence

BUT! Bayes-Laplace Rule does not tell us how to update the prior

in the face of uncertain data...

• suppose that a noisy observation suggests a probability

distribution Q(D) for the data (e.g., the license plate no.)

• how should we update our prior P(H) given uncertain

evidence in the from Q(D)? 13/24

Jeffrey’s rule of probability kinematics

Vanilla Bayes:

P(H|D) = P(D|H)P(H)/P(D)

Extended Bayes:

P(H|Q(D)) =?

Jeffrey’s conditioning∗ (1965)

P(H|Q(D)) =
∑
D

P(H|D)︸ ︷︷ ︸
inv. prob.

Q(D)

=
∑
D

P(D|H)P(H)∑
H P(D|H)P(H)

Q(D)

∗ Jeffrey’s rule was introduced ad hoc, but it can be proved from Bayes-Laplace Rule and

Pearl’s method of virtual evidence (1988) 14/24



Construction of the reverse process

• physical setup:

◦ a stochastic transition rule: ϕ(y|x)

◦ a steady (viz. invariant) state:
∑

x ϕ(y|x)σ(x) = σ(y)

• Bayesian inversion at the steady state:

σ(y)ϕ̂(x|y) := σ(x)ϕ(y|x) ⇐⇒ ϕ(y|x)

ϕ̂(x|y)
=
σ(y)

σ(x)

• two priors:

◦ predictor’s prior: p(x)

◦ retrodictor’s prior q(y)

• two processes:

◦ forward process (prediction): PF (x, y) = ϕ(y|x)p(x)

◦ reverse process (retrodiction): PR(x, y) = ϕ̂(x|y)q(y)
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A picture

• at the steady state: prediction = retrodiction

• otherwise: asymmetry (irreversibility, irretrodictability)
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Measures of statistical divergence

Second idea: fluctuation relations as measures of statistical

divergence between PF (x, y) and PR(x, y)

• relative entropy:

D(PF‖PR) :=
〈
− ln PR(x,y)

PF (x,y)

〉
F

=: 〈− ln r(x, y)〉F

 more generally, one can use Df (PR‖PF ) := 〈f(r(x, y))〉F

• introduce probability density functions

 Ω(x, y) := f(r(x, y))

 µF (ω) :=
∑
x,y δ[ω − Ω(x, y)] PF (x, y)

 µR(ω) :=
∑
x,y δ[ω − Ω(x, y)] PR(x, y)

=⇒ 〈ω〉F = Df (PR‖PF )
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From f-divergences to f-fluctuation theorems

• for f : R+ → R invertible

f-Fluctuation Theorem

µR(ω) = f−1(ω)µF (ω) =⇒ 〈f−1(ω)〉F = 1

 for f(u) = − lnu, we have f−1(v) = e−v, that is

µF (ω)

µR(ω)
= eω =⇒

〈
e−ω
〉
F

= 1

further discussions in arXiv:2009.02849
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Examples

Example: driven Hamiltonian evolution

• driving protocol: H(0)→ H(t)→ H(τ)

• H(0) =
∑
x εxπx, H(τ) =

∑
y ηyπ

′
y

• ϕ(y|x) = δy,y(x), i.e., one-to-one

• σ(x) = d−1 =⇒ ϕ(y|x) = ϕ̂(x|y)

• p0(x) = eβ(F−εx), qτ (y) = eβ(F
′−ηy)

In this case, for the choice f(u) = − lnu,

Ω(x, y) = ln
PF (x, y)

PR(x, y)
= ln

σ(y)p(x)

σ(x)q(y)
= ln

p(x)

q(y)

= β(F − εx + F ′ + ηy) = β(W −∆F )

=⇒ µF (W )

µR(W )
= eβ(W−∆F )
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Example: nonequilibrium steady states

• stochastic process ϕ(y|x) with non-thermal steady state σ(x)

• thermal equilibrium priors: p(x) = q(x) ∝ e−βεx

• fluctuation variable (total stochastic entropy production):

ω = ln PF (x,y)
PR(x,y) = ln p(x)

q(y)
σ(y)
σ(x) = β(εy − εx) + (lnσ(y)− lnσ(x))

• nonequilibrium potential : V (x) := − 1
β lnσ(x) (e.g., Manzano&al

2015)

•
〈
eβ(∆E−∆V )

〉
F

= 1, but
〈
eβ∆E

〉
F

= “efficacy”

• =⇒ nonequilibrium potentials (usually introduced ad hoc) are

understood here as remnants of Bayesian inversion
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But why known relations are compatible

with Bayesian inversion?

Is that a necessity?
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Sketch argument

• D(PF‖PR) =
〈

ln PF (x,y)
PR(x,y)

〉
F

• let us impose that the fluctuation variable is a microstate

function: ln PF (x,y)
PR(x,y)

= Ω(x, y)
!

= F ′(y)− F (x)

• =⇒ PF (y|x)
PR(x|y) = G′(y)

G(x)

• =⇒ G(x)PF (y|x) = G′(y)PR(x|y)

• sum over x =⇒ G′(y) =
∑

xG(x)PF (y|x)

• =⇒ PR(x|y) = 1∑
xG(x)PF (y|x)

G(x)PF (y|x)

Hence, a Bayesian inverse-like form for the reverse process is

inevitable if we want the (total stochastic) entropy production to

be a microstate function!
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What about the quantum case?
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Quantum retrodiction and the Petz map

• assume ϕ(y|x) = Tr[Πy E(ρx)]

• let σ(x) be invariant distribution

• according to the formalism of quantum

retrodiction:

◦ Σ :=
∑

x σ(x)ρx

◦ ρ̂y := 1
σ(y)

√
E(Σ)Πy

√
E(Σ)

◦ Π̂x := σ(x) 1√
Σ
ρx

1√
Σ

◦ Ê(·) :=
√

Σ

{
E†
[

1√
E(Σ)

(·) 1√
E(Σ)

]}√
Σ

• Bayesian inversion works seamlessly

ϕ̂(x|y) = Tr[Π̂x Ê(ρ̂y)]
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Some remarks

• the Petz recovery map is a form of quantum Bayes–Laplace

rule

• to a unique Bayes–Laplace rule there correspond infinite

possible “rotated” Petz maps

• retrodiction (both classical and quantum) depends on the

choice of reference prior

• exceptions are unitary channels, for which:

1. there is a unique Petz reverse (the retrodiction is independent

of the choice of prior, and all rotated Petz maps coincide)

2. retrodiction and (linear) inversion coincide
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Conclusions

Three messages:

• the Second Law is special among the laws of physics, because

it is in fact a law of logic

• retrodiction as the logical foundations of fluctuation theorems

• quantum retrodiction also follows seamlessly using Petz

recovery map

thank you
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