General results.— We are now in the position to define the
the central mathematical object of this paper: geometric al-
gebra anti-correlator (GAAC) by
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The geometrical meaning of GAAC should be evident from
Eq. (2): the larger G_4(U) the smaller is the intersection be-
tween A’ and its unitarily evolved image U(.A’) [20]. Alge-
braically, (2) measures how much the symmetries of the gen-
eralized quantum subsystem associated to A are dynamically
broken by the channel /. From Eq. (2 it easily follows

Proposition 1. i) G4(U) =0 UA) = A" < U(A) =
A. In words: the GAAC Egq. (2) vanishes if and only if both
algebras A and A’ are invariant under U i.e., there is no

algebra scrambling. ii) If the pair (A, A") is collinear then
GaU)=Ga (U), (VU).

Proposition 2.
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In words: the GAAC measures the (squared and normalized)
distance between the algebra A’ and its image U(A").
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tions. In fact, a short manipulation of Eq. (4) shows that
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1) Now we consider a bipartite quantum system with H =
Ha@Hpand A = L(H 4) ® 15 and, therefore, A’ = 14 ®

(HB) In this case one finds that P 4/ (X) = l ®Tra(X),

Qq = 1s the swap operator between the A

factors in 7—[®2 and dx = dimHx (X = A, B). Using Eq.
(4) one gets

GalU)=1- E<SAA’ UP?(Saar)), (7)
where d = dgds = dimH. The same relation is true with
SAA’ — SBB’ = SSAA/ = dAQ_A.

Eq. (7) coincides exactly with he averaged OTOC discussed
in [9] ie., d "Excayvea [|[X, UY)]||3] (here E denotes
an Haar average over the unitary groups of A and A’.). Re-
markably, this quantity was shown to be equal to the operator
entanglement [6, 22] of the unitary U. The latter concept (and
variations thereof) has found important applications to a vari-
ety of quantum information-theoretic problems [7, 23-26]

2) Let Ap the algebra of operators which are diagonal
with respect to an orthonormal basis B := {[i)}{_; i.e.,
A = C{II; := |i)(i|}¢_,. This is a d-dimensional maximal
abelian subalgebra of L(7) such that A = A’. In this case
Py (X) = Zle IT, XTI;, Q4 = Zle HZ@ 2 and, using Eq.
(4) again, one finds
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This relation shows that in this case the GAAC is nothing but
the coherence generating power (CGP) of U defined as the
average coherence (measured by the the sum of the square of
off-diagonal elements, with respect B,) generated by U start-
ing from any of the pure incoherent states Il i.e., G4, (U) =



%Z?ﬂ |QpU(11;)||3, where Q = 1 — P4, is the projec-
tor onto the orthogonal complement of Ag. [10, 21].

5) Let |¢)) € H and IT = [¢))(¢)|. We define Apg= C{1, II}
The commutant A’ . is the algebra of operators leaving the
subspace C|) and its orthogonal complement invariant, d(.A’
rg) = (d—1)?+1.One has, Q 4, ,= I®? + (1 —11)® ? and,
using (4), one finds
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where £ := |(y|U]y)| is the Loschmidt echo. Notice,
Gua,p(U) = 2(1 — £?) + O(1/d?) and that 2(1 — £?) =
|TT — U(I1)||3. That is to say : the distance between the
algebras A’ . and its image U(A’ ), as captured by the
GAAC [see Eq. (3)], in high dimension is directly related to
the Hilbert-Schmidt distance between the states 1T and ¢/ (11).
From Eq. (11) one can see that the GAAC is a monotonic
decreasing function of £ for d > 4 and that L = 1 =

G.ALE (U) = 0[29]

Proposition 4. i)

1 1
GA(U) <min{l — ——,1—
i) if d(A") < d(A) then the bound above is achieved iff
PoUP 4 =T where T : X Tr(X)%. iii) If A’ is Abelian
the bound 1 — ﬁ is always achieved. iv) In the collinear
case ii) and iii) above hold true with A <+ A’.

}=:Gup(A) (12)



Proposition 5.

) Gay = (EodA)EA) — 1)

ii) Proby [\GA(U) —GA(U) | > e} < exp[—25].

iii) In the collinear case Gyp(A) — GA(U)U = 0(1/d) and
Proby [Gup(A) — G4(U) > d~1/3] < exp[—ldg%].

In ii) and iii) one can choose K > 40.

Proposition 6. GA(Ut)t < GA(Ut)NRC < GA(U)Uwhere
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Ry = [Pa(100)(Tel)I3, Ry = (Par(IL), P (L)),
and (R(Da))lk = 5lle(,(:), (I,k = 1,...,d). Moreover, the
first inequality in i) becomes an equality if H fulfills the so-
called Non Resonance Condition (NRC)[30]

In fact, it is rather tempting to define A-chaotic the dynam-
ics generated by U,’s such the (relative) difference between
its infinite-time average and the Haar-average of the GAAC
is approaching zero sufficiently fast as the system dimension

grows. More formally,

| = G0 JGA(U) = e=0@d™) (v>1). (17




In particular, in the collinear case, this condition would allow
one to prove the “equilibration” result for the GAAC (16).
The intuition behind this definition is quite simple: if Eq. (17)
holds the long time behavior of the GAAC gets, as the system
dimension grows, quickly indistinguishable from the one of a
typical Haar random unitary.

Before concluding, we would like to illustrate A-chaos with

—=t
the simple Loschmidt case 5). Here one has ¢ = £ +
O(1/d) where L; = [{()|U¢|t))|. The infinite-time average
is given by the purity of the Hamiltonian dephased state

£%t = HZ/It(]w(M)tH% [32] Whence the "chaoticity" condi-
tion is achieved if this purity is O(1/d) which in turn implies
that the dephased state is O(1/d) away from the the maxi-
mally mixed state. Interestingly, this condition is known to

be a sufficient one for temporal equilibration of many observ-
ables with initial state |) [32, 33]

Conclusions.— In this paper we have proposed a novel ap-
proach to quantum scrambling based on algebras of observ-
ables. A quantitative measure of scrambling for is introduced
in terms of anti-correlation between the whole algebra and its
(unitarily) evolved image.

This quantity, which we named the Geometric Algebra Anti
Correlator (GAAC) has a clear geometrical meaning as it de-
scribed the distance between the algebras or, equivalenty, the
degree of self-orthogonalization induce by the dynamics.

We explicitly computed the GAAC for several physically mo-
tivated cases and characterized its behavior in terms of typical
values, upper bounds and temporal fluctuations.

One of the main result is to show that the the GAAC for-
malism generalizes concepts like operator entanglement, av-
eraged bipartite OTOC, coherence power and Loschmdt echo.
Finally, we suggested a GAAC based approach to quantum
chaos in terms of the asymptotic behavior of GAAC for large
system dimension. To prove the effectiveness of such and
approach is one of the challenges of future investigations.



