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In this paper we describe a unified algebraic/geometrical approach to quantum scrambling. Generalized
quantum subsystems are described by a ⇤-closed subalgebra of operators A evolving through a unitary channel.
Quantum scrambling defined by how the associated physical degrees of freedom get mixed up with others by the
dynamics. This is accomplished by introducing a quantity,the geometric algebra anti-correlator (GAAC), which
measures the the lack of intersection between the commutant of A and its dynamically evolved image. This
approach extends the notions of: averaged bipartite OTOC, operator entanglement, coherence generating power
and Loschmidt echo. Each of these concepts is indeed recovered by a special choice of A. We compute typical
values of GAAC for random unitaries, we prove upper bounds and characterize the situations in which they are
achieved. Finally, for a Hamiltonian systems we find bounds and expressions for the infinite-time average of
the GAAC and its temporal fluctuations which encode the relation between the algebra A and the full system of
Hamiltonian eigenstates. A notion of A-chaoticity is suggested.

Introduction.— Quantum dynamics can quickly spread infor-
mation which is initially encoded in some physical degrees
of freedom to a larger set of degrees of freedom, in this way
quantum information gets delocalized and highly non-local
correlations can be built. This so-called quantum scrambling,
has over the last few years attracted a growing amount of
attention in the context of quantum chaos REFS rand also
quantum computing REFS. The Out of Time Order Correla-
tion functions (OTOCs) are among the most popular tools to
analyze scrambling from a quantitative point view REFS.

The underlying philosophy of this paper is an extension of
the observable-algebra approach to quantum subsystems orig-
inally advocated in [1, 2] (see also recent developments in
[3, 4]). As such the strategy can be applied to situations in
which there is no an a priori locality structure which gives a
natural way of defining subsystems e.g., see [5] in the context
of quantum gravity. Roughly speaking, we will characterize
scrambling by how much a whole set of distinguished degrees
of freedom gets orthogonal to itself by unitary evolution.

The goal of this paper is to lay down this novel formalism
for quantum scrambling. In particular, we will show that spe-
cific instances of it allows one to recover apparently different
concepts including operator entanglement [6, 7], averaged bi-
partite OTOCs [8, 9], coherence generating power [10], and
Loschmidt echo [11, 12]. This conceptual unification pro-
vides one of the main motivations for this work.

Preliminaries.— In this section we introduce the main in-
gredients of the formalism utilized in this paper and to set
the notation. Let H = span{|mi}

d

m=1 be a d-dimensional
Hilbert space and L(H) its the full operator algebra [13]. The
key formal ingredients of this investigation are ⇤-closed sub-

algebras A ⇢ L(H) and their commutants A
0 := {X 2

L(H) / [X, Y ] = 0, 8Y 2 A}. The intersection A \ A
0 =:

Z(A) is the center of the algebra A. Associated to any al-
gebra A we have an orthogonal (super) projection CP-map:
P†

A
= PA, P2

A
= PA and ImPA = A [14].
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The fundamental structure theorem of these objects states that
the Hilbert space breaks into a direct sum of dZ := dimZ(A)
orthogonal blocks and each of them has a tensor product bi-
partite structure: H = �JHJ , HJ ,⇠= CnJ ⌦CdJ . Moreover,

A ⇠= �J11nJ ⌦ L(CdJ ), A
0 ⇠= �JL(C

nJ )⌦ 11dJ . (1)

Whence, d =
P

J
nJdJ , dimA =

P
J
d2
J

=: d(A) and
dimA

0 =
P

J
n2
J
=: d(A0). Also, Z(A) = C{⇧J := 11nJ⌦

11dJ}, namely the center of A is spanned by the projections
over the HJ blocks.

These structural results provide the mathematical underpin-
nings of the theory of decoherence-free subspacs [15, 16],
noiseless subsystems [17, 18] and in general to all quantum-
information stabilizing techniques [18]. From the physical
point of view two special cases are worth emphasizing:

Factors: Z(A) = C11, in this case H ⇠= Cn1 ⌦Cd1 namely
the A endows H with a bipartition into virtual subsystems
[1, 2]. The case in which H = HA⌦HB with A = L(HA)⌦
11B and A

0 = 11A ⌦ L(HB) clearly falls in this category.

Super-Selection: A
0
⇢ A this is when the commutant is

an Abelian algebra. This implies nj = 1, (8J) and there-
fore the the Hilbert space breaks into dJ -dimensional super-

selection sectors i.e., H ⇠= �
d(A0)
J=1 HJ , HJ

⇠= CdJ and
A ⇠= �

d(A0)
J=1 L(CdJ ). If A is a maximal abelian subalgebra

one has A = A
0 and nJ = dJ = 1, (8J). This is the case

that is relevant to the study of quantum coherence and its dy-
namical generation [10, 19].

When the dZ-dimensional (integer-valued) vectors d :=
(dJ)J , and n := (nJ)J are proportional to each other i.e.,
d = �n one has that d2 = d(A)d(A0). If this is the case we
shall say that the pair (A, A0) is collinear. Note that both
factors and maximal abelian subalgebras are of this type.

General results.— We are now in the position to define the
the central mathematical object of this paper: geometric al-

gebra anti-correlator (GAAC) by

GA(U) := 1�
hPA0 , PU(A0)i

kPA0k2
HS

. (2)

2

The�geometrical�meaning�of�GAAC�should�be�evident�from�
Eq.� (2):� the�larger�GA(U)�the�smaller�is�the�intersection�be-
tween�A0� and�its�unitarily�evolved�image�U(A0)�[20].� Alge-
braically,�(2)�measures�how�much�the�symmetries�of�the�gen-
eralized�quantum�subsystem�associated�to�A�are�dynamically�
broken�by�the�channel�U .�From�Eq.�(2�it�easily�follows

Proposition�1.� i)�GA(U)�=�0�,�U(A0)�=�A0�
,�U(A)�=�

A.�In�words:� the�GAAC�Eq.� (2)�vanishes�if�and�only�if�both�
algebras�A� and�A0�

are� invariant� under�U� i.e.,� there� is� no�
algebra�scrambling.� ii)�If�the�pair�(A,�A0)�is�collinear�then�
GA(U)�=�GA0�(U),�(8U).

Proposition�2.

GA(U) =
1

2

D2 (A0, U(A0))

d(A0)
(3)

In words: the GAAC measures the (squared and normalized)

distance between the algebra A
0

and its image U(A0).

The definition of GAAC given by Eq. (2) has the drawback of
relying of superoperator projections and therefore may seem
somewhat abstract and removed from practical calculations.
Hence, before moving on to physical examples and appli-
cations of our formalism, we would like to re-express the
GAAC at the more familiar operator level.

Proposition 3. One can find an orthogonal basis of A

{e↵}
d(A)
↵=1 and an orthonormal basis of A

0
{f↵}

d(A0)
↵=1 such that

1�GA(U) =
h⌦A, U⌦ 2(⌦A)i

k⌦Ak
2
2

=
h⌦̃A, U⌦ 2(⌦̃A)i

k⌦̃Ak
2
2

(4)

where ⌦A :=
P

d(A)
↵=1 e↵ ⌦ e†

↵
, and ⌦̃A =

P
d(A0)
↵=1 f↵ ⌦ f†

↵
.

Also, ⌦̃A = S⌦A, where S is the swap operator on H
⌦ 2,

and k⌦Ak
2
2 = k⌦̃Ak

2
2 = d(A0).

Note that, in the above proposition, all the (Hilbert-Schmidt)
scalar products and norms are ordinary operators ones. More-
over, the ⌦’s operator can be expressed in the same way if the
bases e↵’s and f↵’s are replaced by unitarily equivalent ones.
The connection between Eqs (2) and (4) is provided by the
relations

PA0(X) = Tr1 (S⌦A(X ⌦ 11)) = Tr1
⇣
⌦̃A(X ⌦ 11)

⌘
. (5)

Interestingly, the no-scrambling condition GA(U) = 0 using
Prop. 3 can be expressed by the operator fixed-point equa-
tions U

⌦ 2(⌦A) = ⌦A. The (unsurprising) price to pay is
that now the Hilbert space is doubled.

Another advantage of Prop. 4 is that it makes clear that the
GAAC can be computed in terms of 2-point correlation func-
tions. In fact, a short manipulation of Eq. (4) shows that

1�GA(U) =
1

d(A0)

d(A)X

↵,�=1

|he↵, U(e�)i|
2, (6)

(a similar expressions hold for the f↵’s). This expression sug-
gests how one could measure the GAAC by resorting to pro-
cess tomography for U . Notice also that operational protocols
to measure the GAAC were already discussed, for the cases
1) and 2) here below, in [9] and [10] respectively.

Physical Cases.— To concretely illustrate the formalism let
us now consider several physically motivated examples. The
first two show how the GAAC formalism allows one to un-
derstand two ostensibly unrelated physical problems: average
bipartite OTOC [8, 9] [which coincides with operator entan-
glement [6]] and coherence generating power (CGP) of a uni-
tary U, [10, 21] from a single vantage point. This means that
one can also think of the GAAC either as an extension of op-
erator entanglement to algebras that are not factors, or as an
extension of coherence generating power to algebras that are
not maximally abelian.

The third and fourth examples are "dual" to each other and
show that, in general, GA(U) 6= GA0(U). Finally, the fifth
illustrates in which sense even the concept of Loschmidt echo

is comprised by the GAAC. This last connection is somewhat
unsurprising as the Loschmidt echo is indeed a measure of
auto-correlation of a dynamicaly evolving state which is pre-
cisely what 1�GA(U) does at the more genearl algebra level.

1) Now we consider a bipartite quantum system with H =
HA⌦HB and A = L(HA)⌦ 11B and, therefore, A0 = 11A⌦

L(HB). In this case one finds that PA0(X) = 11
dA

⌦TrA(X),

⌦A = SAA0
dA

, where SAA0 is the swap operator between the A
factors in H

⌦ 2 and dX = dimHX (X = A,B). Using Eq.
(4) one gets

GA(U) = 1�
1

d2
hSAA0 , U⌦ 2(SAA0)i, (7)

where d = dBdA = dimH. The same relation is true with
SAA0 ! SBB0 = SSAA0 = dA⌦̃A.

Eq. (7) coincides exactly with he averaged OTOC discussed
in [9] i.e., d�1EX2A,Y 2A0

⇥
k[X, U(Y )]k22

⇤
(here E denotes

an Haar average over the unitary groups of A and A
0.). Re-

markably, this quantity was shown to be equal to the operator

entanglement [6, 22] of the unitary U. The latter concept (and
variations thereof) has found important applications to a vari-
ety of quantum information-theoretic problems [7, 23–26]

2) Let AB the algebra of operators which are diagonal
with respect to an orthonormal basis B := {|ii}d

i=1 i.e.,
A = C {⇧i := |iihi|}d

i=1. This is a d-dimensional maximal
abelian subalgebra of L(H) such that A = A

0. In this case
PA0(X) =

P
d

i=1 ⇧iX⇧i, ⌦A =
P

d

i=1 ⇧
⌦ 2
i

, and, using Eq.
(4) again, one finds

GAB (U) = 1�
1

d

dX

i,j=1

|hi|U |ji|4, (8)

This relation shows that in this case the GAAC is nothing but
the coherence generating power (CGP) of U defined as the
average coherence (measured by the the sum of the square of
off-diagonal elements, with respect B,) generated by U start-
ing from any of the pure incoherent states ⇧ i.e., GAB (U) =



2
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A. In words: the GAAC Eq. (2) vanishes if and only if both

algebras A and A
0

are invariant under U i.e., there is no

algebra scrambling. ii) If the pair (A, A0) is collinear then

GA(U) = GA0(U), (8U).

Let us now unveil further the geometrical nature of GAACs.
First notice that, using the algebra super-projections, one can
define a distance between two algebras A and B: D(A, B) :=
kPA � PBkHS . This metric structure allows one to draw a
quite simple geometrical picture of algebra scrambling.
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0. In this case
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i

, and, using Eq.
(4) again, one finds
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1
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This relation shows that in this case the GAAC is nothing but
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average coherence (measured by the the sum of the square of
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3

1
d

P
d

i=1 kQBU(⇧i)k22, where Q = 1 � PAB is the projec-
tor�onto� the�orthogonal� complement�of�AB .� [10,�21].�

5)�Let�| i�2�H�and�⇧�=�| ih |.�We�define�ALE�=�C{11,�⇧}�
The�commutant�A0

LE� is� the�algebra�of�operators� leaving� the�
subspace�C| i�and�its�orthogonal�complement�invariant,�d(A0

LE
)�=�(d�1)2�+1.�One�has,�⌦ALE�=�⇧⌦�2�+(11�⇧)⌦�2�and,�

using�(4),�one�finds

GALE (U) =
2(1� L

2)[d� 2(1� L
2)]

(d� 1)2 + 1
, (11)

where L := |h |U | i| is the Loschmidt echo. Notice,
GALE (U) = 2

d
(1 � L

2) + O(1/d2) and that 2(1 � L
2) =

k⇧ � U(⇧)k22. That is to say : the distance between the
algebras A

0

LE
and its image U(A0

LE
), as captured by the

GAAC [see Eq. (3)], in high dimension is directly related to
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From Eq. (11) one can see that the GAAC is a monotonic
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Upper bounds and Expectations.— What are the bounds to al-
gebra scrambling as measured by the GAAC? Now we would
like to answer this question and to see whether and how those
bounds might be saturated.
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and intuitive: maximal scrambling is achieved when, from
the point of view of the commutant, the dynamics generated
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supported in A

0 are, quite properly, fully scrambled.

Let us now briefly discuss Prop. (4) for the physical cases
1–5). In the bipartite example 1), if dA = dB , then (12)
is achieved for U = S (swap) [9] . In the maximal
abelian case 2) the bound 1 � d�1 is saturated by those U ’s
such that |hi|U |ji| = d�1/2, (8i, j) [10]. In case 3) from
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2 which is achieved for
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Proposition 5.

i) GA(U)
U

=
(d2 � d(A0))(d(A0)� 1)

d(A0)(d2 � 1)
(13)

ii) ProbU

h
|GA(U)�GA(U)

U

| � ✏
i
 exp[� d✏

2

4K2 ].

iii) In the collinear case GUB(A)�GA(U)
U

= O(1/d) and
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In ii) and iii) one can choose K � 40.
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(↵)
lk

, (l, k = 1, . . . , d). Moreover, the

first inequality in i) becomes an equality if H fulfills the so-

called Non Resonance Condition (NRC)[30]
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We find it remarkable that this results, which holds for
any observable algebra A, has the very same structure of
the corresponding one proved for the averaged bipartite
OTOC ( see Prop. 4 in [9]), A further simplification oc-
curs, as usual, for the collinear situation d = �n: R(0)

lk
=

��1
hPA(⇧l), PA(⇧k)i. In this case the following upper

bound for the infinite-time average holds:

GA(Ut)
NRC

 1�
1

d(A0)
�

1

d(A)
�

1

d d(A0)
. (15)

Interestingly, in the collinear case this bound is saturated
iff PA0(⇧l) = PA(⇧l) = 11

d
, (8l). Namely, Hamiltoni-

ans whose eigenstates are fully scrambled by the two alge-
bra projections correspond to maximal infinite-time averaged
GAAC. For these Hamiltonians infinite-time averages of ar-
bitrary observable are, from the the point of view of A and
A

0, completely randomized [31]. Conceptually, this seems
to us as a rather satisfactory way of characterizing chaoticity
relative the distinguished algebras of observables.

For example: In the bipartite case 1) with dA = dB the bound
(15) is achieved if the (non-degenerate) Hamiltonian has a
fully-entangled eigenstates [9]. In the maximal abelian alge-
bra case 2) the bound saturation corresponds to Hamiltonians
with eigenstates that have maximum coherence with respect
to the basis associated with A [10]. In both cases the RHS of
Eq. (15 is equal to (1� 1

d
)2 and GA(U)

U

�GA(Ut)
NRC

=
O( 1

d2 ). In these two important physical situations, assuming
that NRC holds, using iii) in Prop. (5) and the Markov in-
equality, one can bound temporal fluctuations of the GAAC:

Probt [GUB(A)�GA(Ut) � ✏]  O(
1

d ✏
), (16)

one sees e.g., by choosing ✏ = d�1/3,, that Hamiltonians
achieving bound (15) have, in high dimension, highly sup-
pressed temporal fluctuations below the value (12).

In [9] this concentration phenomenon has been numerically
observed for the bi-partite case in chaotic many-body systems
and not in integrable systems. For the same type of physical
systems, suppression of temporal variance of CGP has been
noticed in [28]. These findings were used to suggest that both
the bi-partite averaged OTOC and CGP can be used as diag-
nostic tools to detect some aspects of quantum chaotic behav-
ior. The results above show how this picture my extend to the
general algebraic setting developed in this paper.

In fact, it is rather tempting to define A-chaotic the dynam-
ics generated by Ut’s such the (relative) difference between
its infinite-time average and the Haar-average of the GAAC
is approaching zero sufficiently fast as the system dimension

grows. More formally,

1�GA(Ut)
t

/GA(U)
U

=: ✏ = O(d��) (� � 1). (17)

In particular, in the collinear case, this condition would allow
one to prove the “equilibration" result for the GAAC (16).
The intuition behind this definition is quite simple: if Eq. (17)
holds the long time behavior of the GAAC gets, as the system
dimension grows, quickly indistinguishable from the one of a
typical Haar random unitary.

Before concluding, we would like to illustrate A-chaos with
the simple Loschmidt case 5). Here one has ✏ = L

2
t

t

+
O(1/d) where Lt = |h |Ut| i|. The infinite-time average
is given by the purity of the Hamiltonian dephased state
L
2
t

t

= kUt(| ih |)
t

k
2
2 [32] Whence the "chaoticity" condi-

tion is achieved if this purity is O(1/d) which in turn implies
that the dephased state is O(1/d) away from the the maxi-
mally mixed state. Interestingly, this condition is known to
be a sufficient one for temporal equilibration of many observ-
ables with initial state | i [32, 33]

Conclusions.— In this paper we have proposed a novel ap-
proach to quantum scrambling based on algebras of observ-
ables. A quantitative measure of scrambling for is introduced
in terms of anti-correlation between the whole algebra and its
(unitarily) evolved image.

This quantity, which we named the Geometric Algebra Anti
Correlator (GAAC) has a clear geometrical meaning as it de-
scribed the distance between the algebras or, equivalenty, the
degree of self-orthogonalization induce by the dynamics.

We explicitly computed the GAAC for several physically mo-
tivated cases and characterized its behavior in terms of typical
values, upper bounds and temporal fluctuations.

One of the main result is to show that the the GAAC for-
malism generalizes concepts like operator entanglement, av-
eraged bipartite OTOC, coherence power and Loschmdt echo.
Finally, we suggested a GAAC based approach to quantum
chaos in terms of the asymptotic behavior of GAAC for large
system dimension. To prove the effectiveness of such and
approach is one of the challenges of future investigations.
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