Self-testing within the stabiliser formalism

Remigiusz Augusiak

Center forTheoretical Physics, Polish Academy of Sciences, Warsaw, Poland

F. Baccari, R.A., I. Šupić, J. Tura, A. Acín
PRL 124, 020402 (2020)

$$
\begin{gathered}
\text { F. Baccari, R.A., I. Šupić, A. Acín } \\
\text { PRL 125, } 260507 \text { (2020) }
\end{gathered}
$$

Preliminaries

- Bell scenario: N observers performing measurements on their shares of the state

Preliminaries

Nonlocality and Bell inequalities

- Local (classical) correlations

$$
\begin{gathered}
p(\vec{a} \mid \vec{x})=\sum_{\lambda} p(\lambda) p\left(a_{1} \mid x_{1}, \lambda\right) \cdot \ldots \cdot p\left(a_{N} \mid x_{N}, \lambda\right) \\
\forall_{a_{i}, x_{i}, \lambda} \quad p\left(a_{i} \mid x_{i}, \lambda\right) \in\{0,1\}
\end{gathered}
$$

λ - hidden variable

- Otherwise they are called nonlocal

$$
\mathcal{P}_{m, d} \subsetneq \mathcal{Q}_{m, d}
$$

Preliminaries

Nonlocality and Bell inequalities

- Bell inequalities: Hyperplanes constraining the local set

$$
\begin{aligned}
& I:=\sum_{\vec{a}, \vec{x}} \alpha_{\vec{a}, \vec{x}} p(\vec{a} \mid \vec{x}) \leq \beta_{C} \\
& \beta_{C}=\max _{\mathcal{P}_{m, d}} I \quad \text { (classical bound) } \\
& \beta_{Q}=\sup _{\mathcal{Q}_{m, d}} I \quad \text { (quantum bound) }
\end{aligned}
$$

Examples

Clauser, Horne, Shimony, Holt (1969);
Collins et al. (CGLMP) (2002);
Barrett, Kent, Pironio (BKP) (2006);

Bell inequalities

$$
I:=\sum_{\vec{a}, \vec{x}} \alpha_{\vec{a}, \vec{x}} p(\vec{a} \mid \vec{x})>\beta_{C}
$$

nonlocality

- Example: Clauser-Horne-Shimony-Holt (CHSH) Bell inequality

$$
\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle \leq 2
$$

- Example: Clauser-Horne-Shimony-Holt (CHSH) Bell inequality

$$
\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle \leq 2
$$

$$
\begin{gathered}
\text { Maximal quantum violation } \\
\left|\psi_{2}^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
A_{0}=X \quad B_{0}=\frac{1}{\sqrt{2}}(X+Z) \\
A_{1}=Z \quad B_{1}=\frac{1}{\sqrt{2}}(X-Z)
\end{gathered}
$$

mutually unbiased bases (MUB)

Non-locality

Non-locality is a resource for device-independent applications

- Quantum key distribution
[Ekert, PRL (1991); A. Acín et al., PRL (2007)]
- Randomness certification/amplification
[Pironio et al., Nature (2010); Colbeck, Renner, Nat. Phys. (2012)]
- Device-independent entanglement certification
[J.-D. Bancal et al., PRL (2011)]
- Self-testing
[Mayers, Yao, QIC (2004)]

Self-testing

- The idea of device-independent certification

Self-testing

- The idea of device-independent certification

- Given $\{p(\vec{a} \mid \vec{x})\}$
- or violation of some Bell inequality

$$
\sum_{\vec{a}, \vec{x}} \alpha_{\vec{a}, \vec{x}} p(\vec{a} \mid \vec{x})=\beta>\beta_{C}
$$

- deduce properties of the state $|\psi\rangle$ and the underlying measurements
- Self-testing:
$\exists_{U_{1}, \ldots, U_{N}}$
$\left(U_{1} \otimes \ldots \otimes U_{N}\right)|\psi\rangle=|\phi\rangle \otimes \mid$ aux \rangle
local isometries
the state we want to certify
- The idea of device-independent certification

- Given $\{p(\vec{a} \mid \vec{x})\}$
- or violation of some Bell inequality

$$
\sum_{\vec{a}, \vec{x}} \alpha_{\vec{a}, \vec{x}} p(\vec{a} \mid \vec{x})=\beta>\beta_{C}
$$

- deduce properties of the state $|\psi\rangle$ and the underlying measurements
- Self-testing:

$$
\exists_{U_{1}, \ldots, U_{N}}
$$

$$
\left.\left(U_{1} \otimes \ldots \otimes U_{N}\right)|\psi\rangle=|\phi\rangle \otimes \mid \text { aux }\right\rangle
$$

Seems like a hopeless task! but often one can deduce everything!

Self-testing

- Example: Self-testing from violation of the CHSH Bell inequality

$$
\begin{aligned}
& \left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle \leq 2 \sqrt{2} \\
& \exists U_{A}, U_{B} \\
& \left.\left.U_{A} \otimes U_{B}\left|\psi_{A B}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \otimes \right\rvert\, \text { aux }\right\rangle \\
& U_{A} A_{0} U_{A}^{\dagger}=X \otimes \mathbb{1} \quad U_{B} B_{0} U_{B}^{\dagger}=\frac{1}{\sqrt{2}}(X+Z) \otimes \mathbb{1} \\
& U_{A} A_{1} U_{A}^{\dagger}=Z \otimes \mathbb{1} \quad U_{B} B_{1} U_{B}^{\dagger}=\frac{1}{\sqrt{2}}(X-Z) \otimes \mathbb{1} \\
& X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Scalable Bell inequalities for graph states

F. Baccari, R.A., I. Šupić, J. Tura, A. Acín
PRL 124, 020402 (2020)

Stabilizer formalism

- N-qubit Pauli group

$$
\mathbb{G}_{N}=\left\{\lambda g_{1} \otimes \ldots \otimes g_{N} \mid g_{i} \in\{\mathbb{1}, X, Y, Z\} ; \lambda \in\{ \pm 1, \pm \mathrm{i}\}\right\}
$$

N-fold tensor products of the Pauli matrices

- Consider a subgroup

$$
\mathbb{S}_{N}=\left\langle G_{1}, \ldots, G_{k}\right\rangle \quad G_{i} \in \mathbb{G}_{N} \quad \begin{aligned}
& \text { - generators } \\
& \text { (independent elements of the group) }
\end{aligned}
$$

Stabilizer if it stabilizes a nontrivial subspace V in $\mathcal{H}_{N}=\left(\mathbb{C}^{2}\right)^{\otimes N}$

$$
\underset{|\psi\rangle \in V}{\forall} \quad \mathbb{S}_{N}|\psi\rangle=|\psi\rangle \quad \operatorname{dim} V=2^{N-k}
$$

Stabilizer formalism

- Necessary and sufficient condition

$$
\left.\begin{array}{c}
\forall_{G_{i}, G_{j} \in \mathbb{S}_{N}}\left[G_{i}, G_{j}\right]=0 \\
-\mathbb{1}_{2}^{\otimes N} \notin \mathbb{S}_{N}
\end{array}\right\} \Longleftrightarrow \mathbb{S}_{N} \text { - nontrivial stabilizer }
$$

- Applications:
- Quantum computing
- Quantum error correction
- Useful description of a class of multipartite systems

Graph states

- Multiqubit graph states $G=(V, E)$

$$
G_{i}=X_{i} \otimes \bigotimes_{j \in n(i)} Z_{j}
$$

- Graph state associated to a graph G :

$$
G_{i}\left|\psi_{G}\right\rangle=\left|\psi_{G}\right\rangle \quad i=1, \ldots, N
$$

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Graph states

- Multiqubit graph states $G=(V, E)$

$$
G_{i}=X_{i} \otimes \bigotimes_{j \in n(i)} Z_{j}
$$

- Graph state associated to a graph G :

$$
G_{i}\left|\psi_{G}\right\rangle=\left|\psi_{G}\right\rangle \quad i=1, \ldots, N
$$

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- A representative class of multiqubit entangled states
- GHZ states - multipartite cryptography

$$
\frac{1}{\sqrt{2}}\left(|0\rangle^{\otimes N}+|1\rangle^{\otimes N}\right)
$$

- Cluster states - quantum computing
- Absolutely maximally entangled states
- All stabilizer states are LU equivalent to graph states

CHSH-like Bell inequalities for graph states

- Step 1: Take a graph and the generators $G=(V, E)$

$$
G_{i}=X_{i} \otimes \bigotimes_{j \in n(i)} Z_{j}
$$

$$
n(1)=\max _{i=1, \ldots, N} n(i)
$$

- Step 2: Make a substitution

$$
\begin{array}{ll}
& \widetilde{G}_{i}=\widetilde{X}_{i} \otimes \bigotimes_{j \in n(i)} \widetilde{Z}_{j} \\
\widetilde{X}_{1}=A_{0}^{(1)}+A_{1}^{(1)} & \widetilde{X}_{i}=A_{0}^{(i)} \tag{j}\\
\widetilde{Z}_{1}=A_{0}^{(1)}-A_{1}^{(1)} & \widetilde{Z}_{i} \rightarrow A_{1}^{(i)} \quad i=2, \ldots, N
\end{array}
$$

arbitrary
± 1 observables

- Step 3: Construct Bell expression

$$
I_{G}:=\sqrt{2}|n(1)|\left\langle\widetilde{G}_{1}\right\rangle+\sqrt{2} \sum_{j \in n(1)}\left\langle\widetilde{G}_{j}\right\rangle+\sum_{j \notin n(1)}\left\langle\widetilde{G}_{j}\right\rangle
$$

Bell inequalities for graph states - example

- Example: the simplest graph

$$
\begin{array}{lrr}
G_{1}=X_{1} \otimes Z_{2} & 1 & 2 \\
G_{2}=Z_{1} \otimes X_{2} & &
\end{array}
$$

2-qubit maximally
entangled state

$$
\left|\psi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Step 2

$$
\begin{aligned}
X_{1} & \rightarrow \widetilde{X}_{1}=A_{0}+A_{1} \\
Z_{1} & \rightarrow \widetilde{Z}_{1}=A_{0}-A_{1}
\end{aligned} \quad X_{2} \rightarrow \widetilde{X}_{2}=B_{0}, \quad \Rightarrow \widetilde{Z}_{2}=B_{1} \quad\left\{\Rightarrow \begin{array}{l}
\widetilde{G}_{1}=\widetilde{X}_{1} \otimes \widetilde{Z}_{2} \\
\widetilde{G}_{2}=\widetilde{Z}_{1} \otimes \widetilde{X}_{2}
\end{array}\right.
$$

Step 3

$$
I_{G}=\left\langle\widetilde{G}_{1}\right\rangle+\left\langle\widetilde{G}_{1}\right\rangle=\left\langle\left(A_{0}+A_{1}\right) B_{0}\right\rangle+\left\langle\left(A_{0}-A_{1}\right) B_{1}\right\rangle \leq 2
$$

The CHSH Bell inequality

Bell inequalities for graph states

- Properties

\checkmark Number of expectation values linear in N
previous constructions

- exponential scaling
O. Gühne et al., PRL (2005)
- Analytical expressions for maximal classical and quantum values

$$
\begin{aligned}
& \beta_{G}^{C}=N+n_{\max }-1 \\
& \beta_{G}^{Q}=N+(2 \sqrt{2}-1) n_{\max }-1
\end{aligned}
$$

$$
\beta_{G}^{Q}>\beta_{G}^{C}
$$

for any connected graph

- sum-of-squares decomposition

$$
\left.\beta_{G}^{Q} \mathbb{1}-\mathcal{B}_{G}=\frac{|n(1)|}{\sqrt{2}}\left(\mathbb{1}-\widetilde{G}_{1}\right)^{2}+\frac{1}{\sqrt{2}} \sum_{j \in n(1)}\left(\mathbb{1}-\widetilde{G}_{j}\right)^{2}+\sum_{j \neq n(1)}\left(\mathbb{1}-\widetilde{G}_{j}\right)^{2}\right\} \operatorname{Tr}\left(\mathcal{B}_{G} \rho\right) \leq \beta_{Q}
$$

- optimal quantum realisation

$$
\begin{aligned}
A_{0 / 1}^{(1)} & =(X \pm Z) / \sqrt{2} \\
A_{0 / 1}^{(i)} & =X / Z \quad(i=2, \ldots, N)
\end{aligned}
$$

$$
\left\langle\psi_{G}\right| \mathcal{B}_{G}\left|\psi_{G}\right\rangle=\beta_{G}^{Q}
$$

Bell inequalities for graph states

\checkmark Self-testing of all graph states

$$
I_{G}=\beta_{G}^{Q} \quad\left\{\begin{array}{l}
|\psi\rangle \in\left(\mathbb{C}^{D}\right)^{\otimes N} \\
A_{j}^{(i)}
\end{array}\right.
$$

$$
\begin{gathered}
? \\
|\psi\rangle=\left|\psi_{G}\right\rangle
\end{gathered}
$$

sum-of-squares decomposition

$$
\widetilde{G}_{i}|\psi\rangle=|\psi\rangle \quad i=1, \ldots, N
$$

$$
\Downarrow
$$

$$
\left\{A_{0}^{(i)}, A_{1}^{(i)}\right\}=0 \quad\left[A_{j}^{(i)}\right]^{2}=\mathbb{1}
$$

$$
\Downarrow
$$

$$
U_{1} \otimes \ldots \otimes U_{N}|\psi\rangle=\left|\psi_{G}\right\rangle \otimes|\mathrm{aux}\rangle
$$

Bell inequalities for graph states

- We are not the first to provide Bell inequalities and self-testing methods for graph states
O. Gühne et al., Phys. Rev. Lett. (2005) G. Tóth et al., Phys. Rev. A (2006)

```
    M.McKague,
Lecture Notes in Computer Science (2014)
```

- But:
\checkmark Scalable Bell inequalities \longrightarrow minimal information?
- Maximal classical and quantum values direct to determine

```
\beta}\mp@subsup{\beta}{G}{Q}>\mp@subsup{\beta}{G}{C
```

, Self-testing

- Potentially robust
\checkmark Possible generalization to entangled subspaces

Recent experiment:
D. Wu et al., arXiv:2105.10298

Self-testing of genuinely entangled subspaces

F. Baccari, R.A., I. Šupić, A. Acín PRL 125, 260507 (2020)

Self-testing of subspaces

- What about stabilizer subspaces of higher dimension?

$$
\begin{gathered}
\mathbb{S}_{N}=\left\langle G_{1}, \ldots, G_{k}\right\rangle \quad \mathbb{S}_{N} V=V \\
\operatorname{dim} V=2^{N-k}
\end{gathered}
$$

- Can we construct Bell inequalities maximally violated by whole subspace?

$$
I_{\mathbb{S}}(|\psi\rangle)=\beta^{Q} \quad|\psi\rangle \in V
$$

genuinely entangled subspaces

$$
\begin{aligned}
\forall|\psi\rangle \in V & |\psi\rangle \text {-genuinely entangled } \\
& |\psi\rangle \neq\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle
\end{aligned}
$$

M. Demianowicz, RA, Phys. Rev. A (2020)

Self-testing of subspaces

- Example: five-qubit code $\mathcal{H}=\left(\mathbb{C}^{2}\right)^{\otimes 5}$

$$
\begin{gathered}
\mathbb{S}_{5}=\left\langle G_{1}, G_{2}, G_{3}, G_{4}\right\rangle \\
G_{1}=X_{1} Z_{2} Z_{3} X_{4} \\
G_{2}=X_{2} Z_{3} Z_{4} X_{5} \\
G_{3}=X_{1} X_{3} Z_{4} Z_{5} \\
G_{4}=Z_{1} X_{2} X_{4} Z_{5}
\end{gathered}
$$

(allows for encoding 1 logical qubit)

$$
V=\operatorname{span}\left\{\left|\psi_{0}\right\rangle,\left|\psi_{1}\right\rangle\right\}
$$

genuinely entangled subspace

Self-testing of subspaces

- Example: five-qubit code $\mathcal{H}=\left(\mathbb{C}^{2}\right)^{\otimes 5}$

$$
\begin{gathered}
\mathbb{S}_{5}=\left\langle G_{1}, G_{2}, G_{3}, G_{4}\right\rangle \\
G_{1}=X_{1} Z_{2} Z_{3} X_{4} \\
G_{2}=X_{2} Z_{3} Z_{4} X_{5} \\
G_{3}=X_{1} X_{3} Z_{4} Z_{5} \\
G_{4}=Z_{1} X_{2} X_{4} Z_{5}
\end{gathered}
$$

$$
V=\operatorname{span}\left\{\left|\psi_{0}\right\rangle,\left|\psi_{1}\right\rangle\right\}
$$

genuinely entangled subspace

- Constructing a Bell inequality

$$
\begin{array}{cc}
X_{1} \rightarrow A_{0}^{(1)}+A_{1}^{(1)} & X_{i} \rightarrow A_{0}^{(i)} \\
Z_{1} \rightarrow A_{0}^{(1)}-A_{1}^{(1)} & Z_{i} \rightarrow A_{1}^{(i)} \quad i=2, \ldots, 5 \\
I_{5}=\left\langle\left(A_{0}^{(1)}+A_{1}^{(1)}\right) A_{1}^{(2)} A_{1}^{(3)} A_{0}^{(4)}\right\rangle+\left\langle A_{0}^{(2)} A_{1}^{(3)} A_{1}^{(4)} A_{0}^{(5)}\right\rangle \\
+\left\langle\left(A_{0}^{(1)}+A_{1}^{(1)}\right) A_{0}^{(3)} A_{1}^{(4)} A_{1}^{(5)}\right\rangle+2\left\langle\left(A_{0}^{(1)}-A_{1}^{(1)}\right) A_{0}^{(2)} A_{0}^{(4)} A_{1}^{(5)}\right\rangle \leq 5
\end{array}
$$

Self-testing of subspaces

$$
\begin{aligned}
I_{5}= & \left\langle\left(A_{0}^{(1)}+A_{1}^{(1)}\right) A_{1}^{(2)} A_{1}^{(3)} A_{0}^{(4)}\right\rangle+\left\langle A_{0}^{(2)} A_{1}^{(3)} A_{1}^{(4)} A_{0}^{(5)}\right\rangle \\
& +\left\langle\left(A_{0}^{(1)}+A_{1}^{(1)}\right) A_{0}^{(3)} A_{1}^{(4)} A_{1}^{(5)}\right\rangle+2\left\langle\left(A_{0}^{(1)}-A_{1}^{(1)}\right) A_{0}^{(2)} A_{0}^{(4)} A_{1}^{(5)}\right\rangle \leq 5
\end{aligned}
$$

- Quantum violations

$$
\left.\begin{array}{l}
A_{0 / 1}^{(1)}=(X \pm Z) / \sqrt{2} \\
A_{0 / 1}^{(i)}=X / Z \quad(i=2, \ldots, 5)
\end{array}\right\} \quad \begin{aligned}
& \mathcal{B}_{5}=\sqrt{2}\left(G_{1}+G_{2}+2 G_{3}\right)+G_{4} \\
& \langle\psi| \mathcal{B}_{5}|\psi\rangle=4 \sqrt{2}+1>5 \quad \forall_{|\psi\rangle \in V}
\end{aligned}
$$

Sum-of-squares decomposition

$$
(4 \sqrt{2}+1) \mathbb{1}-\mathcal{B}_{5}=\frac{1}{\sqrt{2}}\left(\mathbb{1}-\widetilde{G}_{1}\right)^{2}+\frac{1}{2}\left(\mathbb{1}-\widetilde{G}_{2}\right)^{2}+\frac{1}{\sqrt{2}}\left(\mathbb{1}-\widetilde{G}_{3}\right)^{2}+\sqrt{2}\left(\mathbb{1}-\widetilde{G}_{4}\right)^{2}
$$

Self-testing of subspaces

- Geometric picture

Our Bell inequality identifies a nontrivial face structure in the set of quantum correlations

Maximal violation by mixed states
$\rho=p\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|+(1-p) p\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|$

Can we self-test this entangled subspace?

Self-testing of subspaces

But how one defines self-testing of a subspace?

- State self-testing
$\vec{p} \Longrightarrow \exists_{U_{1}, \ldots, U_{N}}$ such that

$$
U_{1} \otimes \ldots \otimes U_{N}|\psi\rangle=|\phi\rangle \otimes|\mathrm{aux}\rangle
$$

$\vec{p}=\left\{p\left(a_{1}, \ldots, a_{n} \mid x_{1}, \ldots, x_{N}\right)\right\}$

Self-testing of subspaces

But how one defines self-testing of a subspace?

- State self-testing

$$
\vec{p} \Longrightarrow \exists_{U_{1}, \ldots, U_{N}} \text { such that }
$$

$$
\left.U_{1} \otimes \ldots \otimes U_{N}|\psi\rangle=|\phi\rangle \otimes \mid \text { aux }\right\rangle
$$

- Subspaces
consider a subspace $V=\operatorname{span}\left\{\left|\phi_{1}\right\rangle, \ldots,\left|\phi_{k}\right\rangle\right\}$

$$
\begin{aligned}
\vec{p} \longrightarrow & \exists_{U_{1}, \ldots, U_{N}} \text { such that } \\
& U_{1} \otimes \ldots \otimes U_{N}|\psi\rangle=\sum_{i} p_{i}\left|\phi_{i}\right\rangle \otimes\left|\mathrm{aux}_{i}\right\rangle
\end{aligned}
$$

Self-testing of subspaces

- Example: five-qubit code

$$
\begin{aligned}
& \mathbb{S}_{5}=\left\langle G_{1}, G_{2}, G_{3}, G_{4}\right\rangle \\
& G_{1}=X_{1} Z_{2} Z_{3} X_{4} \\
& G_{2}=X_{2} Z_{3} Z_{4} X_{5} \\
& G_{3}=X_{1} X_{3} Z_{4} Z_{5} \\
& G_{4}=Z_{1} X_{2} X_{4} Z_{5} \\
& V=\operatorname{span}\left\{\left|\psi_{0}\right\rangle,\left|\psi_{1}\right\rangle\right\} \\
& \text { genuinely entangled subspace } \\
& I_{5}=\left\langle\left(A_{0}^{(1)}+A_{1}^{(1)}\right) A_{1}^{(2)} A_{1}^{(3)} A_{0}^{(4)}\right\rangle+\left\langle A_{0}^{(2)} A_{1}^{(3)} A_{1}^{(4)} A_{0}^{(5)}\right\rangle \\
& +\left\langle\left(A_{0}^{(1)}+A_{1}^{(1)}\right) A_{0}^{(3)} A_{1}^{(4)} A_{1}^{(5)}\right\rangle+2\left\langle\left(A_{0}^{(1)}-A_{1}^{(1)}\right) A_{0}^{(2)} A_{0}^{(4)} A_{1}^{(5)}\right\rangle \leq 2 \\
& I_{5}(|\psi\rangle)=4 \sqrt{2}+1 \quad \begin{array}{c}
\text { maximal } \\
\text { violation }
\end{array} \\
& \left.U_{1} \otimes \ldots \otimes U_{5}|\psi\rangle=p\left|\psi_{1}\right\rangle \otimes \mid \text { aux }_{1}\right\rangle+\sqrt{1-p}\left|\psi_{2}\right\rangle \otimes\left|\operatorname{aux}_{2}\right\rangle
\end{aligned}
$$

Generalizations

- Graph states of local dimension d prime $G=(V, E)$

$$
\begin{gather*}
G_{i}=X_{i} \otimes \bigotimes_{j \in n(i)} Z^{r_{i j}} \\
G_{i}\left|\psi_{G}\right\rangle=\left|\psi_{G}\right\rangle
\end{gather*}
$$

$$
\begin{aligned}
& \qquad \begin{aligned}
X|i\rangle & =|i+1\rangle \quad \forall|i\rangle \\
Z|i\rangle & =\omega^{i}|i\rangle
\end{aligned} \\
& \text { generalizations of Pauli matrices }
\end{aligned}
$$

- Naive approach to constructing Bell inequalities

$$
\begin{array}{ll}
X_{1} \rightarrow A_{0}^{(1)}+A_{1}^{(1)} & X_{i} \rightarrow A_{0}^{(i)} \\
Z_{1} \rightarrow A_{0}^{(1)}-A_{1}^{(1)} & Z_{i} \rightarrow A_{1}^{(i)}
\end{array}
$$

- But

$$
\underset{\nexists, \beta \in \mathbb{C}}{\nexists} \alpha X+\beta Z-\text { unitary }
$$

Generalizations

[J. Kaniewski et al., Quantum (2020)]

- A possible solution

$$
\omega^{k(k+1)} X Z^{k} \quad k=0, \ldots, d-1
$$

\checkmark mutually unbiased bases in primed
\checkmark certain combinations of these give proper observables

- Example: $\operatorname{AME}(4,3)$ state $\mathcal{H}=\left(\mathbb{C}^{3}\right)^{\otimes 4}$

$$
\begin{array}{ll}
G_{1}=X_{1} Z_{2} Z_{3} & G_{3}=Z_{1} X_{3} Z_{4}^{2} \\
G_{2}=Z_{1} X_{2} Z_{4} & G_{4}=Z_{2} Z_{3}^{2} X_{4}
\end{array}
$$

- Constructing a Bell inequality

$$
\begin{array}{ll}
G_{1}=X_{1} Z_{2} Z_{3} & G_{1} G_{3}=(X Z)_{1} Z_{2}(Z X)_{3} Z_{4}^{2} \\
G_{1} G_{2}=(X Z)_{1}(Z X)_{2} Z_{3} Z_{4} & G_{4}=Z_{2} Z_{3}^{2} X_{4} \\
G_{1} G_{2}^{2}=\left(X Z^{2}\right)_{1}\left(Z X^{2}\right)_{2} Z_{3} Z_{4}^{2} &
\end{array}
$$

Generalizations

- Substitution

$$
\begin{array}{lll}
X_{1} \rightarrow \frac{1}{\sqrt{3} \lambda}\left(A_{0}^{(1)}+A_{1}^{(1)}+A_{2}^{(1)}\right) & Z_{2} \rightarrow A_{0}^{(2)} & \\
(\omega X Z)_{1} \rightarrow \frac{1}{\sqrt{3} \lambda}\left(A_{0}^{(1)}+\omega A_{1}^{(1)}+\omega^{2} A_{2}^{(1)}\right) & (Z X)_{2} \rightarrow A_{1}^{(2)} & \\
\left(X Z^{2}\right)_{1} \rightarrow \frac{1}{\sqrt{3} \lambda}\left(A_{0}^{(1)}+\omega^{2} A_{1}^{(1)}+\omega A_{2}^{(1)}\right) & \left(Z X^{2}\right)_{2} \rightarrow A_{2}^{(2)} & \\
& & \lambda \in \mathbb{C} \\
& & \\
& & \\
& & \\
& & \\
& & \exp (2 \pi \mathrm{i} / 3)
\end{array}
$$

- Bell inequality

$$
\begin{aligned}
I_{\mathrm{AME}}= & \frac{1}{\sqrt{3} \lambda}\left\langle\left(A_{0}^{(1)}+A_{1}^{(1)}+A_{2}^{(1)}\right) B_{0} C_{0}\right\rangle+\frac{1}{\sqrt{3} \lambda \omega}\left\langle\left(A_{0}^{(1)}+\omega A_{1}^{(1)}+\omega^{2} A_{2}^{(1)}\right) B_{1} C_{0} D_{0}\right\rangle \\
& +\frac{1}{\sqrt{3} \lambda}\left\langle\left(A_{0}^{(1)}+\omega^{2} A_{1}^{(1)}+\omega A_{2}^{(1)}\right) B_{2} C_{0} D_{0}^{2}\right\rangle \\
& +\frac{1}{\sqrt{3} \lambda \omega}\left\langle\left(A_{0}^{(1)}+\omega A_{1}^{(1)}+\omega^{2} A_{2}^{(1)}\right) B_{0} C_{1} D_{0}^{2}\right\rangle+\left\langle B_{0} C_{0}^{2} D_{1}\right\rangle+\text { c.c. } \leq \beta_{C}
\end{aligned}
$$

Conclusion/Outlook

- Scalable Bell inequalities for multiqubit graph states + self-testing
- Self-testing of genuinely entangled subspaces (5-qubit and toric codes)

Possible generalizations

- graph states of arbitrary local dimension
J. Kaniewski et al., Quantum (2021)

4 maximally-dimensional stabilizer subspaces
O. Makuta, R. A., NJP (2021)

- Further questions
- Self-testing of multipartite states from minimal information
- Are all genuinely entangled subspaces self-testable?
are all multipartite genuinely entangled states self-testable?

