INFORMATIONAL STEADY-STATES AND CONDITIONAL ENTROPY PRODUCTION IN CONTINUOUSLY MONITORED SYSTEMS

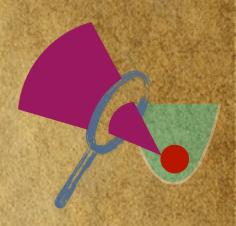
Mauro Paternostro
School of Mathematics & Physics, Queen's University Belfast

52th Symposium on Mathematical Physics
"Channels, Maps and All That"

16 June 2021

STRUCTURE OF THE TALK

Formalism for entropy production in continuously measured quantum systems



Informational steady states:
gaining & losing through measurement

Observing irreversible entropy in measured mesoscopic quantum settings

DUE CREDIT

Alessio Belenchia (Tubingen)

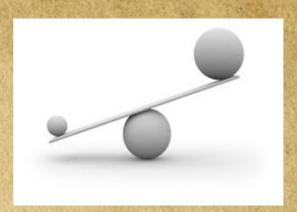
Luca Mancino (Belfast)

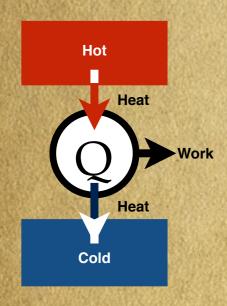
Massimiliano Rossi (ETH Zürich)

Gabriel T. Landi (Sao Paulo) Albert Schliesser (Copenhagen)

Why entropy production?

Non-equilibrium processes dissipate energy. This produces irreversible increase of entropy





Entropy production for estimating the performance of devices (exergy is reduced by irreversibility)

Fantastic framework for pinpointing the quantum-to-classical transition

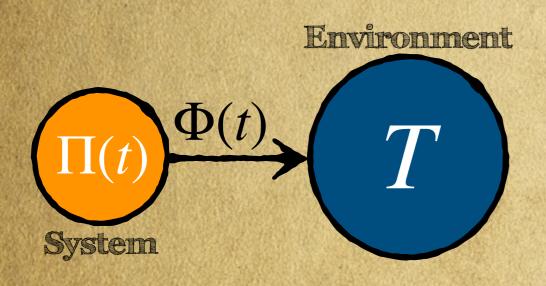
Entropy production

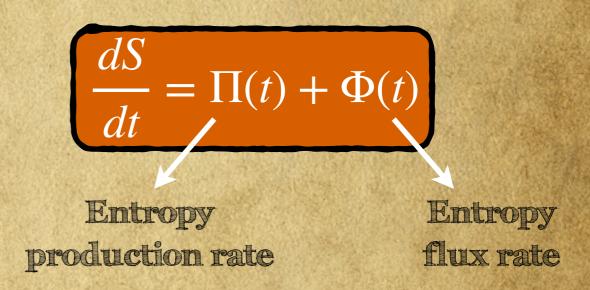
Second Law:
$$\Delta S \ge \int \frac{\delta Q}{T}$$

 $\Rightarrow \quad \Sigma = \Delta S - \left[\frac{\delta Q}{T} \right]$

Clausius: "Uncompensated transformation"

Entropy production

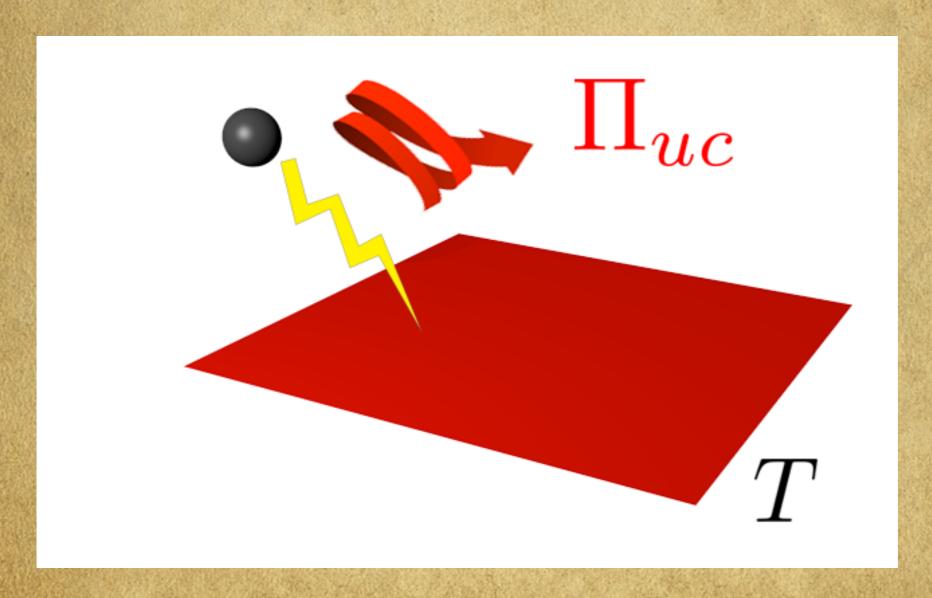




Which is the role of quantum fluctuations on entropy production?

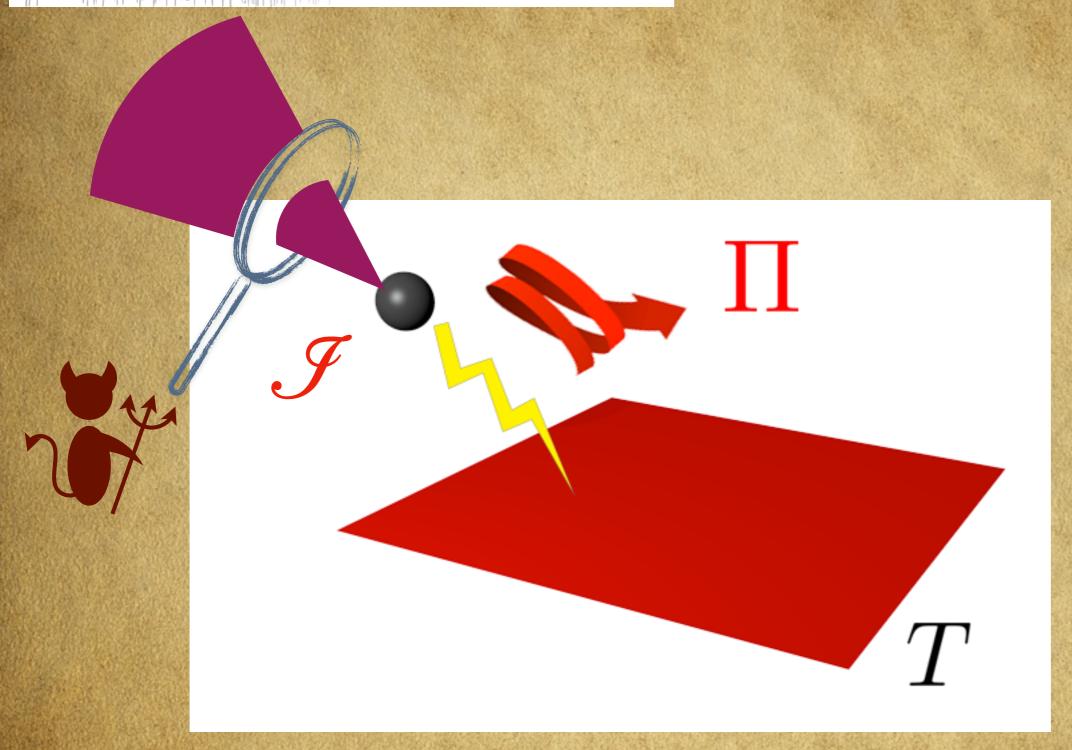
What happens if you plug in the effects of measuring?

Don't look yet!!!



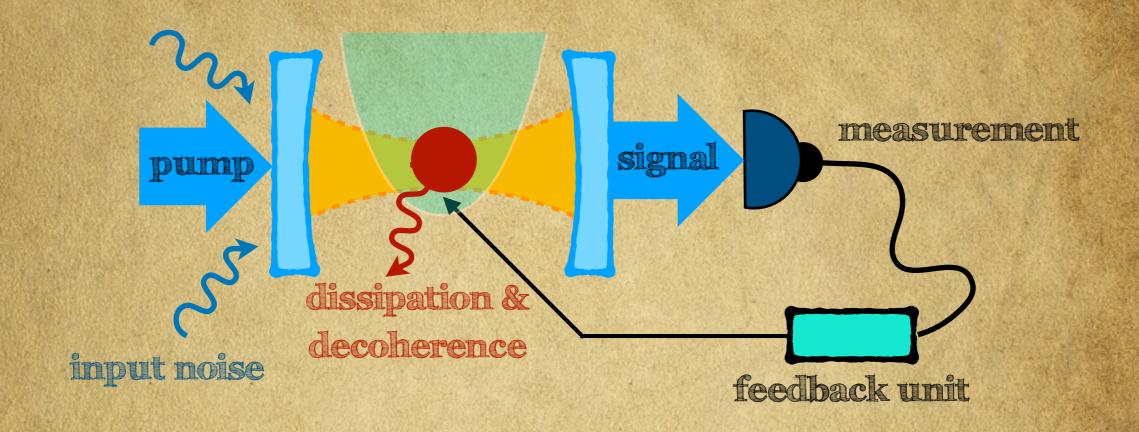
A Belenchia, L Mancino, G T Landi, and M Paternostro, Nature Quantum Information 6, 97 (2019)

.. now open your eyes..



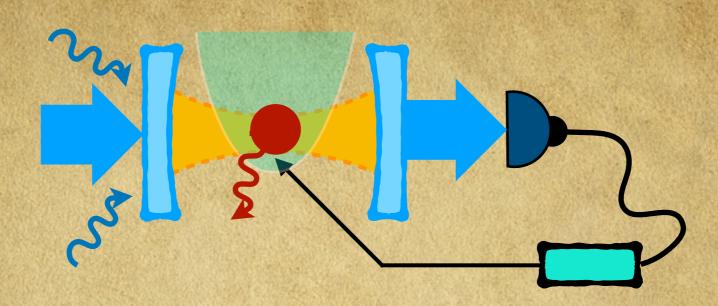
A Belenchia, L Mancino, G T Landi, and M Paternostro, Nature Quantum Information 6, 97 (2019)

Let's fix the ideas



Now restrict the framework to quadratic evolution and Gaussian states & measurements

General formalism



Stochastic master equation

$$d\rho = -i[\hat{H}, \rho]dt + \sum_{k} \mathcal{D}[\hat{c}_{k}](\rho)dt + \sum_{k} \sqrt{\eta_{k}} \mathcal{H}[\hat{c}_{k}](\rho)dw_{k}$$
The morphism of degree of the properties to the second distribution of the second distributi

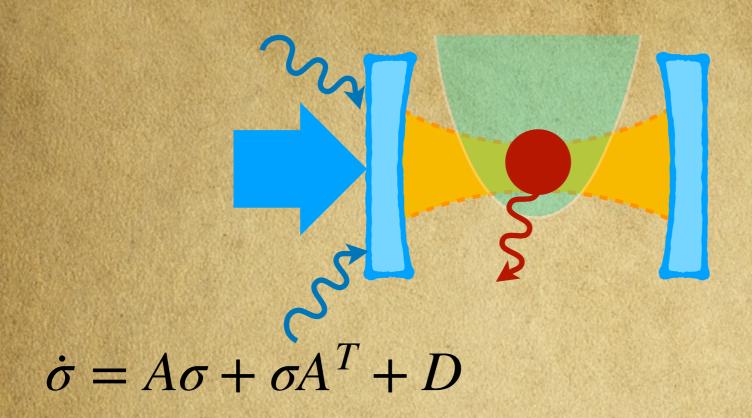
Un-monitored dynamics

Stochastic terms

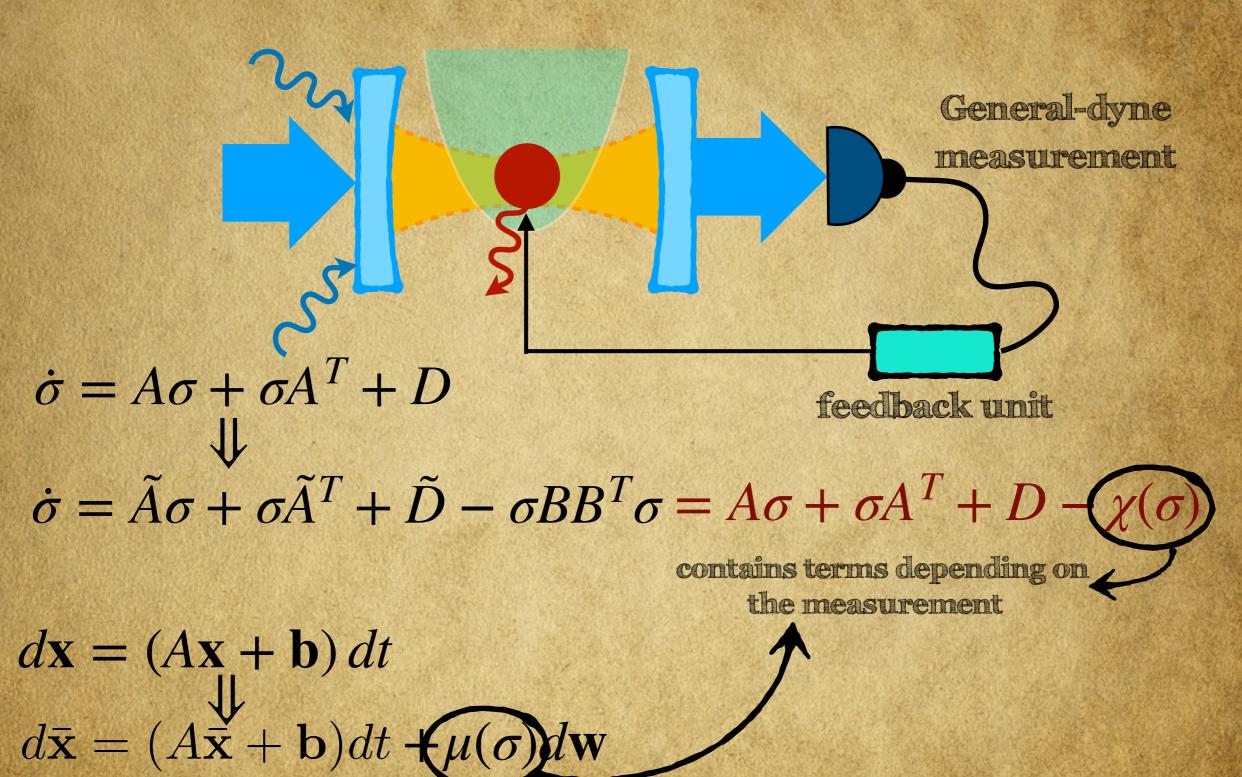
$$\mathcal{H}[\hat{c}]\rho = \hat{c}\rho + \rho\hat{c}^{\dagger} - \langle \hat{c} + \hat{c}^{\dagger} \rangle \rho$$

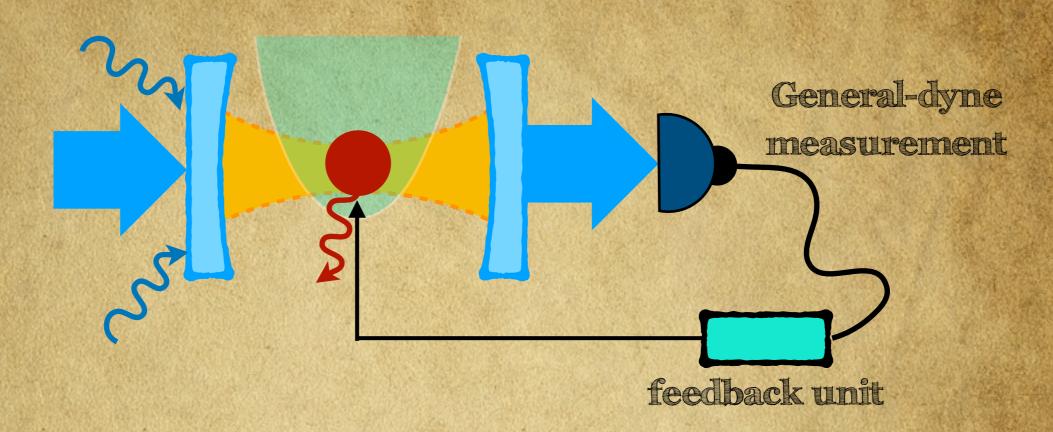
A Belenchia, M Paternostro, and G T Landi, arXiv:2105.12518 (2021)

M. G. Genoni, L. Lami, and A. Serafini, Contemp. Phys. 57, 331 (2016)



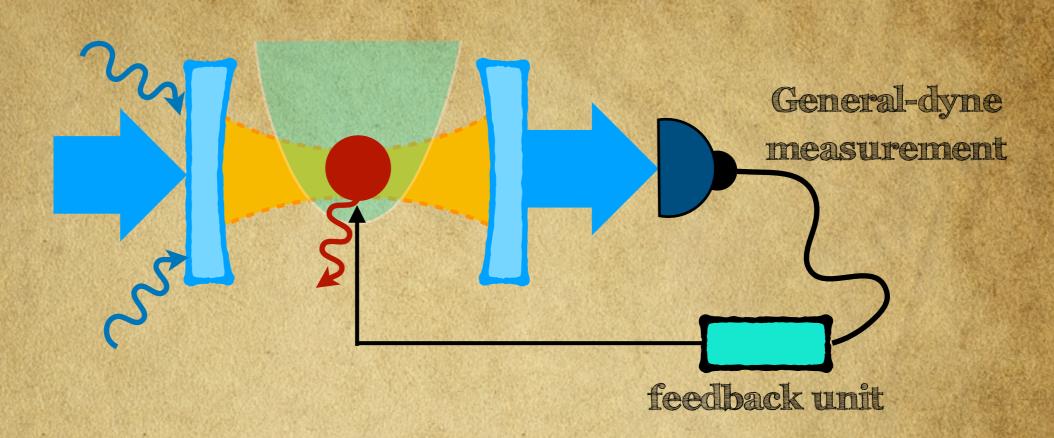
$$d\mathbf{x} = (A\mathbf{x} + \mathbf{b}) dt$$





$$dS = d\Phi_{\bar{\mathbf{X}}} + d\Sigma_{\bar{\mathbf{X}}}$$

$$\phi = \mathbb{E}\left[d\Phi_{\bar{\mathbf{X}}}/dt\right]$$
 deterministic stochastic (depend also on
$$\Pi = \mathbb{E}\left[d\Sigma_{\bar{\mathbf{X}}}/dt\right]$$
 1st moments)



$$dS = dS_{uc} + \dot{\mathcal{F}}dt$$

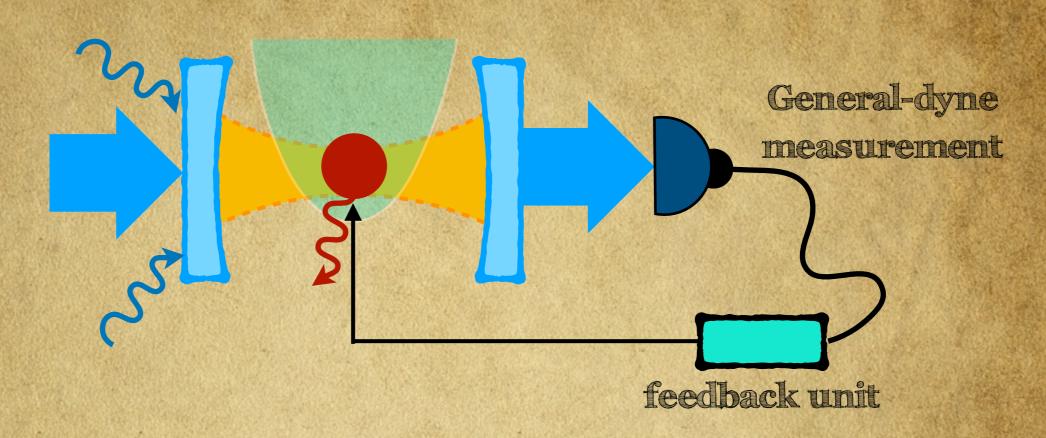
$$\mathcal{J} = \frac{1}{2} \text{Tr}[\sigma^{-1}D - \sigma^{-1}\chi(\sigma)] - \frac{1}{2} \text{Tr}[\sigma_{\text{uc}}^{-1}D]$$

$$\phi = \mathbb{E}\left[d\Phi_{\bar{\mathbf{x}}}/dt\right]$$

$$\Pi = \mathbb{E}\left[d\Sigma_{\bar{\mathbf{x}}}/dt\right]$$

A Belenchia, M Paternostro, and G T Landi, arXiv:2105.12518 (2021)

A Belenchia, et al., Nature Quantum Information 6, 97 (2019)



$$dS = dS_{uc} + \dot{\mathcal{F}}dt$$

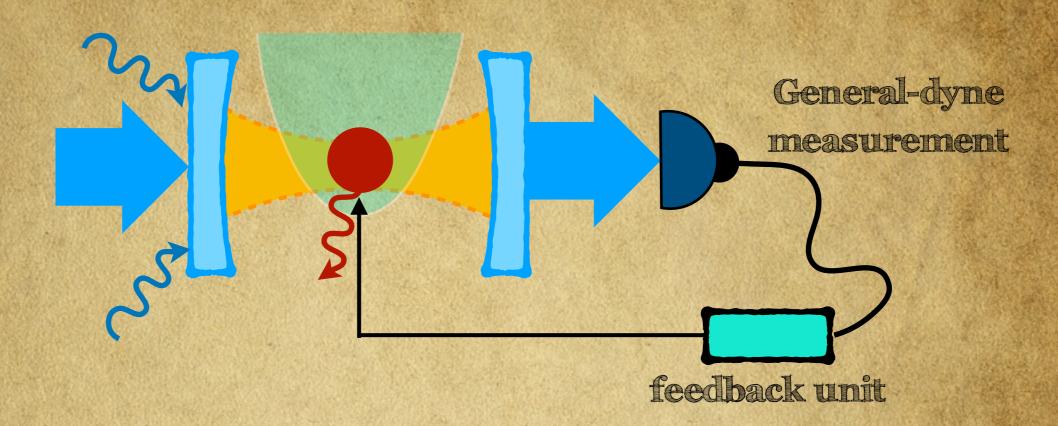
$$\Pi_c(t) = \Pi_{uc}(t) + \dot{\mathcal{J}}$$

$$\phi = \mathbb{E}\left[d\Phi_{\bar{\mathbf{x}}}/dt\right]$$

$$\Pi = \mathbb{E}\left[d\Sigma_{\bar{\mathbf{x}}}/dt\right]$$

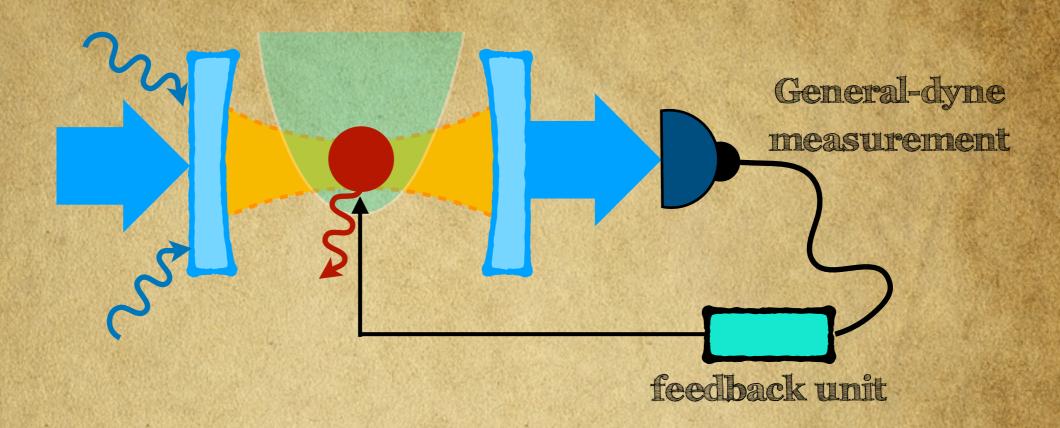
A Belenchia, M Paternostro, and G T Landi, arXiv:2105.12518 (2021)

A Belenchia, et al., Nature Quantum Information 6, 97 (2019)



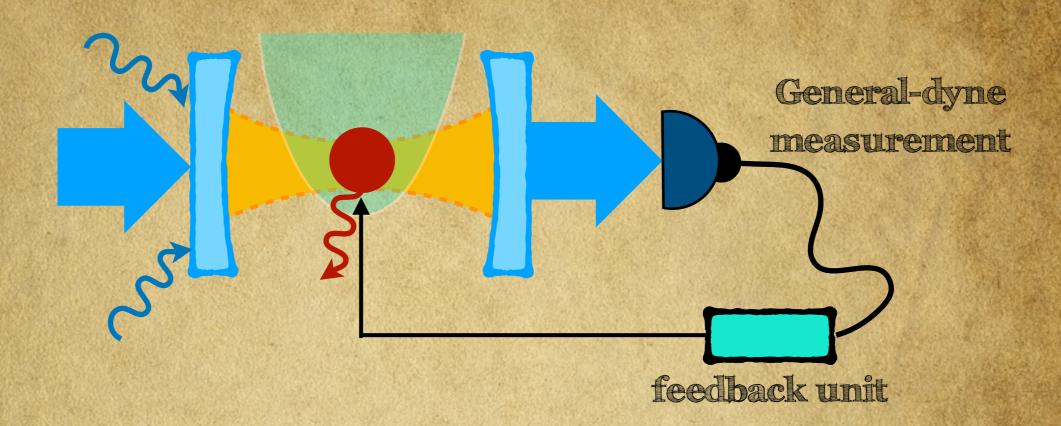
 $\Pi_{uc}(t) \geq 0$ second law for un-conditioned dynamics

$$\Pi_c(t) = \Pi_{uc}(t) + \dot{\mathcal{J}}$$



$$\Pi_{c}(t) \geq \mathcal{F}$$
 second law for conditioned dynamics

$$\Pi_c(t) = \Pi_{uc}(t) + \dot{\mathcal{J}}$$

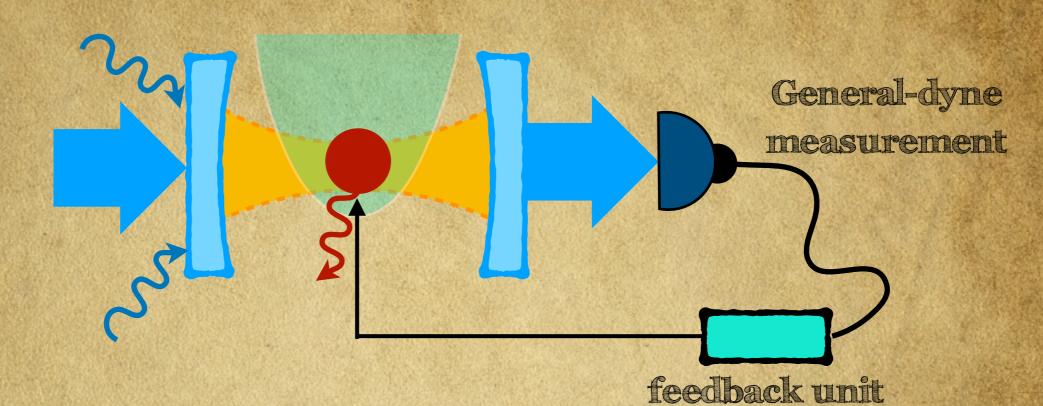


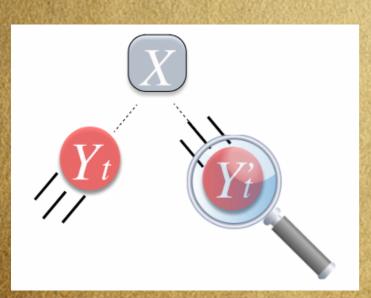
$$\Sigma_c \geq \mathcal{F}$$
 integral second law for conditioned dynamics

$$\Pi_c(t) = \Pi_{uc}(t) + \dot{\mathcal{F}}$$

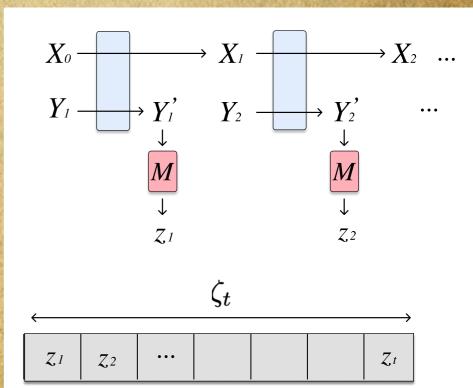
Observable (SEE PART 3)

Generalising it





Interpretation through collisional model



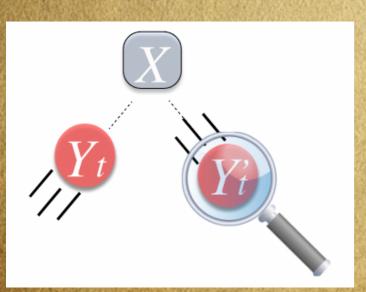
GT Landi, M Paternostro, and A Belenchia, arXiv:2103.06247 (2021)

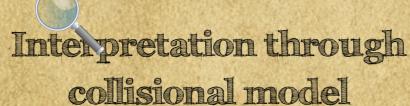
$$P(\zeta_t) = \operatorname{tr}_{XY_1...Y_t} \left\{ M_{z_t} \dots M_{z_1} \rho_{XY_1...Y_t} M_{z_1}^{\dagger} \dots M_{z_t}^{\dagger} \right\}$$

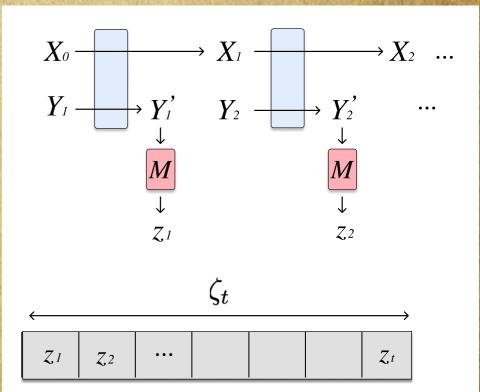
$$\rho_{XY_1...Y_t} = \left(\Pi_{k=1}^t U_k\right) \left(\rho_{X_0} \bigotimes_{j=1}^t \rho_{Y_j}\right) \left(\Pi_{k=1}^t U_k\right)^{\dagger}$$

$$\rho_{X_t|\zeta_t} = \frac{1}{P(\zeta_t)} \operatorname{tr}_{Y_1...Y_t} \left\{ \left(\Pi_{k=1}^t M_{z_k} \right) \rho_{XY_1...Y_t} \left(\Pi_{k=1}^t M_{z_k} \right)^{\dagger} \right\}$$

Conditional state







Information rate

 $\Delta I_t := I(X_t : \zeta_t) - I(X_{t-1} : \zeta_{t-1})$ can take any sign

Holevo information: info on X contained in ζ_t

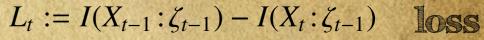
$$I(X_t:\zeta_t):=S(X_t)-S(X_t|\zeta_t)$$

strictly positive

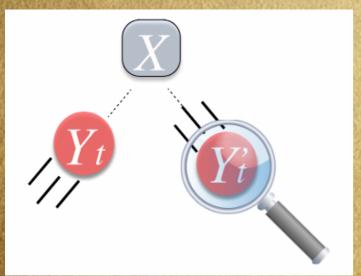
information

$$I(X_t:\zeta_t)-I(X_t:\zeta_{t-1})$$

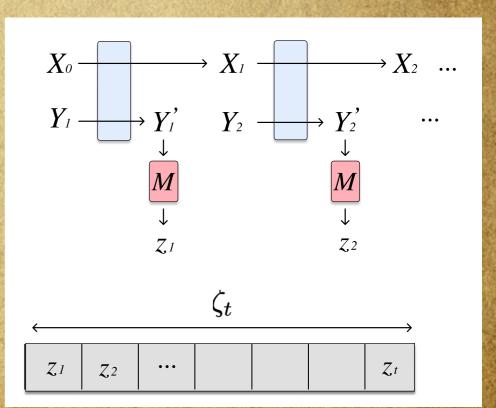
differential = $S(X_t|\zeta_{t-1}) - S(X_t|\zeta_t)$ information gain



non-negative



Interpretation through collisional model



GT Landi, M Paternostro, and A Belenchia, arXiv:2103.06247 (2021)

Information rate

$$\Delta I_t := I(X_t : \zeta_t) - I(X_{t-1} : \zeta_{t-1})$$
can take any sign

Holevo information: info on X contained in ζ_t

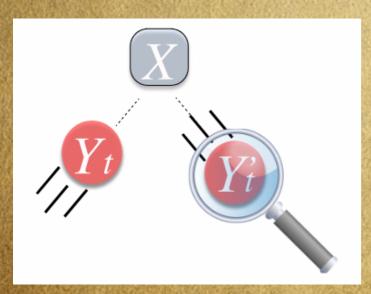
$$I(X_t:\zeta_t) := S(X_t) - S(X_t|\zeta_t)$$
strictly positive

$$\Delta I_t = G_t - L_t$$
 steady state $\Delta I_{\infty} = 0$ with $G_{\infty} = L_{\infty} \neq 0$

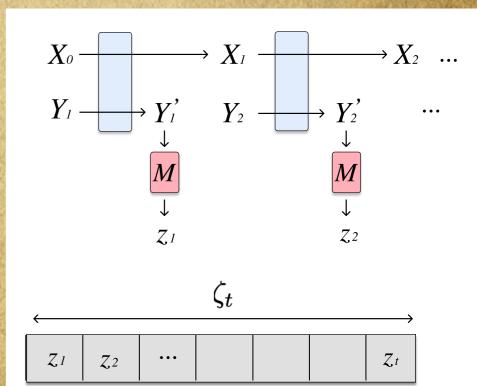
$$\Delta I_{\infty} = 0$$
 with $G_{\infty} = L_{\infty} \neq 0$

 $\Delta \Sigma_t^u = S(X_t) - S(X_{t-1}) + \Delta \Phi_t^u$ $\Delta \Sigma_t^c = S(X_t | \zeta_t) - S(X_{t-1} | \zeta_{t-1}) + \Delta \Phi_t^c$ Informational steady state: balance between gain & loss

measurements sustain the state



Interpretation through collisional model



G T Landi, M Paternostro, and A Belenchia, arXiv:2103.06247 (2021)

Conditioning on the outcomes is subjective (I decide to read outcomes or not ...)

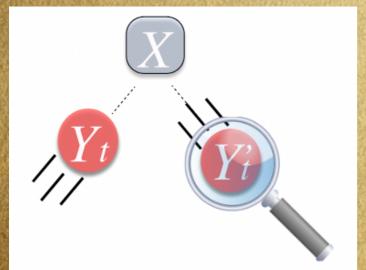
No influence on flux of entropy into the ancillae

$$\Delta \Phi_t^c = \Delta \Phi_t^u$$

$$\Delta \Sigma_t^c = \Delta \Sigma_t^u + \Delta I_t$$

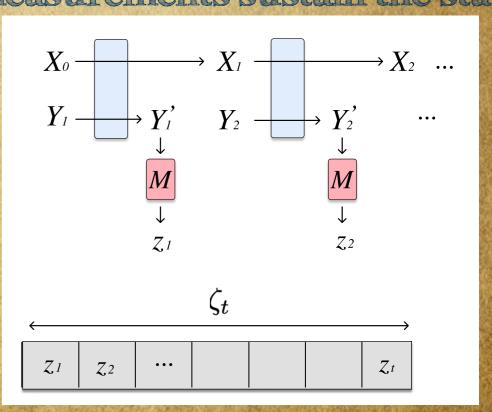
$$\Delta \Sigma_t^u = S(X_t) - S(X_{t-1}) + \Delta \Phi_t^u$$

$$\Delta \Sigma_t^c = S(X_t | \zeta_t) - S(X_{t-1} | \zeta_{t-1}) + \Delta \Phi_t^c$$



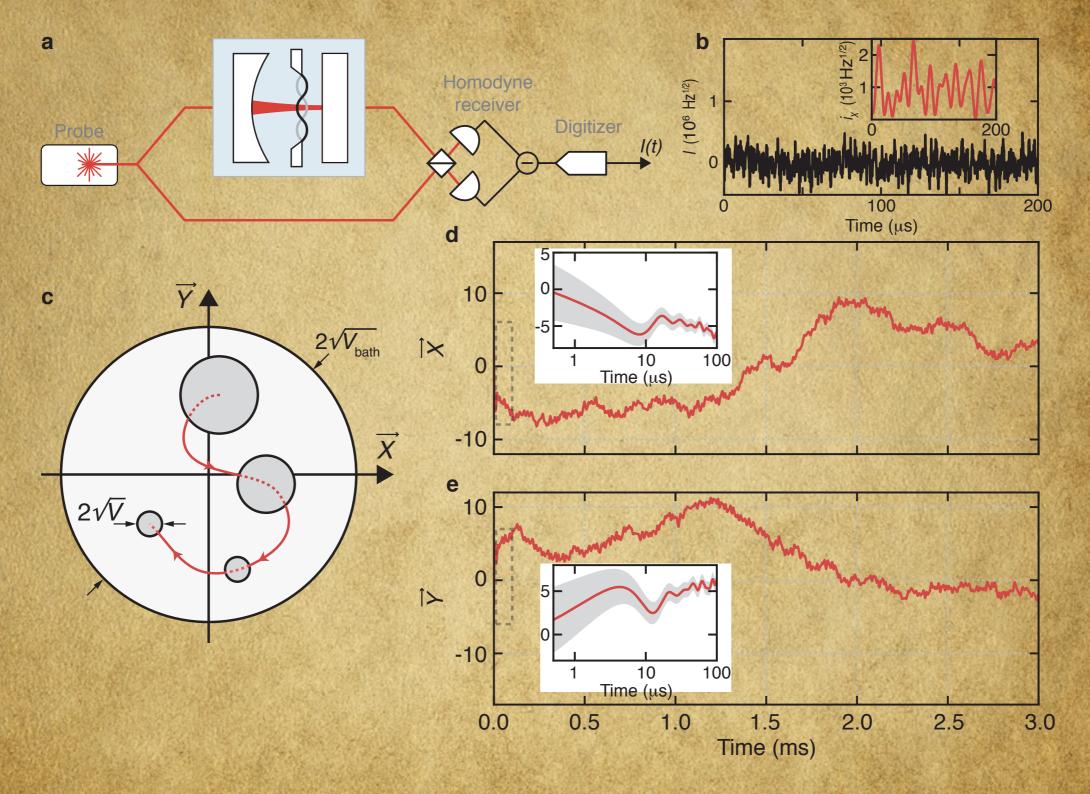
Interpretation through collisional model

Informational steady state:
balance between gain & loss
measurements sustain the state



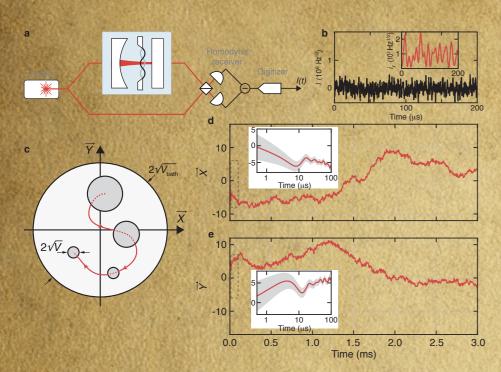
GT Landi, M Paternostro, and A Belenchia, arXiv:2103.06247 (2021)

Observing trajectories of mechanical systems



M. Rossi, D. Mason, J. Chen, and A. Schliesser, Phys. Rev. Lett. 123, 163601 (2019)

Observing trajectories of mechanical systems



$$d\mathbf{r}(t) = -\frac{\Gamma_m}{2}\mathbf{r}dt + \sqrt{4\eta_{\text{det}}\Gamma_{\text{qba}}}V(t)d\mathbf{W},$$

$$\dot{V}(t) = \Gamma_m(V_{\text{uc}} - V(t)) - 4\eta_{\text{det}}\Gamma_{\text{qba}}V(t)^2$$

dynamics of the experiment

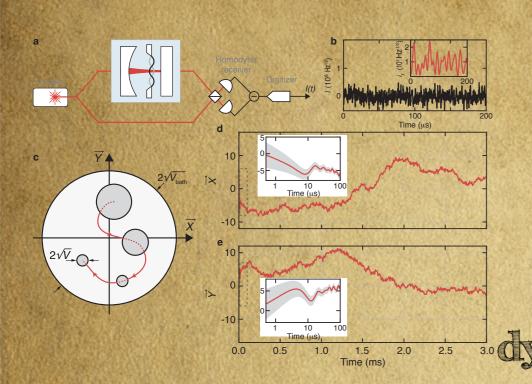
$$d\mathbf{r}(t) = A\mathbf{r}(t)dt + (V(t)C^T + \Gamma^T)d\mathbf{W},$$

$$\dot{V}(t) = AV(t) + V(t)A^T + D - \underbrace{(V(t)C^T + \Gamma^T)(CV(t) + \Gamma^T)}_{\chi(V(t))}$$

theoretical counterpart

M. Rossi, L. Mancino, G. T. Landi, M. Paternostro, A. Schliesser, and A. Belenchia, Phys. Rev. Lett. 125, 080601 (2020)

Observing trajectories of mechanical systems



Initial state: equilibrium state at environment temperature

Steady state of the unconditional

dynamics: NESS very close to equilibrium

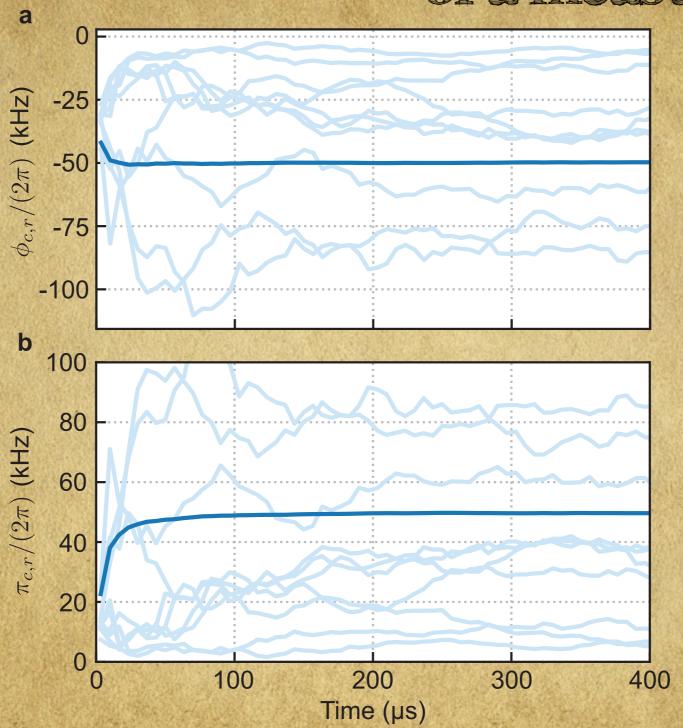
$$\Pi_{uc}(t) = \Gamma_m \left[V_{uc} / (n_{th} + 1/2) - 1 \right] + 4\Gamma_{qba} V_{uc}$$

$$\Pi_{uc}(t) = \mathrm{const.and} \ \left[\Pi_c(t) = \dot{\mathcal{F}} + \mathrm{const.} \right]$$

$$\mathcal{J} = \Gamma_{\rm m} \left(V_{\rm uc} / V(t) - 1 \right) - 4 \eta_{\rm det} \Gamma_{\rm qba} V(t)$$

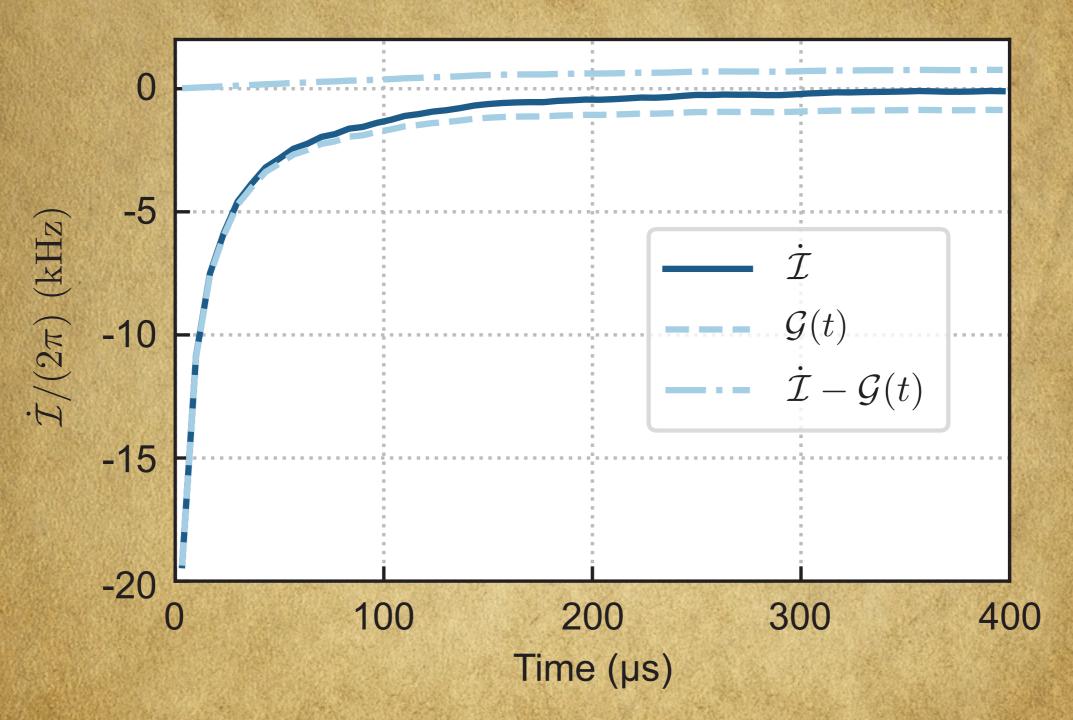
M. Rossi, L. Mancino, G. T. Landi, M. Paternostro, A. Schliesser, and A. Belenchia, Phys. Rev. Lett. 125, 080601 (2020)

Observing entropy
production rates
of a measured system



M. Rossi, L. Mancino, G. T. Landi, M. Paternostro, A. Schliesser, and A. Belenchia, Phys. Rev. Lett. 125, 080601 (2020)

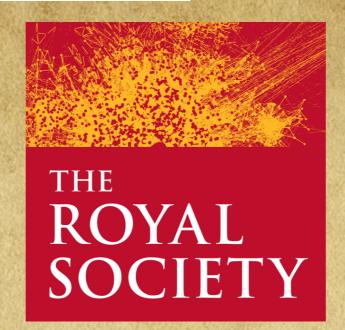
Observing entropy production rates of a measured system



M. Rossi, L. Mancino, G. T. Landi, M. Paternostro, A. Schliesser, and A. Belenchia, Phys. Rev. Lett. 125, 080601 (2020)

The Belfast crew

Bread on tables..



THATE TOUT