Controllability of infinite dimensional quantum systems based on Quantum Graphs.

Juan Manuel Pérez-Pardo

uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

Joint work with A. Balmaseda and D. Lonigro

52 Symposium on Mathematical Physics, Torun

# The Control Problem in Quantum Mechanics

Time dependent Boundary Conditions and the Schrödinger Equation

 Controllability of Magnetic Laplacians on Quantum Graphs

J.M. Pérez-Pardo

# **Quantum Computation and Quantum Algorithms**

# A simplified scheme of a quantum computer



- $|\Psi\rangle$  input state;  $|\Phi\rangle$  output state; U is a unitary operator in  $\mathcal{U}(\mathbb{C}^n)$ .
- Building a Quantum Computer 
   Design a system capable of implementing any possible unitary operator
- This problem is equivalent to simultaneously control the evolution of n linearly independent states. Fixing n orthonormal states as input and other n as output.

J.M. Pérez-Pardo

- Given an evolution equation that depends on a family of parameters C.
- Does it exist a curve  $c : [0, T] \rightarrow C$  such that the evolution can join any two given states?

$$i\frac{\partial}{\partial t}\Phi(t) = H(c(t))\Phi(t)$$

- Initial State:  $\Psi_0$  Target State:  $\Psi_T$
- Solution of the evolution equation  $\Phi(t)$  is such that  $\Phi(0) = \Psi_0$  and  $\Phi(T) = \Psi_T$
- Typical case in Quantum Mechanics (Bilinear Control System):

$$i \frac{\partial}{\partial t} \Phi(t) = (H_0 + c(t)H_1) \Phi(t)$$

J.M. Pérez-Pardo

- H(t) is the Hamiltonian Operator. A self-adjoint operator, possibly unbounded.
- Solutions of the *time dependent* Schrödinger equation are given in terms of a *unitary propagator* that maps the initial state at t<sub>0</sub> to the state at t<sub>1</sub>
- Unitary propagator: strongly continuous two-parameter family of unitary operators.
  - $U(t,t) = \mathbb{I}_{\mathcal{H}}$
  - $U(t_2, t_1)U(t_1, t_0) = U(t_2, t_0)$
  - $U(t, t_0)\Psi_0$  is the solution with initial state  $\Psi_0$  at  $t = t_0$ .
  - $||U(t,t_0)\Psi_0|| = ||\Psi_0||$

#### J.M. Pérez-Pardo

- The classic theory of control has been applied successfully to finite dimensional quantum systems.
- The success in the development of recent quantum technologies is a proof of this.
- This can be used even for infinite dimensional systems. What is the main idea?
  - Pick a suitable basis  $\{\Phi_n\} \subset \mathcal{H}$
  - $\langle \Phi_n, H(c(t))\Phi_m \rangle = H_{nm}(c(t))$
  - Consider the truncated Schrödinger eq.:

$$i\dot{x}_{n} = \sum_{m=1}^{N} H_{nm}\left(c(t)\right) x_{m}$$

#### J.M. Pérez-Pardo

### **Quantum Control on Infinite Dimensions I**

- Many important systems, including those appearing in the technological applications are infinite dimensional
- The truncation of the system to a finite dimensional subspace is an important source of errors.
- To study the appropriateness of the approximation one needs to address the problem in infinite dimensions directly.

#### J.M. Pérez-Pardo

### **Quantum Control on Infinite Dimensions II**

- Results of control on finite dimensions cannot be applied directly to infinite dimension.
- The notion of controllability introduced in the previous slides is not appropriate for infinite dimensions
  - One can find examples where all the finite dimensional truncations are controllable but the infinite dimensional system is not, for instance the Harmonic oscillator.
  - This is reasonable. Suppose that the target state  $\Psi_T$  expressed in the basis  $\{\Phi_n\}$  has countably many non-zero coefficients. Then  $\|\Psi_T \Psi_T^N\| > 0$  for any N.

J.M. Pérez-Pardo

### **Quantum Control on Infinite Dimensions III**

Approximate Controllability:

A quantum control system is approximately controllable if for every  $\Psi_0$ ,  $\Psi_T \in S$  and every  $\epsilon > 0$  there exists T > 0 and  $c : [0, T] \rightarrow C$  such that the solution of the time dependent Schrödinger equation  $\Phi(t)$  satsfies  $\Phi(0) = \Psi_0$ and

$$|\Psi_T - \Phi(T)|| < \epsilon$$

- One needs to study the existence of solutions of the Schrödinger equation.
  - Notice that the existence of solutions of the timedependent Schrödinger equation is compromised. The Hamiltonians are in general unbounded operators (not continuous) even if they are linear.

J.M. Pérez-Pardo

### **Quantum Control on Infinite Dimensions IV**

If this is so difficult, why do we want to go this way?

- Even if in applications the information is codified in a finite dimensional subsystem, the extra dimensions can be used as a resource instead of as a drawback.
- Opens the possibility of a new type of control:

J.M. Pérez-Pardo

**Boundary Control** 

Control the system by varying the boundary conditions.

The Josephson junction, important for Superconducting Circuits, can be modelled as point like interaction.

# The Control Problem in Quantum Mechanics

Time dependent Boundary Conditions and the Schrödinger Equation

 Controllability of Magnetic Laplacians on Quantum Graphs

J.M. Pérez-Pardo

### **Prototypical Example**

Hilbert space  $\mathcal{H} = \mathcal{L}^2([0, 2\pi])$ 

Hamiltonian of a free particle (not driven by any force or external field) is the Laplacian  $\Delta = -\frac{\partial^2}{\partial x^2}$ 

The time-independent Schrödinger equation governing the evolution of this system is:

$$i\frac{\partial \Phi(t)}{\partial t} = -\frac{\partial^2 \Phi(t)}{\partial x^2}$$

J.M. Pérez-Pardo

### **Prototypical Example**

Hilbert space 
$$\mathcal{H} = \mathcal{L}^2([0, 2\pi])$$

Hamiltonian of a free particle (not driven by any force or external field) is the Laplacian  $\Delta = -\frac{\partial^2}{\partial r^2}$ 

The time-independent Schrödinger equation governing the evolution of this system is:



Typical examples: Dirichlet boundary conditions, Neumann, Robin ...

### J.M. Pérez-Pardo

### **Prototypical Example**

Hilbert space 
$$\mathcal{H} = \mathcal{L}^2([0, 2\pi])$$

Hamiltonian of a free particle (not driven by any force or external field) is the Laplacian  $\Delta = -\frac{\partial^2}{\partial x^2}$ 

The time-independent Schrödinger equation governing the evolution of this system is:

$$i\frac{\partial\Phi(t)}{\partial t} = -\frac{\partial^2\Phi(t)}{\partial x^2}$$

This Problem is not well-possed!

Typical examples: Dirichlet boundary conditions, Neumann, Robin ...

Quasi-periodic Boundary Conditions:

$$\mathcal{D}_{\alpha} = \left\{ \phi \in \mathcal{H}^2 \middle| \begin{array}{c} \phi(0) = e^{i2\pi\alpha}\phi(2\pi) \\ \phi'(0) = e^{i2\pi\alpha}\phi'(2\pi) \end{array} \right\}$$

J.M. Pérez-Pardo

The most general solutions of this problem date back to the 60's-70's and are due to T. Kato, J. Kisynski and B. Simon.

Theorem [J. Kisyński, Studia Mathematica 3 (23), 1964]: Let H(t) with domain  $\mathcal{D}(t)$  be a time-dependent Hamiltonian with uniform lower bound and constant form domain  $\mathcal{H}_+$ . Let  $h_t : \mathcal{H}_+ \times$  $\mathcal{H}_+ \to \mathbb{C}$  be the quadratic form associated to H(t). Suppose that for any  $\Phi, \Psi \in \mathcal{H}_+$  one has that  $t \mapsto h_t(\Phi, \Psi)$  is  $C^2(\mathbb{R})$ . Then there exists a strongly continuous unitary propagator U(t, s) such that:

•  $U(t,s)\mathcal{D}(s) = \mathcal{D}(t)$ 

• For  $\Phi \in \mathcal{D}(s)$  one has that  $\Phi(t) = U(t,s)\Phi$  solves the Schrödinger equation.

### J.M. Pérez-Pardo

# **Stability**

An important property that we were able to prove is the stability of the dynamics under perturbations/deformations of the Hamiltonian:

#### Theorem [Balmaseda, Lonigro, PP]:

J.M. Pérez-Pardo

Let  $\{H_n(t)\}_{n=1,2}$  be two time-dependent Hamiltonians with constant form domain  $\mathcal{H}_+$  that satisfy the conditions of Kisyński's Theorem and [a certain uniform bound on their derivatives]. Then the following inequality holds:

$$||U_1(t,s) - U_2(t,s)||_{+,-} \le L \sqrt{\int_s^t ||H_1(\tau) - H_2(\tau)||_{+,-}} \mathrm{d}\tau,$$

where the constant L is independent of t and s.

The norm  $\|\cdot\|_{+-}$  is the norm of linear operators  $L : \mathcal{H}_+ \to \mathcal{H}_-$ , where  $\mathcal{H}_-$  is the canonical dual space of  $\mathcal{H}_+$ .

Improves previous results of B. Simon (1971) and A. Sloan (1981).

# The Control Problem in Quantum Mechanics

Time dependent Boundary Conditions and the Schrödinger Equation

 Controllability of Magnetic Laplacians on Quantum Graphs

J.M. Pérez-Pardo

# **Varying Quasiperiodic Boundary Conditions**

$$H_0 = -\frac{\mathsf{d}^2}{\mathsf{d}x^2} \quad \mathcal{D}_\alpha = \left\{ \phi \in \mathcal{H}^2 \middle| \begin{array}{c} \phi(0) = e^{i2\pi\alpha}\phi(2\pi) \\ \phi'(0) = e^{i2\pi\alpha}\phi'(2\pi) \end{array} \right\}$$

- This is a family of self-adjoint operators depending on  $\alpha$
- We want to consider  $\alpha(t)$  the control parameter. These Hamiltonians do not have constant form domain.
- One can tackle with these systems by the unitary transformation  $T(t): \Phi(x) \mapsto \exp(-ix\alpha(t))\Phi(x)$
- Assuming that the parameter α depends smoothly with time this is equivalent to:

$$H(t) = \left[i\frac{\mathsf{d}}{\mathsf{d}x} - \alpha(t)\right]^2 + \dot{\alpha}(t)x$$

$$\mathcal{D}_0 =$$
 "Periodic Boundary Conditions"

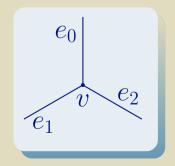
#### J.M. Pérez-Pardo

### Laplacians on Quantum Graphs I

- Consider a planar Graph (V, E) and associate to each edge e a Hilbert space  $\mathcal{H}_e = \mathcal{L}^2([0, l_e])$
- Take  $\mathcal{H} = \bigoplus_{e \in E} \mathcal{H}_e$  and  $\Delta = \bigoplus \Delta_e$  densely defined in it.
- The structure of the graph arises when one selects the boundary conditions.
- At each vertex we choose quasi- $\delta$ -boundary conditions:

$$\exp(-i\chi_{e_i,v})\Phi_e(v) = \Phi_{e_0}(v)$$
  $i = 1, ..., n-1$ 

$$\sum_{e} \exp(i\chi_{e_i,v}) \dot{\varphi}_e = \delta_v \Phi_{e_0}(v)$$



#### J.M. Pérez-Pardo

### Laplacians on Quantum Graphs II

There exist also time-dependent unitary maps that transform these Laplacians:

$$\Delta_e \rightsquigarrow \left[ i \frac{\mathsf{d}}{\mathsf{d}x} - \alpha(t, x) \right]^2 + \Theta(t, x)$$

J.M. Pérez-Pardo

**Boundary Conditions:** 

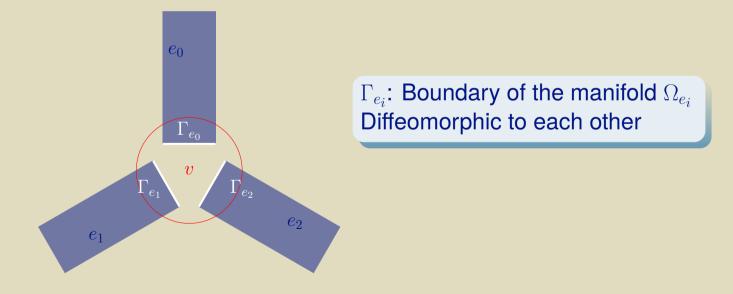
$$\Phi_e(v) = \Phi_{e_0}(v)$$
$$\sum_e \dot{\varphi}_{\alpha,e} = \delta_v \Phi_{e_0}(v)$$

Theorem [Balmaseda, Lonigro, PP]:

If  $\sup_v \delta_v < \infty$  and  $\sup_t \|\alpha\|_{\infty} < \infty$  the Magnetic Laplacians have a uniform lower bound. The form domain of the Magnetic Laplacian obtained this way does not depend on the parameter t (constant form domain).

### Laplacians on Fattened Quantum Graphs

- Instead of associating an interval to each edge e one can associate a Riemannian manifold  $\Omega_e$ .
- Magnetic Laplacians can be defined in an analogous way.
- There is a generalisation of the quasi-δ-type boundary conditions to the fattened graphs [Balmaseda, Lonigro, PP].



J.M. Pérez-Pardo

### **Previous Results on Controllability**

To the best of our knowledge, the most general results on controllability that can be applied to this problem are results on bilinear control systems, for fixed domains obtained by [Boussaid, Caponigro, Chambrion, Mason, Sigalotti].

$$i\frac{\partial}{\partial t}\Phi(t) = (H_0 + c(t)H_1)\Phi(t)$$

Theorem [Chambrion, Mason, Sigalotti, Boscain. Ann. l'Inst. H. Poincare (C), 26 2009 ]

Consider a normal bilinear control system with  $c : \mathbb{R} \to [0, \delta]$  for some  $\delta > 0$ . Let  $\{\lambda_n\}_{n \in \mathbb{N}}$  denote the eigenvalues of  $H_0$ , each of them associated to the eigenfunction  $\Phi_n$ . Then, if the elements of the sequence  $\{\lambda_{n+1} - \lambda_n\}_{n \in \mathbb{N}}$  are  $\mathbb{Q}$ -linearly independent and if  $\langle \Phi_{n+1}, H_1 \Phi_n \rangle \neq 0$  for every  $n \in \mathbb{N}$ , the system is approximately controllable by piecewise constant controls.

J.M. Pérez-Pardo

### **Controllability on Quantum Graphs**

#### Theorem [Balmaseda, Lonigro, PP]:

Let  $u \in C^3(\mathbb{R})$  and consider  $\chi_{v,e}(t) := u(t)\chi_{v,e}$ . Let H(t) be the timedependent Hamiltonian defined by the Laplacian on a (Fattened) Quantum Graph (V, E) with quasi- $\delta$  boundary conditions. Then, the linear system defined by H(t) is approximately controllable.

#### Ideas for the proof:

- Results by Chambrion et. al. imply that we have approximate controllability on an auxiliary system.
- Convergence of the evolution on the auxiliary system using the Stability Theorem.

#### **Open Problems:**

- Good approximation / stability results that allow to extend the results on finite dimensional controllability to the infinite dimensional case.
- Controllability by singular perturbations.

### J.M. Pérez-Pardo

# THANKS!

- A. Balmaseda, F. di Cosmo, PP. On Z-Invariant Self-Adjoint Extensions of the Laplacian on Quantum Circuits. Symmetry 11 (8), 1047. (2019)
- A. Balmaseda, PP. Quantum Control at the Boundary. Classical and Quantum Physics. Springer Proceedings in Physics 229. (2019)
- A. Ibort, F. Lledó, PP. Self-Adjoint Extensions of the Laplace-Beltrami Operator and unitaries at the boundary. J. Funct. Anal 268, 634-670. (2015)
- A. Balmaseda, D. Lonigro, PP. In preparation.

J.M. Pérez-Pardo