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Quantum Computation and Quantum Algorithms

A simplified scheme of a quantum computer

UCn 3 |Ψ〉 |Φ〉 ∈ Cn

|Ψ〉 input state; |Φ〉 output state; U is a unitary oper-
ator in U(Cn).
Building a Quantum Computer ⇒ Design a system
capable of implementing any possible unitary opera-
tor
This problem is equivalent to simultaneously control
the evolution of n linearly independent states. Fixing
n orthonormal states as input and other n as output.
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Quantum Control I
Given an evolution equation that depends on a family
of parameters C.
Does it exist a curve c : [0, T ] → C such that the evo-
lution can join any two given states?

i
∂

∂t
Φ(t) = H(c(t))Φ(t)

Initial State: Ψ0 Target State: ΨT

Solution of the evolution equation Φ(t) is such that
Φ(0) = Ψ0 and Φ(T ) = ΨT

Typical case in Quantum Mechanics (Bilinear Control
System):

i
∂

∂t
Φ(t) = (H0 + c(t)H1) Φ(t)
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Quantum Control II

H(t) is the Hamiltonian Operator. A self-adjoint oper-
ator, possibly unbounded.
Solutions of the time dependent Schrödinger equa-
tion are given in terms of a unitary propagator that
maps the initial state at t0 to the state at t1
Unitary propagator: strongly continuous two-parameter
family of unitary operators.

U(t, t) = IH
U(t2, t1)U(t1, t0) = U(t2, t0)

U(t, t0)Ψ0 is the solution with initial stateΨ0 at t = t0.
‖U(t, t0)Ψ0‖ = ‖Ψ0‖
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Quantum Control III

The classic theory of control has been applied suc-
cessfully to finite dimensional quantum systems.
The success in the development of recent quantum
technologies is a proof of this.
This can be used even for infinite dimensional sys-
tems. What is the main idea?

Pick a suitable basis {Φn} ⊂ H
〈Φn, H(c(t))Φm〉 = Hnm(c(t))

Consider the truncated Schrödinger eq.:

iẋn =

N∑
m=1

Hnm (c(t))xm
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Quantum Control on Infinite Dimensions I

Many important systems, including those appearing
in the technological applications are infinite dimen-
sional
The truncation of the system to a finite dimensional
subspace is an important source of errors.
To study the appropriateness of the approximation
one needs to address the problem in infinite dimen-
sions directly.
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Quantum Control on Infinite Dimensions II

Results of control on finite dimensions cannot be ap-
plied directly to infinite dimension.
The notion of controllability introduced in the previous
slides is not appropriate for infinite dimensions

One can find examples where all the finite dimen-
sional truncations are controllable but the infinite
dimensional system is not, for instance the Har-
monic oscillator.
This is reasonable. Suppose that the target state
ΨT expressed in the basis {Φn} has countably many
non-zero coefficients. Then ‖ΨT−ΨN

T ‖ > 0 for any
N .
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Quantum Control on Infinite Dimensions III
Approximate Controllability:

A quantum control system is approximately controllable
if for every Ψ0, ΨT ∈ S and every ε > 0 there exists
T > 0 and c : [0, T ] → C such that the solution of the time
dependent Schrödinger equation Φ(t) satsfies Φ(0) = Ψ0

and
‖ΨT − Φ(T )‖ < ε

One needs to study the existence of solutions of the
Schrödinger equation.

Notice that the existence of solutions of the time-
dependent Schrödinger equation is compromised.
The Hamiltonians are in general unbounded oper-
ators (not continuous) even if they are linear.
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Quantum Control on Infinite Dimensions IV

If this is so difficult, why do we want to go this way?

Even if in applications the information is codified in a
finite dimensional subsystem, the extra dimensions
can be used as a resource instead of as a drawback.
Opens the possibility of a new type of control:

Boundary Control
Control the system by varying the boundary condi-
tions.
The Josephson junction, important for Superconduct-
ing Circuits, can be modelled as point like interaction.
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Prototypical Example

Hilbert space H = L2([0, 2π])

Hamiltonian of a free particle (not driven by any force or
external field) is the Laplacian ∆ = − ∂2

∂x2

The time-independent Schrödinger equation governing
the evolution of this system is:

i
∂Φ(t)

∂t
= −∂2Φ(t)

∂x2
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Prototypical Example

Hilbert space H = L2([0, 2π])

Hamiltonian of a free particle (not driven by any force or
external field) is the Laplacian ∆ = − ∂2

∂x2

The time-independent Schrödinger equation governing
the evolution of this system is:

i
∂Φ(t)

∂t
= −∂2Φ(t)

∂x2
This Problem is not well-possed!

Typical examples: Dirichlet boundary conditions, Neu-
mann, Robin ...
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Prototypical Example
Hilbert space H = L2([0, 2π])

Hamiltonian of a free particle (not driven by any force or
external field) is the Laplacian ∆ = − ∂2

∂x2

The time-independent Schrödinger equation governing
the evolution of this system is:

i
∂Φ(t)

∂t
= −∂2Φ(t)

∂x2
This Problem is not well-possed!

Typical examples: Dirichlet boundary conditions, Neu-
mann, Robin ...
Quasi-periodic Boundary Conditions:

    Dα =

{
φ ∈ H2

∣∣∣     φ(0) = ei2παφ(2π)
φ′(0) = ei2παφ′(2π)  

}
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Existence of solutions

The most general solutions of this problem date back to
the 60’s-70’s and are due to T. Kato, J. Kisynski and B.
Simon.
Theorem [J. Kisyński, Studia Mathematica 3 (23), 1964]:
Let H(t) with domain D(t) be a time-dependent Hamiltonian with
uniform lower bound and constant form domain H+. Let ht : H+ ×
H+ → C be the quadratic form associated to H(t). Suppose that for
any Φ,Ψ ∈ H+ one has that t 7→ ht(Φ,Ψ) is C2(R). Then there exists
a strongly continuous unitary propagator U(t, s) such that:

U(t, s)D(s) = D(t)

For Φ ∈ D(s) one has that Φ(t) = U(t, s)Φ solves the
Schrödinger equation.



J.M. Pérez-Pardo 52 Symposium on Math. Phys.

Stability

An important property that we were able to prove is the stability of
the dynamics under perturbations/deformations of the Hamiltonian:

Theorem [Balmaseda, Lonigro, PP]:
Let {Hn(t)}n=1,2 be two time-dependent Hamiltonians with constant
form domain H+ that satisfy the conditions of Kisyński’s Theorem
and [a certain uniform bound on their derivatives]. Then the follow-
ing inequality holds:

‖U1(t, s)− U2(t, s)‖+,− ≤ L

√∫ t

s

‖H1(τ )−H2(τ )‖+,−dτ ,

where the constant L is independent of t and s.

The norm ‖·‖+− is the norm of linear operators L : H+ → H−, where
H− is the canonical dual space of H+.

Improves previous results of B. Simon (1971) and A. Sloan (1981).
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Varying Quasiperiodic Boundary Conditions

    H0 = − d2

dx2
    Dα =

{
φ ∈ H2

∣∣∣     φ(0) = ei2παφ(2π)

φ′(0) = ei2παφ′(2π)  

}

This is a family of self-adjoint operators depending on α        

We want to consider α(t) the control parameter. These Hamil-
tonians do not have constant form domain.

One can tackle with these systems by the unitary transformation
T (t) : Φ(x) 7→ exp(−ixα(t))Φ(x)

Assuming that the parameter α depends smoothly with time this
is equivalent to:

    H(t) =

[
i

d
dx − α(t)

]2
+ α̇(t)x     D0 = “Periodic Boundary Conditions”
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Laplacians on Quantum Graphs I

Consider a planar Graph (V,E) and associate to each
edge e a Hilbert space He = L2([0, le])

Take H =
⊕

e∈E He and ∆ =
⊕

∆e densely defined in it.
The structure of the graph arises when one selects the
boundary conditions.
At each vertex we choose quasi-δ-boundary conditions:

exp(−iχei,v)Φe(v) = Φe0(v) i = 1, . . . , n− 1

∑
e

exp(iχei,v)ϕ̇e = δvΦe0(v)
v e2

e1

e0



J.M. Pérez-Pardo 52 Symposium on Math. Phys.

Laplacians on Quantum Graphs II

There exist also time-dependent unitary maps that transform these
Laplacians:

∆e  

[
i

d
dx − α(t, x)

]2
+ Θ(t, x)

Boundary Conditions:

Φe(v) = Φe0(v)∑
e

ϕ̇α,e = δvΦe0(v)

Theorem [Balmaseda, Lonigro, PP]:

If supv δv < ∞ and supt ‖α‖∞ < ∞ the Magnetic Laplacians have a
uniform lower bound. The form domain of the Magnetic Laplacian
obtained this way does not depend on the parameter t (constant
form domain).
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Laplacians on Fattened Quantum Graphs

Instead of associating an interval to each edge e one can associate
a Riemannian manifold Ωe.

Magnetic Laplacians can be defined in an analogous way.

There is a generalisation of the quasi-δ-type boundary conditions to
the fattened graphs [Balmaseda, Lonigro, PP].

v

e2
e1

e0

Γe2

Γe0

Γe1

Γei: Boundary of the manifold Ωei

Diffeomorphic to each other
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Previous Results on Controllability
To the best of our knowledge, the most general results on con-
trollability that can be applied to this problem are results on bi-
linear control systems, for fixed domains obtained by [Boussaid,
Caponigro, Chambrion, Mason, Sigalotti].

i
∂

∂t
Φ(t) = (H0 + c(t)H1) Φ(t)

Theorem [Chambrion, Mason, Sigalotti, Boscain. Ann. l’Inst. H.
Poincare (C), 26 2009 ]
Consider a normal bilinear control system with c : R → [0, δ] for
some δ > 0. Let {λn}n∈N denote the eigenvalues of H0, each of
them associated to the eigenfunction Φn. Then, if the elements
of the sequence {λn+1 − λn}n∈N are Q-linearly independent and if
〈Φn+1, H1Φn〉 6= 0 for every n ∈ N, the system is approximately con-
trollable by piecewise constant controls.
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Controllability on Quantum Graphs
Theorem [Balmaseda, Lonigro, PP]:
Let u ∈ C3(R) and consider χv,e(t) := u(t)χv,e. Let H(t) be the time-
dependent Hamiltonian defined by the Laplacian on a (Fattened)
Quantum Graph (V,E) with quasi-δ boundary conditions. Then, the
linear system defined by H(t) is approximately controllable.

Ideas for the proof:

Results by Chambrion et. al. imply that we have approximate
controllability on an auxiliary system.
Convergence of the evolution on the auxiliary system using the
Stability Theorem.

Open Problems:
Good approximation / stability results that allow to extend the results on finite
dimensional controllability to the infinite dimensional case.
Controllability by singular perturbations.
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