Bound states of artificial atoms in open and closed waveguides

Saverio Pascazio

Dipartimento di Fisica, Università di Bari, Italy
INFN, Bari, Italy
D. Lonigro, D. Pomarico, P. Facchi, F.V. Pepe
A. D. Greentree (RMIT, Melbourne, Australia)

52 SMP, Torun, 14 June 2021

I first met Andrzej Kossakowski at ICTP in Trieste, Italy, at a conference. I was too young to know who he was and understand the reach and importance of his contribution to Physics.

His hair was white, he had a jovial attitude that would contrast with his imposing figure. His laugh was loud, yet elegant. When he was calculating, he would isolate so much from the rest of the world that you felt you didn't had the right to disturb him. His favorite game was to solve (crack) differential equations. He loved examples.

During the years that followed, I had the fortune to meet Andrzej many times, and interact with him. I learned about complete positivity from him. He was able to read into people's mind. After explaining CP to me, he looked at me, paused for a few seconds, then added: no, there is no characterization of positive maps; why don't you work at it? I tried, but the problem was so difficult that it survived him.

Andrzej was a dominating figure in the realm of open quantum systems. His pupil (and my friend) Darek Chruscinski once told me: the GKLS equation [1,2] stands next to the Schrödinger equation. I hesitated for a split second, then I got the point.

I like to remember Andrzej not only for his seminal contributions to physics, but also for his character and human side. I think that the best way to celebrate him is to resort to some personal recollections.

today's talk

1 or 2
two-level atoms in a waveguide, RWA

$$
\begin{aligned}
& \xrightarrow{\left.E_{x}\right|_{S}=0 \quad \text { and }\left.\quad \frac{\partial B_{x}}{\partial n}\right|_{S}=0 \quad \text { surface } S} \begin{array}{l}
\text { normal } \\
B_{x}=B_{0} \cos \left(\frac{\pi y}{L_{y}}\right) e^{i\left(k x-\omega_{1,0}(k) t\right)} \\
T E_{1,0} \operatorname{mode} \quad B_{y}=-i \frac{k L_{y} B_{0}}{\pi} \sin \left(\frac{\pi y}{L_{y}}\right) e^{i\left(k x-\omega_{1,0}(k) t\right)} \\
E_{z}=i \frac{\omega_{1,0}(k) L_{y} B_{0}}{\pi} \sin \left(\frac{\pi y}{L_{y}}\right) e^{i\left(k x-\omega_{1,0}(k) t\right)}
\end{array} .
\end{aligned}
$$

$A_{z}=\frac{L_{y} B_{0}}{\pi} \sin \left(\frac{\pi y}{L_{y}}\right) e^{i\left(k x-\omega_{1,0}(k) t\right)} \quad$ vector potential

$$
\begin{aligned}
& \omega_{m, n}(k)=\sqrt{(v k)^{2}+\omega_{m, n}(0)^{2}} \\
& \omega_{m, n}(0)=v\left[\left(\frac{m \pi y}{L_{y}}\right)^{2}+\left(\frac{n \pi z}{L_{z}}\right)^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

atom + interaction

$$
\begin{aligned}
H_{\mathrm{at}} & =\frac{1}{2 m_{e}}\left(\boldsymbol{p}-e \boldsymbol{A}^{(1,0)}(\boldsymbol{r})\right)^{2}+V(\boldsymbol{r}) \\
& =H_{\mathrm{at}}^{0}-\frac{e}{m_{e}} \boldsymbol{p} \cdot \boldsymbol{A}^{(1,0)}(\boldsymbol{r})+\frac{e^{2}}{2 m_{e}}\left(\boldsymbol{A}^{(1,0)}(\boldsymbol{r})\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
H^{(1,0)} & =\mathcal{E}_{e l}^{(1,0)}+\mathcal{E}_{m a q}^{(1,0)} \quad \text { free Hamiltonian } \\
& =\hbar v \int d\left(\sqrt{\left.k^{2}+\left(\frac{v M}{\hbar}\right)^{2} a^{\dagger} d k\right) a(k)} .\right.
\end{aligned}
$$

interaction

$$
\begin{aligned}
H_{\mathrm{int}}^{(d i p, R W)}=\omega_{0} D_{e g} & \left(\frac{\hbar}{2 \pi \epsilon v L_{y} L_{z}}\right)^{\frac{1}{2}} \frac{d k}{\left(k^{2}+(v M / \hbar)^{2}\right)^{1 / 4}} \\
& \times\left[b(k)|e\rangle\langle g| e^{i k x_{0}}+b^{\dagger}(k)|g\rangle\langle e| e^{-i k x_{0}}\right]
\end{aligned}
$$

atom A in $x_{0}=0$ and atom B in $x_{0}=d$
needless to say,
$a(n y)$ Hamiltonian is an approximation

there will ALWAYS be dissipative effects: leakage out of the cavity, decoherence, dephasing GKLS
but we consider Hamiltonian approach: physical meaning

one atom in a (1D) waveguide

Coupling with the lowest-energy mode in a linear waveguide

Dispersion relation (massive)

$$
\omega(k)=\sqrt{k^{2}+M^{2}}
$$

The excited state can decay...

add a mírror

Fermi golden rule:

$$
\left.\gamma \propto\left|\langle g ; \bar{k}| H_{\mathrm{int}}\right| e\right\rangle\left.\right|^{2} \propto \sin ^{2} \bar{k} L
$$

main ingredient:
$E \approx 0$ at mirror
hindered
emission
enhanced emission

Hoí, Kockum, Tornberg, Pourkabirian, Johansson, Delsing, Wilson 2015

(Probing the quantum vacuum with an artificial atom in front of a mirror)

Hoí, Kockum, Tornberg, Pourkabirian, Johansson, Delsíng, Wilson 2015

atom becomes "invisible" at 5.4 GHz

a pair of two-level (artificial) atoms

 in a waveguide
lowest energy mode, one-excitation sector
Shen, Fan (2005) + Gonzales-Tudela et al (2011)

System and Hamiltonian

No need to have mirror! Atoms behave like "mirrors" dynamical

ロ~MM $\rightarrow \square$

$$
\begin{array}{rlr}
H= & H_{0}+\lambda V \\
= & \omega_{0}\left(\left|e_{A}\right\rangle\left\langle e_{A}\right|+\left|e_{B}\right\rangle\left\langle e_{B}\right|\right)+\int \mathrm{d} k \omega(k) b^{\dagger}(k) b(k) & \omega(k)=\sqrt{k^{2}+M^{2}} \\
& +\lambda \int \frac{\mathrm{d} k}{\omega(k)^{1 / 2}}\left[\left|e_{A}\right\rangle\left\langle g_{A}\right| b(k)+\left|g_{A}\right\rangle\left\langle e_{A}\right| b^{\dagger}(k)\right. & M \propto L_{y}^{-1} \\
& \left.+\left|e_{B}\right\rangle\left\langle g_{B}\right| b(k) \mathrm{e}^{\mathrm{i} k d}+\left|g_{B}\right\rangle\left\langle e_{B}\right| b^{\dagger}(k) \mathrm{e}^{-\mathrm{i} k d}\right], &
\end{array}
$$

Field energy density
atoms behave like dynamical mirrors

$$
\omega_{n m}(k)=\sqrt{\frac{k^{2}}{\mu \epsilon}+M_{n m}^{2}}
$$

$\mathrm{TE}_{1,0}$ mode; role of boundary conditions

$$
|\psi\rangle=\left(c_{A}\left|e_{A}, g_{B}\right\rangle+c_{B}\left|g_{A}, e_{B}\right\rangle\right) \otimes|\mathrm{vac}\rangle+\left|g_{A}, g_{B}\right\rangle \otimes|\varphi\rangle
$$

$$
d_{n}=\frac{n \pi}{\bar{k}}, \quad \text { with } \quad \bar{k}:=\sqrt{\left(\omega_{0}+\frac{2 \lambda^{2}}{M}\right)^{2}-M^{2}}
$$

observation: dark state of an atomic pair

 (identical but distinguishable atoms)

The one-excitation antisymmetric state

$$
\left|\Psi^{(-)}\right\rangle=\frac{\left|e_{A}, g_{B}\right\rangle-\left|g_{A}, e_{B}\right\rangle}{\sqrt{2}}
$$

decouples from the interaction

$$
H_{\mathrm{int}}\left|\Psi^{(-)}\right\rangle=0
$$

The one-excitation symmetric
state

$$
\left|\Psi^{(+)}\right\rangle=\frac{\left|e_{A}, g_{B}\right\rangle+\left|g_{A}, e_{B}\right\rangle}{\sqrt{2}}
$$

decays faster than a free atom

$$
\gamma^{(+)}=2 \gamma_{\text {free }}
$$

General wavefunction in the sector
$|\psi\rangle=\left(c_{A}\left|e_{A}, g_{B}\right\rangle+c_{B}\left|g_{A}, e_{B}\right\rangle\right) \mid$ vac $\rangle+\left|g_{A}, g_{b}\right\rangle \mid 1$ photon \rangle
Bound states $\quad H|\psi\rangle=E|\psi\rangle \quad$ with $\langle\psi \mid \psi\rangle=1$

The eigenvalue equation

$$
H|\psi\rangle=E|\psi\rangle=\sqrt{\bar{k}^{2}+M^{2}}|\psi\rangle
$$

can be satisfied by a normalizable state only if:

$$
\text { i) } \quad C_{A}+\mathrm{e}^{ \pm \mathrm{i} \bar{k} d} C_{B}=0
$$

ii) $E=\omega_{o}+\int \mathrm{d} k \frac{\lambda^{2}}{\sqrt{k^{2}+M^{2}}} \frac{1-\mathrm{e}^{\mathrm{i}(\bar{k}-k) d}}{E-\sqrt{k^{2}+M^{2}}}$
has real solutions

$$
c_{A}=(-1)^{n+1} c_{B}, \quad d=d_{n}=\frac{n \pi}{\bar{k}} \quad\left(n \in \mathbb{Z}_{+}\right)
$$

fast tutorial $\operatorname{Im} E \uparrow$

$$
e^{(i \Delta E-\gamma / 2) t}
$$

complex energy plane

energy shift ΔE

Schwinger (simple poles);
Arakiet al (proof of Fermi "Golden rule")

two-excitation sector

a)

b)

analysis is more complicated renormalization procedure is involved

$A\left(k_{1}, k_{2}, z\right)=$

re-sum diagrams and renormalize

$$
P\left(k_{1}, k_{2}\right)=\lim _{t \rightarrow \infty}\left|A\left(k_{1}, k_{2}, t\right)\right|^{2}
$$

$$
\begin{aligned}
P\left(k_{1}, k_{2}\right)= & 8\left\{2 \cos ^{4}\left(\frac{k_{0} d}{2}\right)\left|F_{+}\left(k_{1}-k_{0}, \pm k_{2}-k_{0}\right)\right|^{2}\right. \\
& +2 \sin ^{4}\left(\frac{k_{0} d}{2}\right)\left|F_{-}\left(k_{1}-k_{0}, \pm k_{2}-k_{0}\right)\right|^{2} \\
& \pm \sin ^{2}\left(k_{0} d\right) \operatorname{Re}\left[F_{+}^{*}\left(k_{1}-k_{0}, \pm k_{2}-k_{0}\right)\right. \\
& \left.\left.\times F_{-}\left(k_{1}-k_{0}, \pm k_{2}-k_{0}\right)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
P_{\Leftrightarrow} & =\frac{1}{2} \int_{D_{\Leftrightarrow}} d k_{1} d k_{2} P\left(k_{1}, k_{2}\right) \\
& =\frac{1}{2}\left(1+\frac{\sin ^{2}\left(k_{0} d\right)}{1+\sin ^{2}\left(k_{0} d\right)}\right) \\
P_{\rightleftharpoons} & =\frac{1}{2} \int_{D=} d k_{1} d k_{2} P\left(k_{1}, k_{2}\right) \\
& =\frac{1}{2}\left(1-\frac{\sin ^{2}\left(k_{0} d\right)}{1+\sin ^{2}\left(k_{0} d\right)}\right)
\end{aligned}
$$

$\min \Theta$
 Θ

Θ
$\Theta \min$
$\min \Theta$
$\Theta m m$
$P \rightleftharpoons$

$$
\begin{gathered}
\left.R(\lambda)\right|_{\lambda \rightarrow 0}=\frac{P_{\Leftrightarrow}}{P_{\rightleftharpoons}}=1+2 \sin ^{2}\left(k_{0} d\right) \\
\sin \left(k_{0} \stackrel{ }{=}=(13)\right.
\end{gathered}
$$

closed geometry

STATE

$$
\begin{aligned}
&|\Psi\rangle=a|e\rangle \otimes|\mathrm{vac}\rangle+|g\rangle \otimes \sum_{k} \xi_{k} b_{k}^{\dagger}|\mathrm{vac}\rangle \\
& \xi(x)=\sqrt{\frac{2 \pi}{L}} \sum_{k} \xi_{k} \mathrm{e}^{\frac{2 \pi i k x}{L}}
\end{aligned}
$$

$$
|a|^{2}+\int_{-L / 2}^{L / 2}|\xi(x)|^{2} \mathrm{~d} x=1
$$

Hamiltonian

$$
\begin{aligned}
& H_{0}=\varepsilon \sigma^{+} \sigma^{-}+\sum_{k=-\infty}^{\infty} \omega_{k} b_{k}^{\dagger} b_{k} \\
& H_{\text {int }}=\sum_{k=-\infty}^{\infty} F_{k}\left(\sigma^{+} b_{k}+\sigma^{-} b_{k}^{\dagger}\right)
\end{aligned}
$$

$$
F_{k}=\sqrt{\frac{\gamma}{L \omega_{k}}}
$$

$\Sigma(E)=\sum_{k} \frac{F_{k}^{2}}{E-\omega_{k}}$
 self energy

$E-\varepsilon-\Sigma(E)=0 \quad$ bound states

(a) $|a|^{2}=0, \delta E / m=0$;

(c) $|a|^{2}=0.72, \delta E / m=2 \cdot 10^{-3}$;

(b) $|a|^{2}=0.40, \delta E / m=10^{-3}$;

(d) $|a|^{2}=0.96, \delta E / m=5 \cdot 10^{-3}$;

$$
\begin{aligned}
& \Sigma(E)=\gamma\left(\frac{\cot (q(E) L / 2)}{q(E)} \theta(E)+\beta_{0}(E)\right) \quad \text { non pe } \\
& \begin{aligned}
\xi_{1}(x)=\frac{\sqrt{2 \pi \gamma E}}{q(E)} & {[\cot (q(E) L / 2) \cos (q(E) x)} \\
& +\sin (q(E)|x|)] \theta(E)+\eta(x)
\end{aligned}
\end{aligned}
$$

non perturbative
reminder:

$$
|a|^{2}+\int_{-L / 2}^{L / 2}|\xi(x)|^{2} \mathrm{~d} x=1
$$

reminder: $\quad|a|^{2}+\int_{-L / 2}^{L / 2}|\xi(x)|^{2} \mathrm{~d} x=1$

(c) $|a|^{2}=0.72, \delta E / m=2 \cdot 10^{-3}$;
0.0
$\begin{array}{lll}1.0 & 2.0 \\ \mathrm{~F} / \mathrm{m}\end{array}$

TWO emitters

$$
\begin{gathered}
H_{\mathrm{int}}=\sum_{k=-\infty}^{\infty} \sum_{\alpha=1,2} F_{k}\left(\mathrm{e}^{\frac{2 \pi \mathrm{i} k x_{\alpha}}{L}} \sigma_{\alpha}^{+} b_{k}+\mathrm{e}^{\frac{-2 \pi \mathrm{i} k x_{\alpha}}{L}} \sigma_{\alpha}^{-} b_{k}^{\dagger}\right) \\
|\Psi\rangle=\sum_{\alpha=1,2} a_{\alpha} \sigma_{\alpha}^{+}|G\rangle \otimes|\mathrm{vac}\rangle+|G\rangle \otimes \sum_{k} \xi_{k} b_{k}^{\dagger}|\mathrm{vac}\rangle \\
|G\rangle=\left|g_{1}\right\rangle \otimes\left|g_{2}\right\rangle
\end{gathered}
$$

$$
[(E-\varepsilon) \mathbb{1}-\Sigma(E)] \boldsymbol{a}=0
$$

(a) $a_{1}+a_{2}=0,\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}=0.966, E=E_{4}$

(b) $a_{1}-a_{2}=0,|a 1|^{2}+|a 2|^{2}=0.934, E=\tilde{E}_{15}$

many ideas

- Calajo, Cíccarello, Chang, Rabl, PRA 2016, PRA 2017 bound states, slow light, ID photonic waveguide, strong coupling,
- Jaako, Xiang, García-Rípoll, Rabl, PRA 2016 ultra-strong coupling)
- Zheng, Gauthier, Baranger, PRL 2013
photon-photon interactions
-Paulisch, Kímble, Gonzalez-Tudela, NJP 2016 atomic degrees of freedom
- Rosarío Hamann, Muller, Jerger, Zanner, Combes, Pletyukhov, Weides, Stace, Fedorov PRL 2018
Nonreciprocity, "diod"
- Yudson: two-photons

Thank you

