Federico Roccati ${ }^{1, *}$ © , Salvatore Lorenzo ${ }^{1}{ }^{(\mathbb{D}}$, G Massimo Palma ${ }^{1,2} \mathbb{D}^{(\mathbb{D}}$, Gabriel T Landi ${ }^{3}{ }^{(\mathbb{D}}$, Matteo Brunelli ${ }^{4}$ (D) and Francesco Ciccarello ${ }^{1,2}{ }^{(\mathbb{D})}$

Quantum Sci. Technol. 6 (2021) 025005

HERMITIAN HAMILTONIANS $\mathcal{H}=\mathcal{H}^{\dagger}$

$\mathcal{H}=\left[\begin{array}{cc}\omega_{1} & g \\ g^{*} & \omega_{2}\end{array}\right] \begin{aligned} & \text { real eigenvalues unitary time evol } \\ & \text { orthogonal eigenstates } \\ & |\psi(t)\rangle \rightarrow e^{-i \varepsilon t / \hbar}|\psi(0)\rangle\end{aligned}$
NON HERMITIAN HAMILTONIANS $\mathcal{H} \neq \mathcal{H}^{\dagger}$
$\mathcal{H}=\left[\begin{array}{cc}\omega_{1}-i \gamma_{1} & g \\ g & \omega_{2}-i \gamma_{2}\end{array}\right] \cdot$ complex eigenvalues
phenomenological description of energy linewidths, decay processes, $|\psi(t)\rangle \rightarrow e^{-i(\varepsilon-i \gamma) t / \hbar}|\psi(0)\rangle$ (Weisskopf, Gamow)

GAIN- LOSS PT-SYMMETRIC HAMILTONIANS

$$
H=\left(\begin{array}{cc}
i \gamma & g \\
g & -i \gamma
\end{array}\right)
$$

$\gamma=$ gainlloss
$g=$ excitation exchange

$$
[P T, H]=0
$$

$$
P=\text { parity }
$$

$$
T=\text { time reversal }
$$

$$
\begin{gathered}
P: i \rightarrow i, \hat{x} \rightarrow-\hat{x}, \hat{p} \rightarrow-\hat{p}, \\
T: i \rightarrow-i, \hat{x} \rightarrow \hat{x}, \hat{p} \rightarrow-\hat{p}
\end{gathered}
$$

EXCEPTIONAL POINTS AND BROKEN SYMMETRY

$$
H=\left(\begin{array}{cc}
i \gamma & g \\
g & -i \gamma
\end{array}\right) \quad \varepsilon= \pm \sqrt{g^{2}-\gamma^{2}}
$$

$g<\gamma$

broken phase
Imaginary eigenvalues

SIMULATION OF PT - SYMMETRIC HAMILTONIANS WITH MEAN

 FIELD QUANTUM OPTICS
the equation of motion for the average values of field operators

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t}\binom{\left\langle\hat{a}_{L}\right\rangle}{\left\langle\hat{a}_{G}\right\rangle}=\left(\begin{array}{cc}
-i \gamma_{L} & g \\
g & i \gamma_{G}
\end{array}\right)\binom{\left\langle\hat{a}_{L}\right\rangle}{\left\langle\hat{a}_{G}\right\rangle}
$$

are PT symmetric when $\gamma_{L}=\gamma_{G}=\gamma$

WHAT ABOUT FLUCTUATIONS?

- Quantum fluctuations play a crucial role in open system dynamics e.g. in preserving commutation relations
- Quantum features of multipartite open system emerge at fluctuation level
- How are correlations in fluctuation related to the broken-unbroken phase?

SPOILER (TAKE HOME MESSAGE)

Figure 1. A pair of quantum oscillators G and L undergo a coherent exchange energy with rate g. Additionally, mode $G(L)$ is subject to a local gain (loss) with rate γ. The mean-field dynamics is described by a $\mathcal{P T}$-symmetric Hamiltonian. (Left): when $\mathcal{P} \mathcal{T}$ symmetry is preserved $(g>\gamma)$, if each mode starts in a coherent state (zero correlations), after some time they will share only classical correlations. (Right): $\mathcal{P T}$ symmetry breaking $(g<\gamma)$ is instead accompanied by stationary quantum correlations.

BEYOND MEAN FIELD:THE MASTER EQUATION

$$
\begin{aligned}
& \dot{\rho}=-i[H, \rho]+2 \gamma_{L}\left(\hat{a}_{L} \rho \hat{a}_{L}^{\dagger}-\frac{1}{2}\left\{\hat{a}_{L}^{\dagger} \hat{a}_{L}, \rho\right\}\right)+2 \gamma_{G}\left(\hat{a}_{G}^{\dagger} \rho \hat{a}_{G}-\frac{1}{2}\left\{\hat{a}_{G} \hat{a}_{G}^{\dagger}, \rho\right\}\right) \\
& H=g\left(\hat{a}_{L}^{\dagger} \hat{a}_{G}+\hat{a}_{L} \hat{a}_{G}^{\dagger}\right) .
\end{aligned}
$$

-the m.eq. preserves gaussian states (the covariance matrix fully characterises the fluctuations dynamics)
 -the beam splitter - like hamiltonian term does not create entanglement for coherent input states
-the gain transforms pure coherent input states into mixtures
-the average energy is not bounded

CORRELATION MEASURES

$$
\begin{aligned}
& \text { mutual information } \\
& \mathcal{I}=S_{G}+S_{L}-S,
\end{aligned}
$$

We replace the VonNeuman Entropy with the Rény -2 Entropy

$$
\begin{aligned}
& \quad \text { quantum discord } \\
& \mathcal{D}_{L G}=S_{G}-S+\min _{\hat{G}_{k}} \sum_{k} p_{k} S\left(\rho_{L \mid k}\right), \\
& \rho_{L \mid k}=\operatorname{Tr}_{G}\left(\hat{G}_{k} \rho\right) / p_{k} \\
& \text { In general (and in our case in particular) } \\
& \qquad \mathcal{D}_{L G} \neq \mathcal{D}_{G L},
\end{aligned}
$$

$$
S(\varrho)=-\log \operatorname{Tr}\left(\varrho^{2}\right)
$$

For Gaussian states, and Rény 2- Entropy (optimal measurement being phase insensitive)

$$
\mathcal{D}_{L G}=\log \left(1+\frac{\mathrm{e}^{\mathcal{I}}-1}{\mathrm{e}^{S_{G}}+1}\right), \quad \mathcal{D}_{G L}=\log \left(1+\frac{\mathrm{e}^{\mathcal{I}}-1}{\mathrm{e}^{S_{L}}+1}\right)
$$

Figure 2. Evolution of total and quantum correlations on the $\mathcal{P} \mathcal{T}$ line $\left(\gamma_{L}=\gamma_{G}=\gamma\right)$. This comprises the UP $\gamma<g$, the EP $\gamma=g$ and the BP for $\gamma>g$. (a) and (b): mutual information \mathcal{I} (a) and discord $\mathcal{D}_{L G}$ (b) for $\gamma=g / 2$ (UP, green), $\gamma=3 g / 2$ (BP, red) and $\gamma=g\left(E P\right.$, blue). A qualitatively analogous behavior is exhibited by $\mathcal{D}_{G L} .(\mathrm{c})$: asymptotic value of discord, $\mathcal{D}_{L G}(\infty)$ (yellow) and $\mathcal{D}_{G L}(\infty)$ (purple). See appendix.

UP $\mathcal{I} \approx \log \left(\frac{g^{2}}{g^{2}-\gamma^{2}}\right)$,
$\mathcal{D}_{L G}, \mathcal{D}_{G L} \approx \frac{\gamma}{2 g^{2} t}$ Purely classical Asymptotic correlations

$$
\begin{array}{lr}
\text { BP } & \mathcal{I} \approx 2 \Omega t, \text { with } \Omega=\sqrt{\gamma^{2}-g^{2}} \\
\mathcal{D}_{G L} \approx \log \left(\frac{\gamma(3 \gamma+\Omega)-g^{2}}{2 \gamma^{2}}\right) & \text { Asympto } \\
\mathcal{D}_{L G} \approx \log \left(\frac{\gamma(\gamma+\Omega)+g^{2}}{2 \gamma^{2}}\right) & \text { in the preselatio } \\
& \text { of noi }
\end{array}
$$

EP $\mathcal{I} \approx \log \left(\frac{4 g^{2}}{3} t^{2}\right)$

$$
\mathcal{D}_{L G}, \mathcal{D}_{G L} \approx \frac{1}{g t}
$$

Diverging
asymptotic
Classical correlations

Table 1. Asymptotic behavior of S and $S_{L(G)}$ on the $\mathcal{P} \mathcal{T}$ line.

$\mathcal{P} \mathcal{T}$ line	UP	EP	BP
S	$\log \left(\frac{4 \gamma^{2} g^{2}}{g^{2}-\gamma^{2}} t^{2}\right)$	$\log \left(\frac{4 g^{4}}{3} t^{4}\right)$	$2 \Omega t+\log \left(\frac{\gamma^{3}(\gamma+\Omega)}{\Omega^{4}}\right)$
S_{L}	$\log \left(\frac{2 \gamma g^{2}}{g^{2}-\gamma^{2}} t\right)$	$\log \left(\frac{4 g^{3}}{3} t^{3}\right)$	$2 \Omega t+\log \left(\frac{\gamma g^{2}}{2 \Omega^{3}}\right)$
S_{G}			$2 \Omega t+\log \left(\frac{\gamma(\gamma+\Omega)^{2}}{2 \Omega^{3}}\right)$

In the long time limit

$$
\mathcal{D}_{L G} \approx \log \left(1+\mathrm{e}^{-\left(S-S_{L}\right)}-\mathrm{e}^{-S_{G}}\right)
$$

The asymptotic survival of Quantum Correlations depends only on $S-S_{L}$

CONCLUSIONS

- We have considered the fluctuations dynamics of two harmonic oscillators whose mean field dynamics simulates a gain-loss PT - symmetric hamiltonian
- In the "Unbroken phase" the long time correlations are purely classical
- In the "Broken phase" long term quantum correlation survive in the presence of noise

