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GAIN- LOSS PT-SYMMETRIC HAMILTONIANS
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EXCEPTIONAL POINTS AND BROKEN SYMMETRY
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SIMULATION OF PT - SYMMETRIC HAMILTONIANS WITH MEAN
FIELD QUANTUM OPTICS
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WHAT ABOUT FLUCTUATIONS!?

» Quantum fluctuations play a crucial role in open system dynamics e.g. In

preserving commutation relations

» Quantum features of multipartite open system emerge at fluctuation level
» How are correlations in fluctuation related to the broken-unbroken

phase!?
SPOILER (TAKE HOME MESSAGE)

Figure 1. A pair of quantum oscillators G and L undergo a coherent exchange energy with rate g. Additionally, mode G (L) is
subject to a local gain (loss) with rate v. The mean-field dynamics is described by a P77 -symmetric Hamiltonian. (Left): when
PT symmetry is preserved (¢ > =), if each mode starts in a coherent state (zero correlations), after some time they will share
only classical correlations. (Right): P77 symmetry breaking (¢ < ) is instead accompanied by stationary quantum correlations.
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CORRELATION MEASURES
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Figure 2. Evolution of total and quantum correlations on the P7T line (v; = v = 7). This comprises the UP v < g, the EP

~v = gand the BP for v > ¢. (a) and (b): mutual information Z (a) and discord D;; (b) for v = ¢/2 (UP, green), v = 3¢/2 (BP,
red) and v = ¢ (EP, blue). A qualitatively analogous behavior is exhibited by Dg; . (¢): asymptotic value of discord, D;s(00)
(yellow) and D¢y (o0) (purple). See appendix.
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Table 1. Asymptotic behavior of § and Sy () on the P7T line.
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CONCLUSIONS

* We have considered the fluctuations dynamics of two
harmonic oscillators whose mean field dynamics simulates
a galn-loss PT - symmetric hamiltonian

* In the "Unbroken phase’ the long time correlations are
burely classical

* In the "Broken phase’” long term guantum correlation
survive In the presence of noise




