

DEGLI STUDI

UNIVERSITÀ H DI PALERMO

Federico Roccati^{1,*}, Salvatore Lorenzo¹, G Massimo Palma^{1,2}, Gabriel T Landi³, Matteo Brunelli⁴ and Francesco Ciccarello^{1,2}

Quantum correlations in \mathcal{PT} -symmetric systems

Quantum Sci. Technol. 6 (2021) 025005

$$\begin{aligned} & \text{HERMITIAN HAMI} \\ & \mathcal{H} = \begin{bmatrix} \omega_1 & g \\ g^* & \omega_2 \end{bmatrix} \cdot \text{real eig} \\ \circ \text{orthog} \\ & |\psi(t)| \end{aligned}$$

NON HERMITIAN HAMILTONIANS $\mathcal{H} \neq \mathcal{H}^{\dagger}$ $\mathcal{H} = \left[egin{array}{ccc} \omega_1 - i \gamma_1 & g \ g & \omega_2 - i \gamma_2 \end{array} ight] egin{array}{c} \cdot \ ext{complex eigenvalues} \ \cdot \ ext{non-unitary time evolutions} \end{array}$

phenomenological description of (Weisskopf, Gamow)

LTONIANS $\mathcal{H} = \mathcal{H}^{\dagger}$

genvalues unitary time evolutions gonal eigenstates

$| \rangle \rightarrow e^{-i\varepsilon t/\hbar} | \psi(0) \rangle$

energy linewidths, decay processes, $|\psi(t)\rangle \rightarrow e^{-i(\varepsilon - i\gamma)t/\hbar} |\psi(0)\rangle$

p

GAIN- LOSS PT-SYMMETRIC HAMILTONIANS

- $\gamma = gain/loss$
- g = excitation exchange
- [PT,H] = 0
- P = parityT = time reversal

Λ

$$P: i \to i, \ \hat{x} \to -\hat{x}, \ \hat{p} \to -\hat{p}, T: i \to -i, \ \hat{x} \to \hat{x}, \ \hat{p} \to -\hat{p}$$

EXCEPTIONAL POINTS AND BROKEN SYMMETRY

coalesce

SIMULATION OF PT - SYMMETRIC HAMILTONIANS WITH MEAN FIELD QUANTUM OPTICS

WHAT ABOUT FLUCTUATIONS?

- Quantum fluctuations play a crucial role in open system dynamics e.g. in preserving commutation relations
- Quantum features of multipartite open system emerge at fluctuation level • How are correlations in fluctuation related to the broken-unbroken
- phase?

SPOILER (TAKE HOME MESSAGE)

 $\dot{\rho} = -i[H,\rho] + 2\gamma_L \left(\hat{a}_L \rho \,\hat{a}_L^{\dagger} - \frac{1}{2} \{\hat{a}_L^{\dagger} \hat{a}_L,\rho\}\right) + 2\gamma_G \left(\hat{a}_G^{\dagger} \rho \,\hat{a}_G - \frac{1}{2} \{\hat{a}_G \hat{a}_G^{\dagger},\rho\}\right)$ $H = g\left(\hat{a}_{L}^{\dagger}\hat{a}_{G} + \hat{a}_{L}\hat{a}_{G}^{\dagger}\right).$

•the m.eq. preserves gaussian states (the covariance matrix fully characterises the fluctuations dynamics) •the beam splitter - like hamiltonian term does not create entanglement for coherent input states •the gain transforms pure coherent input states into mixtures •the average energy is not bounded

BEYOND MEAN FIELD: THE MASTER EQUATION

CORRELATION MEASURES

mutual information $\mathcal{I} = S_G + S_L - S_s$,

We replace the VonNeuman Entropy with the Rény -2 Entropy

 $S(\varrho) = -\log \operatorname{Tr}(\varrho^2)$

For Gaussian states, and Rény 2- Entropy (optimal measurement being phase insensitive) $\mathcal{D}_{LG} = \log\left(1 + \frac{e^{\mathcal{I}} - 1}{e^{S_G} + 1}\right), \qquad \mathcal{D}_{GL} = \log\left(1 + \frac{e^{\mathcal{I}} - 1}{e^{S_L} + 1}\right)$

Figure 2. Evolution of total and quantum correlations on the \mathcal{PT} line ($\gamma_L = \gamma_G = \gamma$). This comprises the UP $\gamma < g$, the EP $\gamma = g$ and the BP for $\gamma > g$. (a) and (b): mutual information \mathcal{I} (a) and discord \mathcal{D}_{LG} (b) for $\gamma = g/2$ (UP, green), $\gamma = 3g/2$ (BP, red) and $\gamma = g$ (EP, blue). A qualitatively analogous behavior is exhibited by \mathcal{D}_{GL} . (c): asymptotic value of discord, $\mathcal{D}_{LG}(\infty)$ (yellow) and $\mathcal{D}_{GL}(\infty)$ (purple). See appendix.

UP $\mathcal{I} \approx \log(\frac{g^2}{g^2 - \gamma^2}),$ **EP** $\mathcal{I} \approx \log(\frac{4g^2}{3}t^2)$ $\mathcal{D}_{LG}, \mathcal{D}_{GL} \approx \frac{1}{gt}$ $\mathcal{I} \approx 2\Omega t$, with $\Omega = \sqrt{\gamma^2 - g^2}$ BP Asymptotic $\mathcal{D}_{GL} pprox \log$ gt correlations Diverging Purely classical in the presence $\mathcal{D}_{LG} pprox \logigg(rac{\gamma(\gamma+\Omega)+g^2}{2\gamma^2}igg)$ asymptotic Asymptotic of noise Classical correlations correlations

In the long time limit $\mathcal{D}_{LG} \approx$

The asymptotic survival of Quantum Correlations depends only on $S-S_L$

$$\log\left(1+\mathrm{e}^{-(S-S_L)}-\mathrm{e}^{-S_G}\right),\,$$

CONCLUSIONS

- We have considered the fluctuations dynamics of two harmonic oscillators whose mean field dynamics simulates a gain-loss PT - symmetric hamiltonian
- In the "Unbroken phase" the long time correlations are purely classical
- In the "Broken phase" long term quantum correlation survive in the presence of noise