DISCRETE PHASE SPACE TECHNIQUES IN QUANTUM SPIN CHAINS

Université Mohammed V Faculté des Sciences Rabat

MORAD EL BAZ FACULTY OF SCIENCES MOHAMMED V UNIVERSITY **RABAT - MOROCCO**

52 Symposium on Mathematical Physics "Channels, Maps and All That"

Toruń, June 14-17, 2021

In memory of Prof. Andrzej Kossakowski

morad.elbaz@fsr.um5.ac.ma

June 16, 2021

DISCRETE PHASE SPACE TECHNIQUES IN QUANTUM SPIN CHAINS

Zakaria Mzaouali, Steve Campbell and MEB,

"Discrete and generalized phase space techniques in critical quantum spin chains" Phys. Lett. A 383, 125932 (2019)

- INTRODUCTION
- DISCRETE WIGNER FUNCTION AND DISCRETE PHASE SPACE
- XY MODEL
- XXZ MODEL
- CONCLUSION

INTRODUCTION

6.5

15

The Assessment of the second second

tool.

No.

The second states of the second

to at a

1

A. A.

15.87

2. Sector

20

to at a

15.87

E Fa

1

Quasi-probability? No problem!

aq + bp = c

q

The eigenstate of the operator $a\hat{q} + b\hat{p}$ corresponding to the eigenvalue *c* is assigned to this line.

and the

 $\int_{aq+bp=c} W(q,p)dqdp$ probability that a measure of the observable $a\hat{q} + b\hat{p}$ yields the eigenvalue *c*.

1

Service and the service of the servi

p

Quasi-probability? No problem!

No.

-

 $\begin{array}{l} W(q,p)dqdp \\ c_2 < aq+bp < c_1 \\ \text{probability that a measure} \\ \text{of the observable } a\hat{q} + b\hat{p} \\ \text{yields an eigenvalue} \\ \text{between } c_1 \text{ and } c_2. \end{array}$

6.2

and the

North Contraction of the State

p

Translational covariance:

p

y

L. Fr

The second states which are

AND A

and players

the la

DISCRETE PHASE SPACE

- ▲ F.A. Buot, "Method for calculating TrHn in solid-state theory" Phys. Rev. B 10, 3700 (1974)
- R. Feynman, "Negative Probabilities" in Quantum Implications: Essays in Honour of David Bohm, edited by B. Hiley and D. Peat (Routledge, London, 1987)
- W. K. Wootters, "A Wigner-function formulation of finite-state quantum mechanics" Annals of Physics 176, 1 (1987)
- K. S. Gibbons, M. J. Hoffman, and W. K. Wootters, "Discrete phase space based on finite fields" Phys. Rev. A 70, 062101 (2004)

DISCRETE PHASE SPACE

K. S. Gibbons, M. J. Hoffman, and W. K. Wootters, "Discrete phase space based on finite fields" Phys. Rev. A 70, 062101 (2004)

The phase space is a vector space over a finite field.

(q, p) are elements of a Galois field \mathbb{F}_n .

n, the number of elements in the field is the dimension of the state space of the system.

 \mathbb{F}_n exists *if and only if* n is a prime power.

If *n* is a prime number, then the field is $\{0, 1, ..., n - 1\}$ with addition and multiplication *modulo n*.

If $n = r^n$ with r being a prime number, then the field \mathbb{F}_n is an extension of the filed \mathbb{F}_r .

One q-bit discrete phase space (1 qubits $\Rightarrow n = 2$)

a star

1

6.2

p1 0 0 1 q

 $\mathbb{F}_2 = (0,1)$

in the second

-

One q-bit discrete phase space

A. A.

Line equation: aq + bp = c

$a, b, c \in \mathbb{F}_2$

Sec.

2. Sale

15

The second states of the second

Two **q-bit** discrete phase

 ω^2

ω

1

0

as	e space	(2	qubits	$\Rightarrow n = 4$	$= 2^{2}$)	$\mathbb{F}_4 = ($	0,1,ω,	$\omega + 1$	$=\omega^2)$
p					(p ₁ ,	<i>p</i> ₂)			
2					11				
υ	۲				10	۲	۲		۲
1	۲				01	۲			۲
0	۲				00				(q ₁ , q ₂)
	0	1	ω	ω^2	q	00	01	10	11

15.87

Prost.

The second states of the second

+	0	1	ω	ω^2		
0	0	1	ω	ω^2		
1	1	0	ω^2	ω		
ω	ω	ω^2	0	1		
ω^2	ω^2	ω	1	0		

×	0	1	ω	ω^2
0	0	0	0	0
1	0	1	ω	ω^2
ω	0	ω	ω^2	1
ω^2	0	ω^2	1	ω

15

Section States

A. Pa

the la

ALC: N

DISCRETE WIGNER FUNCTION

One to One correspondence between the Hilbert space of states and the Phase space associated to a given system.

Assign to each line λ in phase space a state as represented by a projector $Q(\lambda)$.

Impose that the probability that the system is in state $Q(\lambda)$ is given by the sum of the Wigner function over the line λ : $\sum W_{\alpha} = Tr[\rho Q(\lambda)]$

$$\begin{split} \rho &= \sum_{(x_i, p_i)} W(x_i, p_i) \hat{A}(x_i, p_i) \\ \hat{A}(x_1, p_1) &= \frac{1}{2} [I + (-1)^{x_1} \sigma^z + (-1)^{p_1} \sigma^x + (-1)^{x_1 + p_1} \sigma^y] \\ \hat{A}(x_1 \dots x_k, p_1 \dots p_k) &= \hat{A}(x_1, p_1) \otimes \hat{A}(x_2, p_2) \otimes \dots \otimes \hat{A}(x_k, p_k) \end{split}$$

XY MODEL

Spin- $\frac{1}{2}$ anisotropic XY model with periodic boundary conditions:

1

1. 7. 5. 5. 1

and the second

DWF

and a

 x_1

tool.

Reduced density matrix

The second states of the second

 p_1

Se at

STATE AND SHE

1. 38

Se at

and the Real State

 x_1

-

The second second second

15.87

the factor

Single site:

 p_{\uparrow}

15

2.5

- -

A STA

Two site:

E. E.

at at

and the second

Two site:

E. E.

20

and the second

A STREET OF THE STREET

1000

See.

XXZ MODEL

Spin- $\frac{1}{2}$ XXZ model with periodic boundary conditions:

$$\mathcal{H}_{XXZ} = \frac{1}{4} \sum_{i=1}^{N} \sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \Delta \sigma_i^z \sigma_{i+1}^z$$

USE CARE AN

First order phase transition at $\Delta = -1$.

and at

Continuous phase transition at $\Delta = 1$.

and the second

A STATE OF THE STATE

A. Fr

1000

*

Two site:

The second states in the second

ALC: N

the factor

- WHY IT WORKS?
- WHY IT DOESN'T WORK?
- OTHER MODELS?
- OTHER DIMENSIONS?

6

The second state of the second

AND A

12 - 19

the factor

DISCRETE PHASE SPACE TECHNIQUES IN QUANTUM SPIN CHAINS 52 Symposium on Mathematical Physics "Channels, Maps and All That" Université Mohammed V Faculté des Sciences Toruń, June 14-17, 2021 Rabat MORAD EL BAZ FACULTY OF SCIENCES MOHAMMED V UNIVERSITY **RABAT - MOROCCO**

In memory of Prof. Andrzej Kossakowski

morad.elbaz@fsr.um5.ac.ma

June 16, 2021