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1. Introduction

Discovering the aspects of quantum mechanics, such as superposition
and interference, has lead to the idea of quantum walks, a generalization
of classical random walks [24, 41]. Recently, in [20] a quantum phase
transition has been explored by means of quantum walks in an optical
lattice. On the other hand, in [34] it has been showed that discrete-time
quantum walks (QW) can realise topological phases in 1D and 2D for
all the symmetry classes of free-fermion systems. In particular, they
provide the QW protocols that simulate representatives of all topolog-
ical phases, featured by the presence of robust symmetry- protected
edge states [35]. In general, QW realisations are particularly useful,
because, in addition to the simplicity of their mathematical descrip-
tion, the parameters that define them can be easily controlled in the
lab.
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Over the past decade, motivated largely by the prospect of super-
efficient algorithms, the theory of quantum Markov chains (QMC),
especially in the guise of quantum walks, has generated a huge num-
ber of works, including many discoveries of fundamental importance
[12, 27, 33, 50]. In [30] it has been proposed a novel approach to
investigate quantum cryptography problems by means of QMC [32]
where quantum effects are entirely encoded into super-operators la-
belling transitions, and the nodes of its transition graph carry only
classical information and thus they are discrete. Recently, QMC have
been applied [27, 26] to the investigations of so-called ”open quantum
random walks” (OQRW) [13, 18, 36, 37, 49]. We notice that OQRW are
related to the study of asymptotic behavior of trace-preserving com-
pletely positive maps, which belong to fundamental topics of quantum
information theory ( see for instance [17, 38, 39, 40, 45, 46]).
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For the sake of clarity, let us recall some necessary information about
OQRW. Let K denote a separable Hilbert space and let {|i〉}i∈Λ be
its orthonormal basis indexed by the vertices of some graph Λ (here
the set Λ of vertices might be finite or countable). Let H be another
Hilbert space, which will describe the degrees of freedom given at each
point of Λ. Then we will consider the space H ⊗ K. For each pair
i, j one associates a bounded linear operator Bi

j on H. This operator
describes the effect of passing from |j〉 to |i〉. We will assume that for
each j, one has

(1)
∑
i

Bi∗
j B

i
j = 1I,

where, if infinite, such series is strongly convergent. This constraint
means: the sum of all the effects leaving site j is 1I. The operators Bi

j

act on H only, we dilate them as operators on H⊗K by putting

M i
j = Bi

j ⊗ |i〉〈j| .
The operator M i

j encodes exactly the idea that while passing from |j〉
to |i〉 on the lattice, the effect is the operator Bi

j on H.
According to [13] one has

(2)
∑
i,j

M i
j
∗
M i

j = 1I.
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Therefore, the operators (M i
j)i,j define a completely positive mapping

(3) M(ρ) =
∑
i

∑
j

M i
j ρM

i
j
∗

on H⊗K.
In what follows, we consider density matrices on H⊗K which take

the form

(4) ρ =
∑
i

ρi ⊗ |i〉〈i|,

assuming that
∑

i Tr(ρi) = 1.
For a given initial state of such form, the Open Quantum Random

Walk (OQRW) is defined by the mappingM, which has the following
form

(5) M(ρ) =
∑
i

(∑
j

Bi
jρjB

i∗
j

)
⊗ |i〉〈i|.
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If the evolution is performed two times we have

M2(ρ) =
∑
i

∑
j

∑
k

Bi
jB

j
k ρkB

j
k

∗
Bi
j
∗ ⊗ |i〉〈i| .

Hence measuring the position after two steps, we get the site |i〉 with
probability ∑

j

∑
k

Tr
(
Bi
jB

j
k ρkB

j
k

∗
Bi
j
∗
)
.
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By means of the map M one defines a family of classical random
process on Ω = ΛZ+. Namely, for any density operator ρ on H ⊗ K
(see (4)) the probability distribution is defined by

(6) Pρ(i0, i1, . . . , in) = Tr(Bin
in−1
· · ·Bi2

i1
Bi1
i0
ρi0B

i1∗
i0
Bi2∗
i1
· · ·Bin∗

in−1
).

We point out that this distribution is not a Markov measure [15].
On the other hand, it is well-known [44] that to each classical random

walk one can associate certain Markov chain and some properties of
the walk can be explored by the constructed chain. Therefore, it is
natural to construct Quantum Markov chain associated with OQRW
and investigate its properties.
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Let us denote ΩZ+ = ΛZ+, ΩZ = ΛZ, here Z+ denotes the set of all
non negative integers. A subset of ΩZ+ (resp. ΩZ) given by

A[l,m](il, il+1, . . . , im) = {ω ∈ ΩZ+ wl = il, . . . , ωm = im}.
is called thin cylindrical set, where ik ∈ Λ, k ∈ Z+. By F we denote
the σ-algebra generated by thin cylindrical sets.

Since the finite disjoint unions of thin cylinders form an algebra which
generates F, therefore a measure µ on F is uniquely determined by the
values:

µn(A[l,n](il, il+1, . . . , in)).

which should satisfy the compatibility conditions, i.e.

(7)
∑
j∈Λ

µn+1(A[0,n+1](i0, i1, . . . , in, j)) = µn(A[0,n](i0, i1, . . . , in))

The Kolmogorov’s Theorem ensures the existence of the measure µ on
(ΩZ+,F).
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Now for a givenM (see (3)) and a fixed ρ (see (4)), for every n ∈ N,
we define a measure Pρ,n on Ωn := Λ[0,n] as the distribution of the
OQRW, i.e.
(8)
Pρ,n(A[0,n](i0, i1, . . . , in)) = Tr(Bin

in−1
· · ·Bi2

i1
Bi1
i0
ρi0B

i1∗
i0
Bi2∗
i1
· · ·Bin∗

in−1
).

Proposition 1.1. Let Pρ be a measure defined on (ΩZ+,F) as-
sociated with OQRW M and an initial density operator ρ. If
ρ =

∑
i

ρi ⊗ |i〉〈i| is an invariant density operator w.r.t. M, then

the measure Pρ can be extended to (ΩZ,F).
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Recently, in [27], we have found a quantum Markov chain (QMC)1

(or finitely correlated state (FCS)[28]) ϕ on the algebra A = ⊗i∈Z+Ai,
where Ai is isomorphic to B(H) ⊗ B(K), i ∈ Z+, such that the
transition operator P equals to the mappingM∗ and the restriction of
ϕ to the commutative subalgebra of A coincides with the distribution
Pρ, i.e.

(9) ϕ
(
(1I⊗|i0 >< i0|)⊗· · ·⊗ (1I⊗|in >< in|)

)
= Pρ(i0, i1, . . . , in).

Hence, this result allows us to interpret the distribution Pρ as a QMC,
and to study further properties of Pρ.

1We note that a Quantum Markov Chain is a quantum generalization of a Classical Markov Chain where
the state space is a Hilbert space, and the transition probability matrix of a Markov chain is replaced by a
transition amplitude matrix, which describes the mathematical formalism of the discrete time evolution of open
quantum systems, see [3]-[?],[28, 31] for more details.
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In the present paper, we are going to look at the probability distribu-
tion (6) as a Markov field over the Cayley tree Γk. Roughly speaking,

(i0, i1, . . . , in) is considered as a configuration on Ω = ΛΓk
. Such kind

of consideration, allows us to investigated phase transition phenomena
associated for OQRW within QMC scheme [52, ?]. We stress that,
in physics, a spacial classes of QMC, called ”Matrix Product States”
(MPS) and more generally ”Tensor Network States” [21, 47] were used
to investigate quantum phase transitions for several lattice models.
This method uses the density matrix renormalization group (DMRG)
algorithm which opened a new way of performing the renormalization
procedure in 1D systems and gave extraordinary precise results. This is
done by keeping the states of subsystems which are relevant to describe
the whole wave-function, and not those that minimize the energy on
that subsystem.

In [7, 8, 7, 10] it has been used a QMC approach to investigate
models defined over the Cayley trees. Furthermore, in [52, 53, 54,
58, 59] we have established that Gibbs measures of the Ising model
with competing (Ising) interactions (with commuting interactions) on
a Cayley trees, can be considered as QMC.

In this paper, we first propose new construction of QMC on trees,
which is an extension of QMC considered in [10]. Using such a construc-
tion, we are able to construct QMC on tress associated with OQRW.
Furthermore, our investigation leads to the detection of the phase tran-
sition phenomena within the proposed scheme.
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2. Preliminaries

Let T = (V,E) be a locally finite tree. We fix a root o ∈ V . Two
vertices x and y are nearest neighbors (denoted x ∼ y ) if they are
joined through an edge (i.e. < x, y >∈ E). A list x ∼ x1 ∼ · · · ∼
xd−1 ∼ y of vertices is called a path from x to y. The distance on the
tree between two vertices x and y (denoted d(x, y)) is the length of the
shortest edge-path joining them.
The set of direct successors for a given vertex x ∈ V is defined by

(10) S(x) := {y ∈ V : x ∼ y and d(y, o) > d(x, o)} .
Let o = x0 ∼ x1 ∼ · · ·xn = x be the shortest edge-path joining o and
x. The set

(11) Px := {o = x0, x1, · · · , xn = x}
represents the ”past” of the vertex x w.r.t. the root o.
Define

Vn := {x ∈ V | d(x, o) = n}

Vn] :=
⋃
j≤n

Vj; V[m,n] =

n⋃
j=m

Vj.
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To each vertex x, we associate a C∗–algebra Ax with identity 1Ix.
For a given bounded region V ′ ⊂ V , we consider the algebra AV ′ =⊗

x∈V ′Ax. One can consider the following embedding

AVn]
≡ AVn]

⊗ 1IVn+1 ⊂ AVn+1]
.

The algebra AVn]
can be viewed as a subalgebra of AVn+1]

. It follows
the quasi-local algebra.

(12) AV ; loc :=
⋃
n∈N

An]

and the quasi-local algebra

AV := AV ; loc
C∗
.

The set of states on a C∗–algebra A will be denoted S(A).
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3. Quantum Markov chains on trees

3.1. QMC on Z+. In this section, we recall the definition of quantum
Markov chain.

For each i ∈ Z+, (here Z+ denotes the set of all non negative integers)
let us associate identical copies of a separable Hilbert space H and
C∗-subalgebra M0 of B(H), where B(H) is the algebra of bounded
operators on H :

H{i} = H,

A{i} = M0 ⊂ B(H) for each i ∈ Z+

We assume that any minimal projection in M0 is one dimensional.
For any bounded Λ ⊂ Z+, let

AΛ =
⊗
i∈Λ

Ai, Aloc =
⋃

Λ⊂Z+,|Λ|<∞

AΛ

A = Aloc =:
⊗
i∈Z+

Ai

where the bar denotes the norm closure.
For each i ∈ Z+, let Ji be the canonical injection of M0 to the i-th

component of A. For each Λ ⊂ Z+ we identity AΛ as a subalgebra of
A.
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The basic ingredients in the construction of a stationary generalized
quantum Markov chain in the sense of Accardi [2, 12] consist of a tran-
sition expectation E : M0 ⊗M0 → M0 which is completely positive
unital map (i.e. E(1I⊗1I) = 1I)), and a state φ0 on M0. In what follows,
a pair (φ0, E) is called a Markov pair.

A state ϕ defined on A associated with a Markov pair (φ0, E), is
called Quantum Markov Chain (QMC) if

ϕ(x0 ⊗ x1 ⊗ . . .⊗ xn) = φ0(E(x0 ⊗ E(x1 ⊗ · · · ⊗ E(xn ⊗ 1I) · · · )))).(13)

Let σ : M0⊗M0 →M0⊗M0 be the flipping automorphism defined
by σ(x ⊗ y) = y ⊗ x. For every transition expectation E one can
associate its transpose by E t = E ◦ σ. Hence, given a Markov pair
(φ0, E) we naturally associate its transpose Markov pair (φ0, E t). The
QMC corresponding to the pair (φ0, E t) is called transpose QMC of
ϕ, and it is denoted by ϕt.
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To every transition expectation one associates two kinds of Markov
operators (i.e. completely positive, identity preserving map) from M0

into itself:

P (a) = E(1I⊗ a), (backward transition operator)(14)

T (a) = E(a⊗ 1I), (forward transition operator).(15)

Remark 3.1. It is known [3] that in the classical setting T is the
identity operator, and P coincides with usual Markov transition
operator.

Remark 3.2. We point out that the quantum Markov chain can
be also treated as a special case of finitely correlated states (FCS)
which were introduced in [28]. Let us recall the well-known con-
struction. Let A,B be two C∗-algebras with units 1IA,1IB, respec-
tively, ϕ0 be a state on B, and E : A ⊗B → B be a completely
positive unital map such that for all b ∈ B one has

ϕ0(E(1IA ⊗ b)) = ϕ0(b).

For each a ∈ A one defines a map Ea : B→ B by setting Ea(b) =
E(a⊗ b). The functional

ϕ(x1 ⊗ · · · ⊗ xn) = ϕ0(Ex1 · · · Exn(1IB))

uniquely defines a state on the C∗-algebra
⊗
i∈N

Ai, where Ai is a

copy of A. The state ϕ is the finitely correlated state associated to
(A,B, E , ϕ0). In case, A = B we will recover QMC. On the other
hand, we stress that, in general, we cannot define the transpose
FCS on the same algebra with the initial one. Therefore, in what
follows, we will work within QMC scheme.



17

In what follows, by An] we denote the subalgebra of A, generated by
the first (n + 1) factors, i.e.

an] = a0 ⊗ a1 ⊗ · · · an ⊗ 1I[n+1 = J0(a0)J1(a1) · · · Jn(an),

with a0, a1, . . . , an ∈ M0. It is well known [?] that for each n ∈ N
there exists a unique completely positive identity preserving mapping
En] : A → An] such that

En](am]) = a0 ⊗ · · · ⊗ an−1 ⊗ E(an ⊗ E(an+1 ⊗ · · · ⊗ E(am ⊗ 1I) · · · )), m > n(16)

Remark 3.3. We notice that if the state φ0 satisfies the following
condition:

φo(E(1I⊗ x)) = φ0(x), x ∈M0(17)

then the Markov pair (φ0, E) defines local states

ϕ[i,n](xi ⊗ xi+1 ⊗ . . .⊗ xn) = φ0(E(xi ⊗ E(xi+1 ⊗ · · · ⊗ E(xn ⊗ 1I) · · · )))).(18)

The family of local states {ϕ[i,n]}, due to (17), satisfies a com-
patibility condition, and therefore, the state ϕ is well defined on
AZ :=

⊗
i∈Z
Ai. Moreover, ϕ is translation invariant, i.e. it is in-

variant with respect to the shift α, i.e. α(Jn(a)) = Jn+1(a).



18

3.2. Tree-homogeneous quantum Markov chains. Let T
′

=
(V
′
, E

′
) be a subtree of the tree. There exists a unique vertex o′ ∈ V ′

such that d(o, V ′) = d(o, o′). This vertex o′ will be referred as root
of the subtree T

′
. In the sequel, we reduce ourselves to the case of

regular trees (known as Cayley trees). The Cayley tree of order k
is characterized by being a tree for which every vertex has exactly
k + 1 nearest-neighbors. We consider the semi-infinite Cayley tree
Γk+ = (V,E) with root o. In this case, any vertex has exactly k direct
successors denoted (x, i), i = 1, 2, · · · , k.

S(x) = {(x, 1), (x, 2), · · · , (x, k)}.
A coordinate structure on Γk+ is given by

Vn = {(i1, i2, · · · , in); ij = 1, 2, · · · , k}.
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For x = (i1, i2, · · · , in) ∈ Vn, we define k shifts on the tree as follows

(19) αj(x) = (j, x) = (j, i1, i2, · · · , in) ∈ Vn+1.

Moreover, we have

αx := αi1 ◦ αi2 ◦ · · · ◦ αin.
The shift αx maps the Cayley tree Γk+ onto its subtree Tx having root
at x.

One has αx(o) = x and αx(Vn) = Sn(x). The shifts αj can be
extended to the algebra AV as follows:

(20) αj

⊗
x∈Vn]

ax

 := 1I(o) ⊗
n⊗
i=0

a(j,x)
x .
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Consider a triplet C ⊆ B ⊆ A of C∗–algebras. A quasi-conditional
expectation [4] is a completely positive identity preserving linear map
E : A → B such that E(ca) = cE(a), for all a ∈ A, c ∈ C.

Definition 3.4. A (backward) quantum Markov chain on AV is a
triplet (φo, (EVn]

)n≥0, (hn)n) of initial state φo ∈ S(Ao), a sequence

of quasi-conditional expectations (EVn]
)n w.r.t. the triple AΛn−1]

⊆
AVn]

⊆ AVn+1]
and a sequence hn ∈ AVn,+ of boundary conditions

such that for each a ∈ AV the limit

(21) ϕ(a) := lim
n→∞

φ0 ◦ EV0]
◦ EV1]

◦ · · · ◦ EVn]
(h

1/2
n+1ah

1/2
n+1)

exists in the weak-*-topology and defines a state. In this case
the state ϕ defined by (21) is also called quantum Markov chain
(QMC).

Remark 3.5. The above definition introduce quantum Markov
chains on trees as a triplet generalizing the definitions consid-
ered in [10], [52] by adding the boundary conditions. On the other
hand it extends to trees the recent unifying definition for quantum
Markov chains on the one-dimensional case [6].
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Definition 3.6. A quantum Markov chain ϕ ≡ (φo, (EVn]
)n≥0, (hn)n)

is said to be tree-homogeneous if there exists a transition ex-
pectation E : A{o}∪S(o) → Ao such that for each n

(22) EVn]
= idAVn−1]

⊗
⊗
x∈Vn

αx ◦ E ◦ α−1
x

where idAVn−1]
denotes the identity map on AVn−1]

and

(23) hn =
⊗
u∈Vn

αu(h)

for some density operator h ∈ Ao.
For the sake of simplicity, the triplet (φo, E , h) will be referred as
the tree-homogeneous QMC ϕ.

Remark 3.7. Notice that if E is a transition expectation from
AV1]

= AS(o) into A0, then for any u ∈ Λ the map

Eu := αu ◦ E ◦ α−1
u

defines a transition expectation from A{u}∪S(u) into Au. It follows
that Eu := idAPu\{u}

⊗ Eu is a quasi-conditional expectation with
respect to the following triplet APu\{u} ⊂ APu ⊂ APu∪S(u), where Px
is given by (11). Moreover, for any n ∈ N if u, v ∈ Vn such that
u 6= v then EuEv = EvEu. Therefore, the map EVn]

=
∏

u∈Vn Eu is
a quasi-conditional expectation with respect to the triplet An−1] ⊂
An] ⊂ An+1].
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3.3. General construction of QMC on trees. Let (κi)i∈I be a
finite family conditional density amplitude. Define

κ{u}∪S(u) =
∑
i∈I

αu(κi), u ∈ V(24)

κ[n,n+1] =
⊗
u∈Vn

κ{u}∪S(u)(25)

hn =
⊗
u∈Vn

h(u).(26)

κn] =

n−1∏
j=0

κ[j,j+1]h
1/2
n(27)

wn] = w
1/2
0 κn]κn]

∗w
1/2
0(28)

where h(u) ∈ Au,+ is a positive boundary condition on Au for every
u ∈ Λ and w0 ∈ A+

o be an initial density matrix. Define

(29) ϕVn]
(a) := Tr(wn+1]a⊗ 1I)

for every n ≥ 1.
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Theorem 3.8. With these notations in mind , if

(30) Tr(w0h
(o)) = 1

and

(31) Tru]

(∑
i∈I

κ
(u)
i

)
1I⊗

⊗
v∈S(u)

h(v)

(∑
i∈I

κ
(u)
i

∗
) = h(u).

Then the limit

(32) ϕ := lim
n→∞

ϕVn]

exists in the weak-*-topology and defines a QMC on AV . Moreover,
if the boundary condition (h(u))u∈V is translation invariant then ϕ
is tree-homogeneous.

Remark 3.9. The conditional density amplitude
∑

i∈I κi consid-
ered in Theorem 3.8 is a finite sum of amplitudes. This generalizes
the conditional expectations on the Cayley tree considered in the
previous works, see for instance [10, 7, 8, 9, 52, 53].
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4. QMC associated with OQRW on trees

Let H and K be two separable Hilbert spaces. Let {|i〉}i∈Λ be an
ortho-normal basis of K indexed by a graph Λ. To each x ∈ V we
associate the algebra Ax = A := B(H⊗K).
For each (i, j) ∈ Λ2 one associates an operator Bi

j ∈ B(H) to describe
the transition from the state |j〉 to the state |i〉 such that

(33)
∑
i∈Λ

Bi∗
j B

i
j = 1IB(H).

Consider the density operator ρ ∈ B(H⊗K), of the form

ρ =
∑
i∈Λ

ρi ⊗ |i〉〈i|; ρ1 ∈ B(H)+.

Let us consider

(34) M i
j = Bi

j ⊗ |i〉〈j| ∈ B(H⊗K).

Put

(35) Ai
j :=

1

Tr(ρj)
1/2
ρ

1/2
j ⊗ |i〉〈j|, i, j ∈ Λ.

For each u ∈ V , we set

(36) κ
({u}∪S(u))
(i,j) = K i

j
({u}∪S(u))

:= M i∗
j

(u) ⊗
⊗
v∈S(u)

Ai
j
(v) ∈ A{u}∪S(u).
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Consider Sk+1 be the symmetric group of the set {o} ∪ S(o). For
u ∈ V , the map

(37) Tu : σ ∈ Sk+1 7→ αu ◦ σ ◦ α−1
u

defines a group isomorphism from Sk+1 onto the symmetry group of
{u} ∪ S(u). A permutation σ ∈ Sk+1 leaves o invariant if and only if
Tu(σ) leaves u invariant.
Define
(38)

Eσ(ao⊗a(o,1)⊗· · ·⊗a(o,k)) =
∑

(i,j),(i′,j′)∈Λ2

Tro]

(
K i
jaσ(o,1) ⊗ · · · ⊗ aσ(o,k)K

i′
j′
∗)
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Definition 4.1. A tree-homogeneous quantum Markov chain ϕ ≡
(ϕ0, E , h) on AV is said to be associated wit the open quan-
tum random walk (OQRW) if the transition expectation E is
a convex combination of the maps (E (σ))σ∈Sk+1

i.e.

(39) E =
∑

σ∈Sk+1

λσE (σ)

where λσ ≥ 0 and
∑

σ∈Sk+1
λσ = 1.

Remark 4.2. In the above definition if λσ = 1 for some σ ∈ Sk+1

the homogeneous quantum Markov chain ϕ(σ) associated with a
transition expectation E (σ) in the sense of Definition 3.6 is a QMC
associated with OQRW on the Cayley tree.
Notice that, in [27] some examples of ome-dimensional quantum
Markov chains associated with OQRW were studied. Therein k = 1
then the symmetry group is S2 = {id, t} and the studied Markov
chains were exactly ϕ(id) and ϕ(t).

Remark 4.3. The above definition gives rise to a new class of
QMC in connection with OQRW. We forecast that these quantum
have rich ergodic properties. Namely the two examples ϕ(id)) and
ϕ(t) studied in [27] were proven to admit different structures. How-
ever, it is possible to consider the QMC associated with an arbi-
trary convex combination of the associated transition expectations
E and E t of the form Eλ := λE + (1− λ)E t.
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Theorem 4.4. For every σ ∈ Sk+1 leaving invariant o, the tree-
homogeneous QMC ϕ(σ) ≡ (φo, E (σ), h) satisfies
(40)

ϕ(σ)(a) =
∑

io,j,j′∈Λ

Tr
(
w0M

io
jo

∗
aoM

io
jo

) ∏
u∈V[1,n]

ψj,j′(au)
∏

v∈Vn+1

ϕj,j′(h
(v))

where

(41) ϕj,j′(b) =
1

Tr(ρj)1/2Tr(ρj′)1/2
Tr
(
ρ

1/2
j ρ

1/2
j′ ⊗ |j

′〉〈j|b
)

and
(42)

ψj,j′(av) =
1

Tr(ρj)1/2Tr(ρj′)1/2

∑
iv∈Λ

Tr
(
Biv
j′ ρ

1/2
j′ ρ

1/2
j Biv

j

∗ ⊗ |iv〉〈iv|av
)
.

for every a =
⊗

u∈Vn au ∈ AVn]
.
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Remark 4.5. The maps ϕj,j′ and ψj,j′ are linear functionals. If
j = j′ then ϕj,j′ and ψj,j′ are states, we write

(43) ϕj(b) =
1

Tr(ρj)
Tr (ρj ⊗ |j〉〈j|b) .

and

(44) ψj(b) =
1

Tr(ρj)
Tr (ρj ⊗ |j〉〈j|b) .

Remark 4.6. The Markov chain (40) generalizes the Markov chains
associated with open quantum random walks studied in [27] to trees.
But even un the one dimensional they propose a more general class.
Moreover, if the density operators (ρj)j∈Λ are mutually orthogonal
one gets the Markov chain ϕ(id) considered in [27].
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5. Exampes

Let H = K = C2 with canonical basis (|1〉, |2〉). Let Au = B(H ⊗
H) ≡M4(C). Let Λ = {1, 2}. The interactions are given by

B1
1 =

(
a 0
0 b

)
, B1

2 =

(
0 1
0 0

)
, B2

1 =

(
c 0
0 d

)
, B2

2 =

(
1 0
0 0

)
where |a|2 + |c|2 = |b|2 + |d|2 = 1, ac 6= 0.

Let σ ∈ Sk+1 such that σ(o) = o. Then (31) becomes

h(u) =
∑

i,j,i′,j′=1,2

M i∗
j

(u)
M i′

j′
(u)

k∏
`=1

Tr(Ai
jh

(u,`)Ai′
j′
∗
)
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For the sake of simplicity we assume that the boundary condition is
translation invariant h(u) = h for all u ∈ V one gets

(45) h =
∑

i,j,i′,j′=1,2

M i∗
j M

i′
j′Tr(Ai

jhA
i′
j′
∗
)k.

where
M i∗

j M
i′
j′ = Bi∗

j B
i′
j′ ⊗ |j〉〈j′|δi,i′

and

Tr(Ai
jhA

i′
j′
∗
) = Tr(Ai′

j′
∗
Ai
jh) =

1√
Tr(ρj)Tr(ρ′j)

Tr(ρ
1/2
j′ ρ

1/2
j ⊗|j

′〉〈j|h)δi,i′.

Thus, (45) becomes

h =
∑

i,j,j′=1,2

Tr(ρ
1/2
j′ ρ

1/2
j ⊗ |j′〉〈j|h)√

Tr(ρj)Tr(ρ′j)


k

Bi∗
j B

i
j′ ⊗ |j〉〈j′|.
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By identifying entries, we are led to

h11 = (|a|2 + |c|2)Tr(ρ1⊗|1〉〈1|h)k

Tr(ρ1)k

h22 = Tr(ρ2⊗|2〉〈2|h)k

Tr(ρ2)k

h33 = (|b|2 + |d|2)Tr(ρ1⊗|1〉〈1|h)k

Tr(ρ1)k

h44 = Tr(ρ2⊗|2〉〈2|h)k

Tr(ρ2)k

h12 = c
Tr(ρ

1/2
2 ρ

1/2
1 ⊗|2〉〈1|h)k

(Tr(ρ1)Tr(ρ2))k/2

h21 = c
Tr(ρ

1/2
1 ρ

1/2
2 ⊗|1〉〈2|h)k

(Tr(ρ1)Tr(ρ2))k/2

h14 = a
Tr(ρ

1/2
2 ρ

1/2
1 ⊗|2〉〈1|h)k

(Tr(ρ1)Tr(ρ2))k/2

h41 = a
Tr(ρ

1/2
1 ρ

1/2
2 ⊗|1〉〈2|h)k

(Tr(ρ1)Tr(ρ2))k/2

and hij = 0 otherwise.
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Then, using
|a|2 + |c|2 = |b|2 + |d|2 = 1,

one gets

(46)



h11 = h33 = Tr(ρ1⊗|1〉〈1|h)k

Tr(ρ1)k

h22 = h44 = Tr(ρ2⊗|2〉〈2|h)k

Tr(ρ2)k

h12 = c
ah1,4 = c

Tr(ρ
1/2
2 ρ

1/2
1 ⊗|2〉〈1|h)k

(Tr(ρ1)Tr(ρ2))k/2

h21 = c
ah4,1 = c

Tr(ρ
1/2
1 ρ

1/2
2 ⊗|1〉〈2|h)k

(Tr(ρ1)Tr(ρ2))k/2

and hij = 0 otherwise.
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Example 5.1. Consider

ρj = |j〉〈j|, j ∈ {1, 2}.
Then one has

Tr(ρ1 ⊗ |1〉〈1|h)

Tr(ρ1)
=Tr(|1〉〈1| ⊗ |1〉〈1|h) = h11,

Tr(ρ2 ⊗ |2〉〈2|h)

Tr(ρ2)
=Tr(|2〉〈2| ⊗ |2〉〈2|h) = h44

and

Tr(ρ
1/2
1 ρ

1/2
2 ⊗ |1〉〈2|h) = Tr(ρ

1/2
2 ρ

1/2
1 ⊗ |2〉〈1|h) = 0.

Then (46) becomes, {
h11 = h33 = hk11

h22 = h44 = hk44

and hij = 0 otherwise. Denote

Uk := {z ∈ C; zk = 1}
the set of k-th roots of unity. For k ≥ 2, one has h11, h44 ∈ Uk−1 ∪
{0} and therefore one gets 2k − 1 non-trivial solutions. Since h is
positive and does not vanish, one gets the following three solutions:

h0 = 1IM4, h1 = 1IM2 ⊗ |1〉〈1|, h2 = 1IM2 ⊗ |2〉〈2|.
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Example 5.2. Now let us consider

ρ1 = ρ2 = |1〉〈1|.
Then (46) becomes, 

h11 = h33 = hk11

h22 = h44 = hk22

h12 = c
ah1,4 = c hk12

h21 = c
ah4,1 = c hk21

and hij = 0 otherwise. Moreover, h is hermitian.
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Then, if k ≥ 1, one has h11, h44 ∈ Uk−1∪{0} and h12 ∈ Uk−1(1/c)∪
{0}, where Uk−1(1/c) denotes the set (k−1)-th roots of the complex
1/c. Therefore, one gets 4k−1 non-trivial solutions. In particular,
for k = 2, one gets the solutions

h0 = 1IM4, h1 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , h2 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1



h3 =


1 1

c 0 a
c2

1
c 1 0 0
0 0 1 0
a
c2

0 0 1

 , h4 =


1 1

c 0 a
c2

1
c 0 0 0
0 0 1 0
a
c2

0 0 0

 , h5 =


0 1

c 0 a
c2

1
c 1 0 0
0 0 0 0
a
c2

0 0 1



h6 =


0 1

c 0 a
c2

1
c 0 0 0
0 0 0 0
a
c2

0 0 0
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