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New books by a physicist and science journalist mount aggressive but ultimately unpersuasive
defenses of multiverses
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In his book “Something Deeply Hidden”, Carroll asserts that quantum mechanics describes not 
just very small things but everything, including us. “As far as we currently know,” he writes, 
“quantum mechanics isn’t just an approximation to the truth; it is the truth.” And however 
preposterous it might seem, a multiverse, Carroll argues, is an inescapable consequence of  
quantum mechanics. 
...... 
Carroll proposes furthermore that because quantum mechanics is falsifiable, the many-worlds 
hypothesis “is the most falsifiable theory ever invented”—even if  we can never directly observe 
any of  those many worlds.



Nonsense!



purification of  mixed states (i.e. believing that all states are “actually pure”, and “we are part of  
a huge entangled state”). 

We will see that the Multiverse, more than being an interpretation of  the theory, originates 
from its axiomatic formulation (von Neumann), containing not essential elements.

We will see that this is the case of: 

unitarity (regarded as mandatory realization of  transformations)



To explain what I mean, compare the following two axiomatizations: 

4

rsta.royalsocietypublishing.org
P

hil.Trans.R
.S

oc.A
0000000

..................................................................

Customary mathematical axiomatisation of Quantum Theory
system A HA

system composition AB HAB =HA ⌦HB

deterministic pure state � 2PurSt1(A) �= | ih |,  2HA, || ||= 1

reversible transf. U 2RevTrn(A) U�=U | ih |U†, U 2U(A)

von Neumann-Lüders
transformation �!Zi� :=Zi�Zi {Zi}i2X ⇢Bnd(HA) PVM

Born rule p(i| ) = h |Zi| i

Theorems
trivial system I HI =C

deterministic states ⇢2 St1(A)⌘ Conv(PurSt1(A)) ⇢2T
+

=1
(HA)

states ⇢2 St(A)⌘ Cone1(PurSt1(A)) ⇢2T
+

1
(HA)

Transformation as
unitary interaction

+ von Neumann
observable on “meter” A

Ti
B

=

A

U

B

� F E Zi

Ti⇢=TrE[U(⇢⌦ �)U†
(IB ⌦ Zi)]

transformation T 2Trn(A!B) T 2CP(T(HA)!T(HB))

parallel composition T1 2Trn(A!B), T2 2Trn(C!D) T1 ⌦ T2

sequential composition T1 2Trn(A!B), T2 2Trn(B!C) T2T1

effects ✏2E↵(A)⌘Trn(A! I) ✏(·) =TrA[·E], 0E  IA
✏2E↵1(A)⌘Trn1(A! I) ✏=TrA

Minimal mathematical axiomatisation of Quantum Theory
system A HA

system composition AB HAB =HA ⌦HB

transformation T 2Trn(A!B) T 2CP(T(HA)!T(HB))

Born rule p(T ) =Tr T T 2Trn(I!A)

Theorems
trivial system I HI =C

reversible transf. U =U · U† U 2U(HA)

determ. transformation T 2Trn1(A!B) T 2CP1(T(HA)!T(HB))

parallel composition T1 2Trn(A!B), T2 2Trn(C!D) T1 ⌦ T2

sequential composition T1 2Trn(A!B), T2 2Trn(B!C) T2T1

states ⇢2 St(A)⌘Trn(I!A) ⇢2T
+

1
(HA)

⇢2 St1(A)⌘Trn1(I!A) ⇢2T
+

=1
(HA)

⇢2 St(I)⌘Trn(I! I) ⇢2 [0, 1]

⇢2 St1(I)⌘Trn(I! I) ⇢= 1

effects ✏2E↵(A)⌘Trn(A! I) ✏(·) =TrA[·E], 0E  IA
✏2E↵1(A)⌘Trn1(A! I) ✏=TrA

Transformations as
unitary interaction

+
von Neumann-Lüders A

Ti
B

=

A

U

B

� F E Zi

Ti⇢=TrE[U(⇢⌦ �)U†
(IB ⌦ Zi)]

Table 1: Customary and minimal mathematical axiomatisations of Quantum Theory
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Customary mathematical axiomatisation of Quantum Theory

system A HA

system composition AB HAB = HA ⊗HB

deterministic pure state σ ∈ PurSt1(A) σ = |ψ⟩⟨ψ|, ψ ∈ HA, ||ψ|| = 1
reversible transformations U ∈ RevTrn(A) Uσ = UσU†, U ∈ U(A)

von Neumann-Lüders
transformation σ → Ziσ := ZiσZi {Zi}i∈X ⊂ Bnd(HA) PVM

Born rule p(i|ψ) = ⟨ψ|Zi|ψ⟩
Theorems

trivial system I HI = C

deterministic states ρ ∈ St1(A) ≡ Conv(PurSt1(A)) ρ ∈ T+
=1(HA)

states ρ ∈ St(A) ≡ Cone!1(PurSt1(A)) ρ ∈ T+
!1

(HA)

Transformation as
unitary interaction
+ von Neumann

observable on “meter” A Ti B =

A

U

B

!"#$σ F E %&'(Zi

Tiρ = TrE[U(ρ⊗ σ)U†(IB ⊗ Zi)]

transformation T ∈ Trn(A → B) T ∈ CP!(T(HA) → T(HB))
parallel composition T1 ∈ Trn(A → B), T2 ∈ Trn(C → D) T1 ⊗ T2

sequential composition T1 ∈ Trn(A → B), T2 ∈ Trn(B → C) T2T1
effects ϵ ∈ Eff(A) ≡ Trn(A → I) ϵ(·) = TrA[·E], 0 ! E ! IA

ϵ ∈ Eff1(A) ≡ Trn1(A → I) ϵ = TrA
Minimal mathematical axiomatisation of Quantum Theory

system A HA

system composition AB HAB = HA ⊗HB

transformation T ∈ Trn(A → B) T ∈ CP!(T(HA) → T(HB))
Born rule p(T ) = Tr T T ∈ Trn(I → A)
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trivial system I HI = C
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(HA)
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=1(HA)
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Transformations as
unitary interaction

+
von Neumann-Lüders A Ti B =

A

U

B

!"#$σ F E %&'(Zi

Tiρ = TrE[U(ρ⊗ σ)U†(IB ⊗ Zi)]

Table 1 Customary versus minimal mathematical axiomatisation of Quantum Theory
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We observe irreversible processes: 
are they obtained through a unitary?



Arguments in favor of  optionality of  unitarity
unitarity fails in quantum gravity (Hawking)

unitarity can be temporarily violated during the black hole evaporation process, accommodating 
violations of  monogamy of  entanglement and the no-cloning principle, and allowing assumptions 
(1), (2), and (3) to be reconciled S. Lloyd and J. Preskill, JHEP 08 2014 126
(1) An evaporating black hole scrambles quantum information without destroying it.  
(2) A freely falling observer encounters nothing unusual upon crossing the event horizon of  a black hole.  
(3) An observer who stays outside a black hole detects no violations of  relativistic effective quantum field theory.

Violation of  unitarity by Hawking radiation does not violate energy-momentum conservation
H. Nikolic(Boskovic Inst., Zagreb) Feb 15, 2015

This is the essence of  the black hole information paradox (BHIP): unlike any other classical 
or quantum system, black holes may not conserve information, thus violating unitarity. 
The Black Hole Information Paradox, S. Antonini, J. Martyn, G. Nambiar,14/10/2018

Unitarity? Non consistent with AdS/CFT 
Joe Polchinski, Simons Symposium, Caneel Bay 2/5/13



Unitarity of an unknown transformation  
and  

purity of an unknown state  
are not falsifiable!



Quantum falsification tests
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In the following we will use the convenient rule of taking the trace Tr ⇢ of the density matrix
⇢2 St(A) of system A as the preparation probability p(⇢) =Tr ⇢ of the state ⇢. In such a way,
for example, the trace Tr[T ⇢] will denote the joint probability of ⇢-preparation followed by the
quantum operation T , whereas unit-trace density matrices specifically describe deterministic
states. We will also assume the usual operational probabilistic theory (OPT) framework (see e.g.
Ref. [6]), which formalises the natural language of quantum circuits in quantum information
science [5].1

We will restrict to finite dimensional systems.
We will make use of the common notation summarised in Table ??.
In Table ?? we report the customary mathematical axiomatisation of QT.
To each system A we associate an Hilbert space HA. The composition of systems

The falsification test
Definition 1 (Falsifier). The event F is a falsifier of hypothesis Hyp if F cannot happen for Hyp=

TRUE.

Accordingly we will call the binary test {F, F?} a falsification test for hypothesis Hyp, F?

denoting the inconclusive event.2 Practically one is interested in effective falsification tests {F, F?}

which are not singleton–the two singleton tests corresponding to F = 0 and F? = 0 being the
inconclusive falsification test and the logical falsification, respectively.

Suppose now that one wants to falsify a proposition about the state ⇢2 St(A) of system A. In
such case any effective falsification test can be achieved as a binary observation test of the form

{F, F?}⇢E↵(A), F? := IA � F, F > 0, F? � 0, (0.1)

where with the symbol F (F?) we denote both the event and its corresponding positive operator.
Notice the strict positivity of F for effectiveness of the test, F = 0 corresponding to the inconclusive

test. namely a test that outputs only the inconclusive outcome. On the other hand, the case F? = 0

corresponds to logical falsification. 3

Example of falsification test

Consider the proposition

Hyp : Supp ⇢=K⇢HA, ⇢2 St(A) (0.2)

where Supp ⇢ denotes the support of ⇢. Then, any operator of the form

0<F  IA, SuppF ✓K
? (0.3)

would have zero expectation for a state ⇢ satisfying Hyp (0.2), which means that occurrence of F
would be a falsification of Hyp, namely

Tr[⇢F ]> 0 )Hyp= FALSE. (0.4)

In this example we can see how the falsification test is not dichotomic, namely the occurrence
of F? does not mean that Hyp=TRUE, since F? occurs if SuppF? \K 6= 0. Eq. (0.3) provides the
most general falsification test of Hyp (0.2), and the choice SuppF =K

? provides the most efficient
test in maximising the falsification chance.
1The OPT framework is also used in computer science [7,8].
2We want to remark that the occurrence of F? generally does not mean that Hyp= TRUE, but only that the falsification test
failed.
3We observe that if we would have defined a verification test for hypothesis Hyp in terms of a verifier that occurs with
probability 1 for Hyp= TRUE, such test would heve coincided with the falsification test with verifier F? and inconclusive
event F .
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probability 1 for Hyp= TRUE, such test would heve coincided with the falsification test with verifier F? and inconclusive
event F .
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Minimal mathematical axiomatization of Quantum Theory
system A HA

system composition AB HAB =HA ⌦HB

transformation T 2Trn(A!B) T 2CP(T(HA)!T(HB))

Theorems
trivial system I HI =C

reversible transf. U =U · U† U 2U(HA)

determ. transformation T 2Trn1(A!B) T 2CP1(T(HA)!T(HB))

parallel composition T1 2Trn(A!B), T2 2Trn(C!D) T1 ⌦ T2

sequential composition T1 2Trn(A!B), T2 2Trn(B!C) T2T1

states ⇢2 St(A)⌘Trn(I!A) ⇢2T
+

1
(HA)

⇢2 St1(A)⌘Trn1(I!A) ⇢2T
+

=1
(HA)

⇢2 St(I)⌘Trn(I! I) ⇢2 [0, 1]

⇢2 St1(I)⌘Trn(I! I) ⇢= 1

effects ✏2E↵(A)⌘Trn(A! I) ✏(·) =TrA[·E], 0E  IA
✏2E↵1(A)⌘Trn1(A! I) ✏=TrA

Transformations as
unitary interaction

+
von Neumann-Luders A

Ti
B

=

A

U

B

� F E Zi

Ti⇢=TrE[U(⇢⌦ �)U†
(IB ⌦ Zi)]

Table 3: Minimal axiomatisation for Quantum Theory

Example of falsification test

Consider the proposition

Hyp : Supp ⇢=K⇢HA, ⇢2 St(A) (3.2)

where Supp ⇢ denotes the support of ⇢. Then, any operator of the form

0<F  IA, SuppF ✓K
? (3.3)

would have zero expectation for a state ⇢ satisfying Hyp (3.2), which means that occurrence of F
would be a falsification of Hyp, namely

Tr[⇢F ]> 0 )Hyp= FALSE. (3.4)

In this example we can see how the falsification test is not dichotomic, namely the occurrence
of F? does not mean that Hyp=TRUE, since F? occurs if SuppF? \K 6= 0. Eq. (3.3) provides the
most general falsification test of Hyp (3.2), and the choice SuppF =K

? provides the most efficient
test since it maximises the falsification chance.

We may have considered more generally falsification tests with N � 1 falsifiers and M � 1

inconclusive events. However, any of such test would imply binary falsification tests with the
falsifier made as coarse-graining of falsifiers only, and among such tests the most efficient one
being the one which coarse-grains all falsifiers and all inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

4. Unfalsifyability of purity of a quantum state
We will now prove that it is not possible to falsify purity of a state of a given system A.
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Example of falsification test

Consider the proposition

Hyp : Supp ⇢=K⇢HA, ⇢2 St(A), dimHA � 2 (4.2)

where Supp ⇢ denotes the support of ⇢. Then, any operator of the form
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of F? does not mean that Hyp=TRUE, since F? occurs if SuppF? \K 6= 0. Eq. (4.3) provides the
most general falsification test of Hyp (4.2), and the choice SuppF =K

? provides the most efficient
test since it maximises the falsification chance.

We may have considered more generally falsification tests with N � 1 falsifiers and M � 1

inconclusive events. However, any of such test would correspond to a set of binary falsification
tests with the falsifier made as coarse-graining of falsifiers only, and among such tests the most
efficient one being the one which coarse-grains all falsifiers and all inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

In the following section we will see that unitarity of the realisation of quantum transformations
is actually a spurious postulate, since in addition to be inessential, it is also not falsifiable. For
this reason we devote the entire next section to quantum falsification theory and apply it to
prove unfalsifiability of purity of quantum states, and unitarity of quantum transformations, and
consequently the unfalsifiability of unitary realisation of transformations and pure realisation of
mixed states.

5. Unfalsifiabilities in quantum theory
We will now prove a set of no-falsification theorems within quantum theory.

Unfalsifiability of purity of a quantum state

Theorem 1 (Unfalsifiability of state purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (5.1)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (5.2)

which means that

8 2HA : h |F | i= 0, (5.3)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [13]).
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where Supp ⇢ denotes the support of ⇢. Then, any operator of the form
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? (3.3)

would have zero expectation for a state ⇢ satisfying Hyp (3.2), which means that occurrence of F
would be a falsification of Hyp, namely

Tr[⇢F ]> 0 )Hyp= FALSE. (3.4)

In this example we can see how the falsification test is not dichotomic, namely the occurrence
of F? does not mean that Hyp=TRUE, since F? occurs if SuppF? \K 6= 0. Eq. (3.3) provides the
most general falsification test of Hyp (3.2), and the choice SuppF =K

? provides the most efficient
test since it maximises the falsification chance.

We may have considered more generally falsification tests with N � 1 falsifiers and M � 1

inconclusive events. However, any of such test would imply binary falsification tests with the
falsifier made as coarse-graining of falsifiers only, and among such tests the most efficient one
being the one which coarse-grains all falsifiers and all inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

4. Unfalsifyability of purity of a quantum state
We will now prove that it is not possible to falsify purity of a state of a given system A.
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where Supp ⇢ denotes the support of ⇢. Then, any operator of the form
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would have zero expectation for a state ⇢ satisfying Hyp (4.2), which means that occurrence of F
would be a falsification of Hyp, namely
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of F? does not mean that Hyp=TRUE, since F? occurs if SuppF? \K 6= 0. Eq. (4.3) provides the
most general falsification test of Hyp (4.2), and the choice SuppF =K

? provides the most efficient
test since it maximises the falsification chance.

We may have considered more generally falsification tests with N � 1 falsifiers and M � 1

inconclusive events. However, any of such test would correspond to a set of binary falsification
tests with the falsifier made as coarse-graining of falsifiers only, and among such tests the most
efficient one being the one which coarse-grains all falsifiers and all inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

In the following section we will see that unitarity of the realisation of quantum transformations
is actually a spurious postulate, since in addition to be inessential, it is also not falsifiable. For
this reason we devote the entire next section to quantum falsification theory and apply it to
prove unfalsifiability of purity of quantum states, and unitarity of quantum transformations, and
consequently the unfalsifiability of unitary realisation of transformations and pure realisation of
mixed states.

5. Unfalsifiabilities in quantum theory
We will now prove a set of no-falsification theorems within quantum theory.

Unfalsifiability of purity of a quantum state

Theorem 1 (Unfalsifiability of state purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (5.1)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (5.2)

which means that

8 2HA : h |F | i= 0, (5.3)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [13]).
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where Supp ⇢ denotes the support of ⇢. Then, any operator of the form
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would have zero expectation for a state ⇢ satisfying Hyp (4.2), which means that occurrence of F
would be a falsification of Hyp, namely
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most general falsification test of Hyp (4.2), and the choice SuppF =K
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inconclusive events. However, any of such test would correspond to a set of binary falsification
tests with the falsifier made as coarse-graining of falsifiers only, and among such tests the most
efficient one being the one which coarse-grains all falsifiers and all inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

In the following section we will see that unitarity of the realisation of quantum transformations
is actually a spurious postulate, since in addition to be inessential, it is also not falsifiable. For
this reason we devote the entire next section to quantum falsification theory and apply it to
prove unfalsifiability of purity of quantum states, and unitarity of quantum transformations, and
consequently the unfalsifiability of unitary realisation of transformations and pure realisation of
mixed states.

5. Unfalsifiabilities in quantum theory
We will now prove a set of no-falsification theorems within quantum theory.

Unfalsifiability of purity of a quantum state

Theorem 1 (Unfalsifiability of state purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (5.1)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (5.2)

which means that

8 2HA : h |F | i= 0, (5.3)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [13]).
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most general falsification test of Hyp (0.2), and the choice SuppF =K
? provides the most efficient

test in maximising the falsification chance.

We may have considered more generally falsification tests with N � 1 falsifiers and M � 1

inconclusive events. However, any of such test would imply binary falsification tests with the
falsifier made as coarse-graining of falsifiers only, and among such tests the most efficient one
being the one which coarse-grains falsifiers and inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

Impossibility of falsifying the purity of a quantum state
We will now prove that it is not possible to falsify purity of a state of a given system A.

Theorem 1 (Unfalsifiability of state-purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (0.5)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (0.6)

which means that
8 2HA : h |F | i= 0, (0.7)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [9]).

(a) Unfalsifiability of atomicity of a transformation of a quantum system
The impossibility of falsifying purity of a state has as an immediate consequence the impossibility
of falsifying the atomicity of a transformation.4

Theorem 2 (Unfalsifiability of atomicity of a transformation). There exists no test falsifying atomicity

of an unknown transformation A2Trn(A!B).

Proof. The most general scheme for testing a property of a transformation T 2Trn(A!B) is the
following

R

A
T

B

F
C

. (0.8)

Take for the state R= |�ih�| a faithful pure state.5 Then, one has

atomicity of T ⌘ purity of state (T ⌦ IE)R, (0.9)

but purity of state has no falsifier.⌅

4A transformation is atomic, namely non refinable non trivially, when it has only one Krauss operator in its Krauss form.
Equivalently, its Choi-Jamiolkowsky operator is rank-one.
5A state in St(AB) is faithful when it is an injective map from Trn(A!B) to St(BC).

3

rsta.royalsocietypublishing.org
P

hil.Trans.R
.S

oc.A
0000000

..................................................................

most general falsification test of Hyp (0.2), and the choice SuppF =K
? provides the most efficient

test in maximising the falsification chance.

We may have considered more generally falsification tests with N � 1 falsifiers and M � 1

inconclusive events. However, any of such test would imply binary falsification tests with the
falsifier made as coarse-graining of falsifiers only, and among such tests the most efficient one
being the one which coarse-grains falsifiers and inconclusive events separately.

Another relevant observation is that, by modus tollens, if Hyp1 )Hyp2 a falsifier for Hyp2 also
falsifies Hyp1.

Impossibility of falsifying the purity of a quantum state
We will now prove that it is not possible to falsify purity of a state of a given system A.

Theorem 1 (Unfalsifiability of state-purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (0.5)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (0.6)

which means that
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N > 1 copies of the state are available.
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The impossibility of falsifying purity of a state has as an immediate consequence the impossibility
of falsifying the atomicity of a transformation.4
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Proof. The most general scheme for testing a property of a transformation T 2Trn(A!B) is the
following

R

A
T

B

F
C

. (0.8)
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5A state in St(AB) is faithful when it is an injective map from Trn(A!B) to St(BC).
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Theorem 1 (Unfalsifiability of state purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (4.1)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (4.2)

which means that

8 2HA : h |F | i= 0, (4.3)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [9]).

(a) Unfalsifiability of atomicity of a quantum transformation
The impossibility of falsifying purity of a state has as an immediate consequence the impossibility
of falsifying the atomicity of a transformation.4

Theorem 2 (Unfalsifiability of transformation atomicity). There exists no test falsifying atomicity of

an unknown transformation A2Trn(A!B).

Proof. The most general scheme for testing a property of a transformation T 2Trn(A!B) is the
following

R

A
T

B

F
E

. (4.4)

We can use the a maximally entangled state for R= |�ih�|, thus exploiting the Choi-Jamiołkowski
cone-isomorphism between transformations and bipartite states. One has

atomicity of T ⌘ purity of state (T ⌦ IE)R, (4.5)

and falsifying atomicity of T 2Trn(A!B) is equivalent to falsifying purity of (T ⌦ IE)R, which
is impossible.⌅

(b) Unfalsifiability of max-entanglement of a pure bipartite state
Theorem 3 (Unfalsifiability of max-entanglement of a pure bipartite state.). There exists no test

falsifying max-entanglement of a pure bipartite state.

Proof. Falsification of max-entanglement of state |�ih�| needs a falsifier F 2E↵(AB) satisfying

Tr[F |�ih�|] = 0, 8|�ih�| maximally entangled. (4.6)

In particular, since unitarity preserve max-entanglement, one has

Tr[F (U ⌦ IB)|�ih�|] = 0, 8U 2Trn(A) unitary. (4.7)

4A transformation is atomic, namely non refinable non trivially, when it has only one Krauss operator in its Krauss form.
Equivalently, its Choi-Jamiolkowsky operator is rank-one.
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Unfalsifiability of purity of quantum states
Theorem 1 (Unfalsifiability of state purity). There exists no test falsifying purity of an unknown state

of a given system A.

Proof. In order to falsify the hypothesis

Hyp : ⇢2PurSt(A), (4.1)

we need a falsifier F 2E↵(A) satisfying

Tr[F⇢] = 0, 8⇢2PurSt(A), (4.2)

which means that

8 2HA : h |F | i= 0, (4.3)

namely F = 0, which means that the test is inconclusive.⌅
By the same argument one can easily prove the impossibility of falsifying purity even when

N > 1 copies of the state are available, (see also Ref. [9]).

Unfalsifiability of atomicity of a quantum transformation
The impossibility of falsifying purity of a state has as an immediate consequence the impossibility
of falsifying the atomicity of a transformation.4

Theorem 2 (Unfalsifiability of transformation atomicity). There exists no test falsifying atomicity of

an unknown transformation A2Trn(A!B).

Proof. The most general scheme for testing a property of a transformation T 2Trn(A!B) is the
following

R

A
T

B

F
E

. (4.4)

We can use the a maximally entangled state for R= |�ih�|, thus exploiting the Choi-Jamiołkowski
cone-isomorphism between transformations and bipartite states. One has

atomicity of T ⌘ purity of state (T ⌦ IE)R, (4.5)

and falsifying atomicity of T 2Trn(A!B) is equivalent to falsifying purity of (T ⌦ IE)R, which
is impossible.⌅

Unfalsifiability of max-entanglement of a pure bipartite state
Theorem 3 (Unfalsifiability of max-entanglement of a pure bipartite state.). There exists no test

falsifying max-entanglement of a pure bipartite state.

4A transformation is atomic, namely non refinable non trivially, when it has only one Krauss operator in its Krauss form.
Equivalently, its Choi-Jamiolkowsky operator is rank-one.
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5.3 Unfalsifiability of max-entanglement of a pure bipartite state

In the following we will use maximally entangled pure bipartite states in HA⊗
HB generally with non equal dimensions dA ≥ dB and Schmidt number equal
to dB. A maximally entangled state of this kind has the general form

|V ⟩ =
dA∑
n=1

dB∑
m=1

Vnm|n⟩ ⊗ |m⟩, (10)

where the matrix of coefficients Vnm correspond to the isometry

V =
dA∑
n=1

dB∑
m=1

Vnm|n⟩⟨m|, (11)

satisfying V †V = IB. We are now in position to prove the following theorem.

Theorem 3 (Unfalsifiability of max-entanglement of a pure state of
systems AB) There exists no test falsifying max-entanglement of a pure bi-
partite state.

Proof W.l.g. we consider the case of dA ≥ dB, as in Eq. (10). Falsification of
max-entanglement of state |V ⟩⟨V | needs a falsifier F ∈ Eff(AB) satisfying

Tr[F |V ⟩⟨V |] = 0, ∀|V ⟩ maximally entangled. (12)

In particular, since unitary transformations on either HA or HB preserve max-
entanglement, one has

Tr[F (U ⊗ IB)|V ⟩⟨V |] = 0, ∀U = U · U †, U ∈ U(HA). (13)

It follows that the average over the unitary group GA = SU(dA) must be zero,
corresponding to5

0 =

∫
GA

dU Tr[F (U ⊗ IB)|V ⟩⟨V |] = Tr[F (IA ⊗ TrA[|V ⟩⟨V |])]

=Tr[F (IA ⊗ (V †V )∗)] = Tr[F (IA ⊗ IB)] = Tr[F ],

(14)

where the complex conjugation is w.r.t. the chosen basis in Eq.(10). Eq. (14)
implies that F = 0, which contradicts the falsification effectiveness condition
F > 0. ⊓(

5 In Eq. (14) dU is denotes the invariant normalized Haar measure of GA = SU(dA).
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where the complex conjugation is w.r.t. the chosen basis in Eq.(10). Eq. (14)
implies that F = 0, which contradicts the falsification effectiveness condition
F > 0. ⊓(

5 In Eq. (14) dU is denotes the invariant normalized Haar measure of GA = SU(dA).
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5.4 Unfalsifiability of isometricity a quantum transformation

Theorem 4 (Unfalsifiability of isometricity of a transformation from
B to A with dA ≥ dB) There exists no test falsifying isometricity of a trans-
formation V ∈ Trn(B → A) with dimHA ≥ dimHB.

Proof The application of the operator to a fixed maximally-entangled state
puts isometricity transformations in one-to-one correspondence with maxi-
mally entangled states. Thus, falsifying maximal isometricity on a transfor-
mation is equivalent to falsifying maximal entanglement of a state, which is
impossible. ⊓%

Corollary 1 (It is not possible to falsify unitarity of a transforma-
tion)

Proof Obviously Theorem 4 exclude the possibility of falsifying unitarity of a
transformation, since it is a special case of isometricity.

5.5 Unfalsifiability of a mixed state being the marginalization of a pure one

Any purification of the mixed state ρ ∈ St(A) can be written in the following
diagrammatic form

!"#$ρ A = ρ1/2
%&
'(

A

B V E )*+,e
, (15)

with dB = dA ! dE and e denoting the deterministic effect, corresponding to
discarding system E, and V being any map isometric on Supp ρ. We thus resort
to the falsifiability of being a pure state of the form (IA ⊗ V )|ρ1/2⟩AA.

Theorem 5 (Unfalsifiability of mixed state in St(A) being the marginal-
isation of a pure state of AE with dE ≥ dA) There exists no test falsifying
the assertion that a mixed state in St(A) is actually the marginal of a pure
state of AE with dimHE ≥ dimHA.

Proof Consider the general purification scheme in Eq. (15). Upon denoting by
V ∈ Trn(A → E) an isometric transformation with dE ≥ dB = dA, a falsifier
F ∈ Bnd+(AE) should satisfy the following identity

Tr[F (IA ⊗ V)|ρ1/2⟩⟨ρ1/2|] = 0, (16)

and by unitarily connecting all the possible isometries V with fixed support,
one has

Tr[F (IA ⊗ UV)|ρ1/2⟩⟨ρ1/2|] = 0, ∀U , U = U · U †, U ∈ U(HE). (17)
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Unfalsifiability of a mixed state being the marginalization of a pure one

The impossibility of establishing the purity of the state of a quantum system A under our control
(Theorem 1) excludes the possibility of falsifying that a knowngly mixed state of a quantum
system A actually is the marginal of a pure entangled state with an environment system E, namely

⇢ A
=  

A

E e
, (5.9)

e denoting the deterministic effect, corresponding to perform no-measurement on the system E.
Not only the system E is unknown (⇢2 St(A) is purified by any environment system E with
dimension dE � dA), but also the state  is unknown, since the purification is not unique, hence
the testing resorts to falsifying the purity of the state  2 St(AB), which is impossible, according
to Theorem 1.

Unfalsifiability of unitary realization of a transformation

The impossibility of establishing the unitariety of transformation (Theorem 4) with input and
output systems under our control excludes the possibility of falsifying that a transformation is
actually achieved unitarily, according to the scheme

A
Ti

B
=

A

U

B

� F E Zi

, (5.10)

with {Zi} von Neuman measurement over the output environment E, and the input environment
F is prepared in a state �. Systems E,F, state �, measurement Zi, and unitary U are all not unique
and unknown, hence the testing resorts to falsifying unitarity of U , which is impossible, not even
with control of input-output systems AF and BE.

6. Conclusions
Some authors argue that unobservable physics (e. g. cosmological models invoking a multiverse)
is legitimate scientific theory, based on abduction and empirical success [14]. However, I think
that we should consider the case of cosmology a quite exceptional case. Quantum Theory should
be taken at a completely different level of consideration. It is a mature theory, it is under the lab
control, and, by its own nature, it categorises the same rules for experiments. For such a theory
falsifiability [3,4], at least in principle, should be takes as a crucial requirement. The case of unitarity
and the information paradox is paradigmatic in this respect, and one may legitimately ask what
is the point in keeping in the theory an inessential metaphysical statement, without which the
theory stands on its own legs. Somebody may argue that unitarity is dictated by a more refined
theory, e. g. quantum field theory. However, although this is the case for the free theory, it no
longer survives the interacting one.5

If is not falsifiable, and inessential, why then unitarity is so relevant to the theory? Why
vectors in Hilbert spaces are ubiquitous? The answer is that unitarity and purity are a powerful
symmetries of the theory, and, as such, they play a crucial role in theoretical evaluations. We have
said that most interpretations of the theory (many-world, relational, Darwinism, transactional,
von Neumann-Wigner, time-symmetric, ...) are indeed interpretations of the unitarity-purity
dogma–not genuine interpretations of the theory strictly speaking. Interpretations, however,
definitely play a relevant role as models, helping our conceptual understanding and intuition.
However, they should not be taken too seriously: and this is, I think, the main lesson of
Copenhagen.

5The unitary operator would correspond to the Feynman path integral, which is mathematically not well defined, and
moreover often needs ghost fields to fix the gauge.
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It follows that the average over the unitary group GE = SU(dE) must be zero,
corresponding to

0 =

∫
GE

dU Tr[F (IA ⊗ UV)|ρ1/2⟩⟨ρ1/2|] = Tr[F (TrE[|ρ
1/2V T ⟩⟨ρ1/2V T |]⊗ IE])]

=Tr[F (ρ⊗ IE)] = Tr[FAρ],
(18)

where T denotes the transpose w.r.t. the basis for the representation of the
ρ1/2 purification, and FA = TrE F . For ρ full-rank one has FA = 0, implying
TrF = 0, namely F = 0, proving the statement. For Rnk ρ < dA, FA becomes
a falsifier of Supp ρ, which is known a priori. ⊓%

This excludes the possibility of falsifying that a knowingly mixed state of
a quantum system A is actually the marginal of a pure entangled state with
an environment system E. Moreover, the system E is unknown (we just know
that it must have dimension dE ≥ dA).

5.6 Unfalsifiability of unitary realization of a transformation

The impossibility of falsifying the unitarity of a transformation (Theorem 3)
with input and output systems under our control excludes the possibility of
falsifying that a transformation is actually achieved unitarily, according to the
scheme

A Ti B =

A

U

B

!"#$σ F E %&'(Zi

, (19)

with {Zi} von Neuman-Lüders measurement over the output environment E,
and the input environment F prepared in a state σ. Systems E,F, state σ,
measurement Zi, and unitary U are all not unique and unknown, otherwise
the testing resorts to falsifying unitarity of U , which is impossible, not even
with control of input-output systems AF and BE.

6 Conclusions

Some authors argue that unobservable physics (e. g. cosmological models in-
voking a multiverse) is legitimate scientific theory, based on abduction and
empirical success[14]. However, I think that we should keep cosmology as an
exception. Quantum Theory should be taken at a completely different level of
consideration. It is a mature theory, it is under lab control, and, by its own
nature, it categorises the same rules for experiments. For such a theory, falsi-
fiability, at least in principle, is a necessary requirement. The case of unitarity
and the information paradox is paradigmatic in this respect, and one may le-
gitimately ask what is the point in keeping within the theory an inessential
metaphysical statement, without which the theory perfectly stands on its own
legs. Somebody may argue that unitarity is dictated by a more refined theory,

No purification ontology, no quantum paradoxes 11

It follows that the average over the unitary group GE = SU(dE) must be zero,
corresponding to

0 =

∫
GE

dU Tr[F (IA ⊗ UV)|ρ1/2⟩⟨ρ1/2|] = Tr[F (TrE[|ρ
1/2V T ⟩⟨ρ1/2V T |]⊗ IE])]

=Tr[F (ρ⊗ IE)] = Tr[FAρ],
(18)

where T denotes the transpose w.r.t. the basis for the representation of the
ρ1/2 purification, and FA = TrE F . For ρ full-rank one has FA = 0, implying
TrF = 0, namely F = 0, proving the statement. For Rnk ρ < dA, FA becomes
a falsifier of Supp ρ, which is known a priori. ⊓%

This excludes the possibility of falsifying that a knowingly mixed state of
a quantum system A is actually the marginal of a pure entangled state with
an environment system E. Moreover, the system E is unknown (we just know
that it must have dimension dE ≥ dA).

5.6 Unfalsifiability of unitary realization of a transformation

The impossibility of falsifying the unitarity of a transformation (Theorem 3)
with input and output systems under our control excludes the possibility of
falsifying that a transformation is actually achieved unitarily, according to the
scheme

A Ti B =

A

U

B

!"#$σ F E %&'(Zi

, (19)
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Conclusions: 

Bye bye many-worlds, Rovelli’s, … interpretations… 
These are actually interpretations of non-mandatory 

postulates  

However, they remain helpful tools for reasoning 

…but the interpretation of the strict-theory is Copenhagen’s



Purification and unitariety  
make a powerful and elegant symmetry of the theory

They simplify the theoretical evaluations, but … 



Quantum Theory   

is intrinsically a theory of irreversible phenomena 

which we strive to explain in a deterministic fashion.



Thank you for your attention

“This is more or less what I wanted to say” 


