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>"A Cross-Check |

Multiverse Theories Are Bad for
Science

New books by a physicist and science journalist mount aggressive but ultimately unpersuasive
defenses of multiverses

By John Horgan on November 25, 2019 16

In his book “Something Deeply Hidden”, Carroll asserts that quantum mechanics describes not
just very small things but everything, including us. “As far as we currently know,” he writes,
“quantum mechanics isn't just an approximation to the truth; it is the truth.” And however

preposterous it might seem, a multiverse, Carroll argues, is an inescapable consequence of
quantum mechanics.

Carroll proposes furthermore that because quantum mechanics is falsifiable, the many-worlds

hypothesis “is the most falsifiable theory ever invented”—even if we can never directly observe
any of those many worlds.



Nonsense!



We will see that the Multiverse, more than being an interpretation of the theory, originates
from its axiomatic formulation (von Neumann), containing not essential elements.

We will see that this is the case of:
unitarity (regarded as mandatory realization of transformations)

purification of mixed states (i.e. believing that all states are “actually pure”, and “we are part of
a huge entangled state”).



To explain what | mean, compare the following two axiomatizations:

Customary mathematical axiomatisation of Quantum Theory

system A Ha
system composition AB Hap=Ha ® Hp
deterministic pure state o € PurSty(A) o=|V)W|, Y eHa, |Y]|=1
reversible transf. U € RevTrn(A) Uo =U ) (p|UT, U eU(A)
von Neumann-Liiders
transformation o— Z;0:=Zij0Z; {Z;}iex C Bnd(H ) PVM
Born rule p(ilyp) = (| Zi|b)

| Minimal mathematical axiomatisation of Quantum Theory |

system A Ha
system composition AB Hap =Ha ® HpB
transformation T € Trn(A — B) T € CP<(T(Ha)— T(HB))
Born rule p(T)=TrT T eTm(I—A)




| Customarx mathematical axiomatisation of Q uantum Theory

system A Ha
system composition AB HAa = Ha @ HpB
deterministic pure state o € PurSt;(A) o= Y)W, Y € Ha, Y| =1
reversible transformations U € RevTrn(A) Uo =UocUT, U € U(A)
von Neumann-Luders
transformation o — Zio0:=2;07; {Zi}iex C Bnd(Ha) PVM
Born rule p(ilY) = (V| Zi[Y)
| Theorems
trivial system I H=C
deterministic states p € St1(A) = Conv(PurSti(A)) p E Til(HA)

states p € St(A) = Conegy (PurSt1(A)) p E TJ<F1("HA)

Transformation as
unitary interaction

+ von Neumann A B
observable on “meter” | AT, FB— = U Tip = Tre[U(p® o)UT (I ® Z;)]
transformation T € Trn(A — B) T € CP<(T(HaA) = T(HB))

parallel composition | 73 € Trn(A — B), 72 € Trn(C — D) | 71 ® T2
sequential composition | 71 € Trn(A — B), 72 € Trn(B — C) | T2T1
effects e € Eff(A) = Trn(A — 1) e(-) =Tra[-F], 0K E< 14
e € Eff1(A) = Trn1 (A — 1) e =Tra




Minimal mathematical axiomatisation of Quantum Theory

system A Ha
system composition AB Ha =Ha ® Hp
transformation T € Trn(A — B) T € CP<(T(Ha) — T(HB))
Born rule p(T)=TrT T eTrm(I—A)
 Theooms ]
trivial system I H1=C
reversible transf. U=U-U" UecU(Ha)
determ. transformation T € Trn1 (A — B) T € CP=(T(Ha)— T(Hp))

parallel composition | 71 € Trn(A —B), T2 € Trn(C—D) | 71 ® T2
sequential composition | 71 € Trn(A —B), T2 € Trn(B— C) | T2Th

states p€St(A)=Trn(I— A) pE Til (Ha)
p€Sti(A)=Trn (I— A) p €T, (Ha)
p € St(I) =Trn(I = 1) p€|0,1]
p€St1(I)=Trn(I—1) p=1
effects e € Eff (A) =Trn(A — 1) €(-)=Tra[E], 0<E<Iy
e € Eff1 (A) =Trni (A — 1) e="Tra

Transformations as

unitary interaction
+

von Neumann-Liiders | -2 7; -2 = U Tip=Trg[U(p @ o)UT(Iz ® Z;)]

(G E E%




We observe irreversible processes:
are they obtained through a unitary?



Arguments in favor of optionality of unitarity

= unitarity fails in quantum gravity (Hawking)

= unitarity can be temporarily violated during the black hole evaporation process, accommodating
violations of monogamy of entanglement and the no-cloning principle, and allowing assumptions
(1), (2), and (3) to be reconciled S. Lloyd and . Preskill, JHEP 08 2014 126

1
(1) An evaporating black hole scrambles quantum information without destroying it.

(2) A freely falling observer encounters nothing unusual upon crossing the event horizon of a black hole.

(3) An observer who stays outside a black hole detects no violations of relativistic effective quantum field theory.

= Violation of unitarity by Hawking radiation does not violate energy-momentum conservation
H. Nikolic(Boskovic Inst., Zagreb) Feb 15, 2015

= This is the essence of the black hole information paradox (BHIP): unlike any other classical
or quantum system, black holes may not conserve information, thus violating unitarity.
The Black Hole Information Paradox, S. Antonini, J. Martyn, G. Nambiar,14/10/2018

= Unitarity? Non consistent with AdS/CFT
Joe Polchinski, Simons Symposium, Caneel Bay 2/5/13



Unitarity of an unknown transformation
anad
pourity of an unknown state

are not falsifiable!




Quantum falsification tests




The falsification test

Definition 1 (Falsifier). The event F' is a falsitier of hypothesis Hyp if F' cannot happen for Hyp =
TRUE.

Accordingly we will call the binary test {F, F»} a falsification test for hypothesis Hyp, F»
denoting the inconclusive event.>

Practically one is interested in effective falsification tests {F), F; } which are not singleton—the
two singleton tests corresponding to F' =0 and F» = 0 being the inconclusive falsification test and
the logical falsification, respectively.

Suppose now that one wants to falsify a proposition about the state p € St(A) of system A. In
such case any effective falsification test can be achieved as a binary observation test of the form

(F,F5YCEff(A), Fr=Iy—F, F>0,F >0, (0.1)

where with the symbol F' (F7) we denote both the event and its corresponding positive operator.

A

@ {Ej }j€X>




Example of falsification test
Consider the proposition

Hyp: Suppp=K CHa, p€St(A), dim Ha > 2 (4.2)

where Supp p denotes the support of p. Then, any operator of the form
0<F<I,, SuppFCIKt (4.3)

would have zero expectation for a state p satistying Hyp (4.2), which means that occurrence of F'
would be a falsification of Hyp, namely

Tr[pF| >0 = Hyp = FALSE. (4.4)

In this example we can see how the falsification test is not dichotomic, namely the occurrence
of F»> does not mean that Hyp = TRUE, since F» occurs if Supp F» N K # 0. Eq. (4.3) provides the
most general falsification test of Hyp (4.2), and the choice Supp F' = Kt provides the most efficient
test since it maximises the falsification chance.



Unfalsifiability of purity of quantum states

Theorem 1 (Unfalsifiability of state-purity). There exists no test falsifying purity of an unknown state
of a given system A.
Proof. In order to falsify the hypothesis

Hyp: p € PurSt(A), (4.1)
we need a falsifier F' € Eff (A) satisfying
Tr[Fp] =0, Vp € PurSt(A), (4.2)

which means that

Vip € Ha : (W[F[) =0, (4.3)

namely F' =0, which means that the test is inconclusive. B

By the same argument one can easily prove the impossibility of falsifying purity even when
N > 1 copies of the state are available.



In the following we will use maximally entangled pure bipartite states in Ha ®
‘Hp generally with non equal dimensions da > dg and Schmidt number equal
to dg. A maximally entangled state of this kind has the general form

da dp

‘V> — Z Z Vnm‘n> %Y |m>7 (1())
n=1m=1
where the matrix of coeflicients V,,,, correspond to the isometry
da dp

V=> ) Vunln)(ml, (11)

n=1m=1

satisfying VTV = Iz. We are now in position to prove the following theorem.



Theorem 3 (Unfalsifiability of max-entanglement of a pure state of
systems AB) There exists no test falsifying maz-entanglement of a pure bi-
partite state.

Proof W.l.g. we consider the case of dpy > dp, as in Eq. (10). Falsification of
max-entanglement of state |V')(V| needs a falsifier F' € Eff(AB) satisfying

Tr[F|V)(V|] = 0, V|V) maximally entangled. (12)

In particular, since unitary transformations on either Ha or Hp preserve max-
entanglement, one has

Te[F(UQIp)|VIHV|] =0, VU =TU -UT,U € UHa). (13)

It follows that the average over the unitary group Ga = SU(da) must be zero,
corresponding to®

0= [ dUT[FULp)|V)(V|] = Te[F(Ia @ Tral[V)(V]])]
Ga (14)

=Tr[F(Ipn ® (VIV)")] = TY[F(Is ® Ig)] = Tr[F],

where the complex conjugation is w.r.t. the chosen basis in Eq.(10). Eq. (14)
implies that F' = 0, which contradicts the falsification effectiveness condition
F>0. O



Theorem 4 (Unfalsifiability of isometricity of a transformation from
B to A with da > dg) There exists no test falsifying isometricity of a trans-
formation V € Trn(B — A) with dim Ha > dim Hp.

Proof The application of the operator to a fixed maximally-entangled state
puts isometricity transformations in one-to-one correspondence with maxi-
mally entangled states. Thus, falsifying maximal isometricity on a transfor-
mation is equivalent to falsifying maximal entanglement of a state, which is
impossible. O

Corollary 1 (It is not possible to falsify unitarity of a transforma-
tion)

Proof Obviously Theorem 4 exclude the possibility of falsifying unitarity of a
transformation, since it is a special case of isometricity.



Unfalsifiability of unitary realization of a transformation

The impossibility of establishing the unitariety of transformation (Theorem 4) with input and
output systems under our control excludes the possibility of falsifying that a transformation is
actually achieved unitarily, according to the scheme

A B
A B
Ti = U :
F E
(o] Zi )
with {Z; } von Neuman measurement over the output environment E, and the input environment
F' is prepared in a state 0. Systems E, F, state o, measurement Z;, and unitary U/ are all not unique

and unknown, hence the testing resorts to falsifying unitarity of &/, which is impossible, not even
with control of input-output systems AF and BE.

(5.10)




Any purification of the mixed state p € St(A) can be written in the following
diagrammatic form

oA — 1/2 : (15)
] P Sie

with dg = da < dg and e denoting the deterministic effect, corresponding to
discarding system E, and V being any map isometric on Supp p. We thus resort
to the falsifiability of being a pure state of the form (Ix ® V)|p'/?)ax.



Theorem 5 (Unfalsifiability of mixed state in St(A) being the marginal-
isation of a pure state of AE with dg > da) There exists no test falsifying

the assertion that a mized state in St(A) is actually the marginal of a pure
state of AE with dim Hg > dim Ha .

Proof Consider the general purification scheme in Eq. (15). Upon denoting by
V € Trn(A — E) an isometric transformation with dg > dp = da, a falsifier
F € Bnd™" (AE) should satisfy the following identity

Tr[F(Za @ V)|p"/2)(p"/?|] = 0, (16)

and by unitarily connecting all the possible isometries VV with fixed support,
one has

Te[F(Za @ UV)|p/2) (p" 2| =0, VU, U=U U, UecUMHg). (17)



It follows that the average over the unitary group Gg = SU (dg) must be zero,
corresponding to

0=(}ﬂﬂHW@A®Mwmeﬁ”HZﬂﬂwﬁﬂWﬂqu”%ﬁH®&m

=Tr[F(p ® Ir)] = Tr[Fap],
(18)

where T' denotes the transpose w.r.t. the basis for the representation of the
p'/? purification, and Fy = Trg F. For p full-rank one has Fy = 0, implying
Tr F' = 0, namely F' = 0, proving the statement. For Rnk p < da, F'a becomes
a falsifier of Supp p, which is known a priori. []

This excludes the possibility of falsifying that a knowingly mixed state of
a quantum system A is actually the marginal of a pure entangled state with

an environment system E. Moreover, the system E is unknown (we just know
that it must have dimension dg > dp).



Conclusions:

Bye bye many-worlds, Rovelli’s, ... interpretations...
These are actually interpretations of non-mandatory
postulates

However, they remain helpful tools for reasoning

...but the interpretation of the strict-theory is Copenhagen’s



Purification and unitariety
make a powerful and elegant symmetry of the theory

They simplify the theoretical evaluations, but ...



Quantum Theory
IS intrinsically a theory of irreversible phenomena

which we strive to explain in a deterministic fashion.



“This is more or less what | wanted to say”

Thank you for your attention



