
A QUANTUM 
GIBBS PARADOX

Benjamin Yadin, Benjamin Morris, Gerardo Adesso

NATURE COMMUNICATIONS 12, 1471 (2021)







Quantum Classical

WHERE    IS

THE BORDER?

⊷ Identifying quantumness by its most genuine                
signatures in general composite systems

⊷ Providing novel operational interpretations and 
satisfactory measures for quantum resourcesOu
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ar

ch



This talk



Gibbs paradox

Ideal gas in a box, 
expanding 
isothermally to twice 
its original volume

contradiction?

Entropy change 
depends on whether 
the gases are 
identical



Gibbs paradox

Historically, seen as a problem with making entropy extensive

Gibbs + Boltzmann introduced a correction factor into microstate counting

Simon Saunders, “The Gibbs Paradox,” Entropy 20, 552 (2018)
Dennis Dieks, “The Gibbs Paradox and Particle Individuality,” Entropy 20, 466 (2018)
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Removing particle labels means phase space volume is divided by 𝑁!



ROLE OF THE OBSERVER

Edwin T Jaynes, “The Gibbs paradox,” in 
Maximum entropy and Bayesian methods 
(Springer, 1992)

Informed observer

Ignorant observer

Can extract work from each gas 
independently

(semi-permeable membrane)

Can’t extract work – apparatus 
couples identically to both gases

“observer” = designation of which degrees of freedom can be operated upon



OVERVIEW

We analyse Gibbs mixing in a fully quantum fashion using bosons / fermions

Goal : Find the fundamental limits on work extractable by different observers

• Toy model

• Classical analysis and state-counting

• Hilbert space structure and observers’ operations

• Entropy changes and interesting limits



THE MODEL



toy model

• 2 sides of a box, each with 
𝑑

2
“cells”

• Start with 𝑛 particles on each side

• Distinguish the gases by a “spin” degree of freedom ( ↑ or ↓ )

• 𝐻 = 0 (all cells are degenerate in energy)

• Both sides initially thermalised

Difference between the observers:

• Informed observer can interact with the spin degree of freedom

• Ignorant observer cannot – dynamics must be spin-independent



Simon Saunders, “The Gibbs Paradox,” Entropy 20, 552 (2018)
Dennis Dieks, “The Gibbs Paradox and Particle Individuality,” Entropy 20, 466 (2018)

Is the model too naïve?

• How can you extract work if 𝑯 = 𝟎?

Couple the system to a heat bath 𝐵 at temperature 𝑇 and a work battery 𝑊
Total energy is conserved (resource theory framework of thermal operations )

Extractable work is proportional to entropy change Δ𝑆:

𝐵

𝑊

• Does this really model an ideal gas?

Yes – recovers the correct classical entropy changes

toy model



CLASSICAL CASE



Classical case

Initial state: on each side, we have a uniform distribution of 𝑛 identical particles over 𝑑/2 cells

Final state: uniform distribution over all configurations of 2𝑛 particles over 𝑑 cells

Entropy calculation boils down to a simple counting of microstates

• Informed observer: counting depends on whether                                                                                                  
the spins are the same or different

• Ignorant observer: different spin configurations                                                                                                
are counted as the same

≠

=



Entropy change ΔS from microstate counting

IgnorantInformed

Identical gases

Different gases

Classical case



Classical case: macroscopic limit

Take the limit 𝑑 ≫ 𝑛 ≫ 1 (large particle number and low density)

Identical gases

Different gases

means

Recovers the ideal gas results This changes in the quantum case

Entropy change ΔS from microstate counting

IgnorantInformed



QUANTUM CASE



Hilbert space structure

Single-particle Hilbert space:

𝑁-particle Hilbert space for bosons / fermions:

𝑃± is projector onto (anti-)symmetric subspace

Permutations of particle labels act simultaneously on space and spin:

“spatial” (cell) “spin”

Our task is to describe the effective state space seen by the ignorant observer



Coupling spin and spatial symmetry

Spatial and spin permutation symmetries must combine to give overall (anti-)symmetry

Familiar example from atomic physics:
(2 particles, each in its own cell) bosons

fermions

A particular symmetry of the spatial wavefunction comes with each 𝑱

1 2

= eigenvalue of



Spatial and spin representations are linked via 𝑱

In general:

State space of quantum ignorant observer

Ignorant observer acts on this part only

(Schur-Weyl duality for groups              and        , used twice)

Adamson et al., PRA 78, 033832 (2008)

Tracing out the spin part, the ignorant observer works with the state

Each component         in the ensemble evolves independently in the space           of dimension

irrep irrep

Conditions on the global unitary 𝑈 (coupling system, heat bath, work battery):

• 𝑈 acts only on          factors

• Must preserve exchange symmetry: 
𝐽 is conserved



State evolution described by quantum ignorant observer

Thermalisation by quantum ignorant observer

Never larger than the informed observer:

But can be above the classical ignorant observer!

Translates into an average extracted work (achievable with thermal operations) 

not maximally mixed (due to conservation law)

≡

𝑝𝐽 from Clebsch-Gordan coefficients (two large spins);

𝑑𝐽 from representation theory formulas

Horodecki & Oppenheim., Nat. Comm. 4, 2059 (2013)



Thermalisation by quantum ignorant observer: example

Example: 𝒏 = 𝟏, 𝒅 = 𝟐

mixture of

(unchanged)

initially

22

State evolution described by quantum ignorant observer



Interesting limits

2𝑛 ln 2

informed (classical 
or quantum)
ignorant, quantum

ignorant, classical

Low density limit: 𝒅 → ∞ (*)

* *

for large 𝑛

Also taking large 𝒏: (and negligible fluctuations)



Work fluctuations

Work isn’t extracted deterministically

Each 𝐽 occurs with probability 𝑝𝐽 and results in entropy change

with average value

Look at variance:

Large number, low density limit:

Mean is 

Variance is negligible compared with mean

24



QUANTUM vs classical case: macroscopic limit

Take the limit 𝑑 ≫ 𝑛 ≫ 1 (large particle number and low density)

Identical gases

Different gases

means

Maximum divergence with the classical case in the macroscopic low density limit!

Entropy change ΔS from our analysis

IgnorantInformed

CLASSICAL

QUANTUM



Why does it work?

Low density means two particles almost never sit in the same cell

There are cell configurations … this is all that the classical ignorant observer sees

For each cell configuration, there are             spin configurations: choices of where to put the ↑ and ↓ particles

WLOG, choose cells 1,… , 2𝑛 to be occupied; then a spin configuration is a permutation of

How much information is lost when we trace out the spin part?

?

?
?

?



WHY DOES IT WORK?

A slightly different application of Schur-Weyl duality:

Gives a convenient basis: |𝐽,𝑀, 𝑝⟩ = superpositions of spin configurations (Schur basis)

Tracing out spin degrees of freedom = ignoring 𝑀

But 𝑀 =
1

2
𝑁↑ − 𝑁↓ is fixed anyway – so no information is lost!

For a given cell configuration, all the different |𝐽, 𝑀, 𝑝⟩ states can be distinguished by the quantum ignorant observer

And there are as many of these as there are spin configurations, i.e.

?

?
?

?

𝑆𝑈(2) irrep under 𝑢𝑠
⊗2𝑛 𝑆𝑁 irrep under cell permutations



WHY DOES IT WORK? EXamples

For a given cell configuration, all the different |𝐽, 𝑀, 𝑝⟩ states can be distinguished by the ignorant observer

And there are as many of these as there are spin configurations, i.e.

Example: 2 particles

Classically: ignorant observer sees only the cell configuration: and look the same

Example: 3 particles



RELATED WORK

Recall the Hong-Ou-Mandel effect in quantum optics:

Non-polarising beam-splitter and photon 
number counting are able to tell if the 

polarisations are equal or opposite

These operations are polarisation-independent, 
so accessible to an ignorant observer

+

0 or 2

0 or 2

+ +

0,1,2

0,1,2

Recent / related works on thermodynamics with identical particles:

• Holmes et al., PRL 124, 210601 (2020); also NPJ 22, 113015 (2020)
• Watanabe et al., PRL 124, 210604 (2020)
• Myers and Deffner, PRE 101, 012110 (2020)
• Allahverdyan and Nieuwenhuizen, PRE 73, 066119 (2006)



Conclusions

• With quantum particles, relational spin information is imprinted upon observable degrees of freedom
Superpositions of classically indistinguishable configurations are distinguishable even by an ignorant observer

• In a (low density) macroscopic limit, ignorance is bliss – as much work can be extracted as if the particles were fully 

distinguishable: what we call a QUANTUM GIBBS PARADOX

• Allowing fully quantum control, classical thermodynamics does not emerge in the macroscopic limit

Open questions

• More realistic models, 𝐻 ≠ 0

• Understanding / approximating optimal operations

• Experimental proposals and practical implementations



Thank you

• Quantum correlations are thermodynamically 

useful!

• The distillation of “Quantum” correlations 

might be physically limited!

• The resource theory formalism is powerful! 
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