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Short review of the quantum mechanics

canonically associated with a classical

random variable with all moments

Let X be a classical real valued random variable

with all moments and probability distribution µ.

Denote (Φn)n∈N the orthogonal polynomials of

X, (ωn), (αn) its Jacobi sequences and

ΓX ≡ Γ
(
C, {ωn}∞n=1

)
⊆ L2(R, µ) (1)

the closure, in L2(R, µ), of the linear span of

the Φn's. It is known from the paper:

Accardi L., Bozejko M.:

Interacting Fock spaces and Gaussianiza-

tion of probability measures,

In�n. Dimens. Anal. Quantum Probab. Re-

lat. Top. (IDA-QP) 1 (4) (1998) 663-670

Volterra Preprint N. 321 (1998)

that, identifying X with the multiplication op-

erator by X in ΓX, the orthogonal gradation

ΓX ≡
⊕
n∈N

C ·Φn (2)



and writing the Jacobi tri�diagonal relation,

XΦn = Φn+1 +αnΦn+ωnΦn−1 ; Φ−1 := 0

in operator form, i.e.

X = a+ + a0 + a− (3)

one obtains a decomposition of X as a sum of

3 linear operators

a+XΦn = Φn+1 ; a0Φn = αnΦn ; a−Φn = ωnΦn−1

called respectively creation, annihilation and

preservation (CAP) operators.

The CAP operators leave invariant the linear

span of the Φn's.

The identity (3) canonical quantum

decomposition of X.

It is unique up to isomorphisms.



Moreover, de�ne Λ by

ΛΦn = nΦn

(number operator) and similarly, for any se-

quence (Fn) of complex numbers,

FΛΦn := FnΦn

the operators a+, a− and the operator Λ satisfy

the following multiplication table

a+a− = ωΛ ; a−a+ = ωΛ+1 (4)

FΛa
+ = a+FΛ+1 ; a−FΛ = FΛ+1a

− (5)

which implies the commutation relations

[a−, a+] = ωΛ+1 − ωΛ =: ∂ωΛ (6)

[a+, a+] = [a−, a−] = 0

[a+, FΛ] = −a+(FΛ+1 − FΛ) =: −a+∂FΛ (7)



Look at the right hand side of the

commutation relations

[a−, a+] = ωΛ+1 − ωΛ =: ∂ωΛ (8)

and notice that, if ∂ωΛ = ~ is a constant, they

become the Heisenberg commutation

relations (CCR) for quantum systems with

one

degree of freedom:

[a−, a+] = ~ ; [a+, a+] = [a−, a−] = 0 (9)

Theorem

The unique symmetric (all odd moments van-

ish) classical random variable X whose asso-

ciated canonical commutation relation are the

Heisenberg commutation relations (10) for a

�xed ~ > 0 is the standard gaussian with

variance ~.



Proof.

∂ωΛ = ~ ⇐⇒ ωn+1 − ωn = ~

⇐⇒ ωn = ~n+ c , ~, c ∈ N (10)

One proves that, for symmetric classical

random variables, c = 0 and it is known, from

the theory of orthogonal polynomials, that the

only measure with principal Jacobi sequence

given by ~n is the standard gaussian with

variance ~. �

Remark. The case c 6= 0 corresponds to the

translates of the Gaussian.

All the Poisson random variables with jump

intensity ~ have the same principal Jacobi

sequence as the standard gaussian with

variance ~.



This explains why the usual Boson Fock space

can be represented as L2 of a gaussian

measure, but also as L2 of a Poisson measure

(with respect to a di�erent orthogonal

gradation) and why both distributions appear

so frequently in boson quantum physics.



The quantum algebra generated by a clas-

sical random variable

The ∗�algebra

A0
X := algebraic span of a+ , a− , a0 , ∂ωΛ

is called the reduced quantum algebra

canonically associated to the classical

random variable X = a+ + a0 + a−.

A0
X is commutative i� the probability distri-

bution of X is a δ�measure on some point.

The vector Φ0 (vacuum vector) induces on A0
X

the state

ϕ := 〈 · , · 〉

Recall that a pair (B, ϕ), where B is a ∗�algebra
and ϕ a state on B is called an

algebraic probability space:

quantum if B is non�commutative,

classical if B is commutative.



Therefore the pair

(A0
X , ϕ)

is an example of quantum probability space.

Summarizing:

Every classical random variable X is

canonically associated with a quantum

probability space.

Quantum probability spaces are the main

object of study in quantum probability.

Remark. When ∂ωΛ is not a multiple of the

identity (i.e. in all cases except the Gauss�

Poisson case) it is convenient to enlarge the ∗�
algebra A0

X by including in it arbitrary functions

of Λ. The ∗�algebra

AX := algebraic span of a+ , a− , a0 , FΛ

is called the quantum algebra canonically

associated to the classical random variable

X.



The term normal order in the quantum

algebra AX of X is similar to that in usual

quantum mechanics with the only di�erence

that, in this case, the normally ordered expres-

sions are sum of terms of the form

(a+)manFΛ

where FΛ is a function of Λ.

The term normal order procedure ismore sub-

tle than the usual one because one must keep

into account the commutation relations

FΛa
+ = a+FΛ+1 ; a−FΛ = FΛ+1a

− (11)



The canonical momentum operator asso-

ciated with a classical random variable X.

It is known that the classical random variable

X is (polynomially) symmetric (i.e. all its odd

moments vanish) if and only if in the canon-

ical quantum decomposition of X,

X = a+ + a0 + a− (12)

a0 = 0.
For a symmetric classical random variable X,

the Hermitean operator

PX := i(a+ − a) (13)

called the momentum operator canonically

associated to X, satis�es the following com-

mutation relation

[X,PX] = i2∂ωΛ (14)

For mean zero Gaussian random variables (i.e.

∂ωΛ = ~), (14) reduces to the original Heisen-

berg commutation relation between position

and its canonical conjugate momentum.



The quantum mechanics associated with

a classical symmetric random variable X

Once the operators position X and momentum

PX are available, one can introduce all

operators of physical interest, like kinetic en-

ergy P2
X/2, potential energy . . . .

Hence any classical symmetric random vari-

able with all moments uniquely determines

its own quantum mechanics and usual quan-

tum mechanics corresponds to mean zero Gaus-

sian random variables whose covariance plays

the role of Planck's constant.

Thus every classical random variable deter-

mines its own quantum mechanics.

The main known examples are:

� Boson QM corresponding to the Gauss�Poisson

class.

� Fermion QM corresponding to the Bernoulli

class.

� Quadratic QM corresponding to the 3
non�standard classes of Meixner measures.



The quantum mechanics associated with

the semi�circle (Wigner) random variable

X

One knows that the centered Gaussian

measure with variance c, is characterized by

ωn+1 − ωn = ~ for each n ≥ 0, where ~ is an

arbitrary strictly positive constant.

The case

ωn+1 − ωn = 0 , ∀n ≥ 1

(later on, it will be clear why n ≥ 1 and not

n ≥ 0), is mathematically and physically in-

triguing because this case characterizes the

principal Jacobi sequences of the form

ωn = ω ≥ 0 ; ∀n ∈ N∗ (15)

and it is known from classical probability that,

if ω is a strictly positive constant, the principal

Jacobi sequences (15) characterize the sym-

metric semi�circle laws with variance ω.



Since these laws play the role of the Gaussian

for free probability, the following problem nat-

urally arises:

which is the quantum mechanics

canonically associated to free probability?



The canonical quantum decomposition in

the semi-circle case

The unique symmetric classical real valued

random variable with principal Jacobi sequence

(ωn)n≥1 satisfying

ωn = ω > 0 , ∀n ∈ N∗ := N\{0} ; ω0 := 0

(16)

is called the semi�circle random variable with

parameter ω.

Its law is the semi�circle distribution with pa-

rameter ω and its canonical quantum decom-

position is

X := a+ a+

where a, a+ are the creation�annihilation oper-

ators acting on the 1MIFS (1), with (ωn) given

by (16), and denoted

ΓX :=
⊕
n∈N

C ·Φn = L2(R, µ).



The monic basis of ΓX is{
Φn := a+nΦ0 : n ∈ N

}
(17)

where Φ0 is the vacuum vector and we use

the convention that for any linear operator Y ,

Y 0 = id.

For simplicity of notations we normalize the

semi�circle principal Jacobi sequence (16)

so that

ω = ωn = 1 , ∀n ≥ 1 (18)

(see discussion in section ). With this nor-

malization ‖Φn‖ = ωn! = 1, i.e. the monic

polynomials coincide with the normalized

polynomials and are an ortho�normal basis of

ΓX. Recall that we use the convention

Φ−n = 0 ; ∀n ∈ N∗ (19)

and, because of (18),

aΦn = Φn−1 ; a+Φn = Φn+1 ; [a, a+] = ∂ωΛ

(20)



The following Lemma recalls some properties

of the canonical quantum decomposition of the

semi�circle random variable.

Lemma 1 In the canonical representation of

the semi�circle random variable with ω = 1,

the following multiplication table holds:

ωΛ+1 = aa+ = 1 ; (21)

ωΛ

∣∣∣∣
{Φ0}⊥

= a+a

∣∣∣∣
{Φ0}⊥

= 1 ; a+aΦ0 = 0

(22)

In particular

ωΛ = a+a = 1−Φ0Φ∗0 (23)

where, for any ξ ∈ ΓX, ξ
∗ denotes the linear

functional ξ∗ : η ∈ ΓX → ξ∗(η) := 〈ξ, η〉,

∂ωΛ = Φ0Φ∗0 = δ0,Λ (24)

[a, a+] = ∂ωΛ = Φ0Φ∗0 (25)



Remark. Note that (24) implies that, for m ≥
1

[a, a+]Φn = ∂ωΛΦn = 0 , ∀n ≥ 1

Thus, in the canonical representation of the

semi�circle law, the

non�commutativity of a and a+ is restricted

to the vacuum space.

The ∗�Lie�algebra associated to the stan-

dard semi�circle distribution

Denote

PΦm := the projection onto C ·Φm (26)(
PΦm := δm,Λ = ΦmΦ∗m

)
Theorem 1 The ∗�Lie algebra generated by a
and a+ is:

L0 = (C · a)⊕ (C · a+)⊕ Lrank 1 (ΓX) (27)

where Lrank 1 (ΓX) denotes the ∗ algebra of

rank 1 operators on ΓX generated by the (Φn).



Analytic forms of free momentum and free

kinetic energy operator

The µ�Hilbert transform

Let µa be the semi-circle measure supported on

[−a, a] and λ be the Lebesgue measure on R.
Recall that the Hilbert transform of a function

on the interval Ia = [−a, a] ⊆ R is de�ned by

HIa := χIa(x)f(x) =
1

π
p.v.

∫
Ia

f(y)

x− y
dy (28)

where χIa(x) = 1 if x ∈ Ia, = 0 if x /∈ Ia.
In this paper we are interested in the weighed

Hilbert transform over the interval I2 = [−2,2]:

Hµf(x) := HI2 = χI2(x)
[
f(y)

√
4− y2

]
(x)

(29)

i.e. the Hilbert transform with respect to the

semi�circle measure µ over the interval I2. Hµ
is a skew-adjoint operator on L2([−2,2], µ).



Representation on L2([−2,2], µ)

Since µ has bounded support, the polynomials

(Φn)n≥0 form a complete orthogonal system

in L2([−2,2], µ).

(ωn)n≥1 ≡ 1 ; (αn)n≥0 ≡ 0

the polynomials (Φn)n≥0 are explicitly given by:

Φn(x) =
sin((n+ 1) arccos(x/2))

sin(arccos(x/2))
, n ≥ 0

(30)

and satisfy the following monic Jacobi rela-

tion

xΦn(x) = Φn+1(x) + Φn−1(x), ∀x ∈ [−2,2]

(31)

The monic Chebyshev polynomial of �rst kind

Tn given by

Tn(x) = 2 cos(narccos(x/2)) (32)



are related with the Φn through the following

relations

Tn+1(x) = Φn+1(x)−Φn−1(x) (33)

2Tn+1(x) = xTn(x)−
(
4− x2

)
Φn−1(x) (34)

Tn+1(x) = 2Φn+1(x)− xΦn(x) (35)

and the two classes of polynomials are con-

nected via the µ�Hilbert transform Hµ as fol-

lows

HµΦn = Tn+1 , n ≥ 0. (36)



Proposition 1 The operators PX and iHµ co-
incide on L2([−2,2], µ), i.e. for any f ∈ L2([−2,2], µ),
one has

PXf(x) = iHµf(x) = 2ip.v.
∫ 2

−2

f(y)

x− y
µ(dy).

(37)

In particular, the free kinetic energy operator

is given by

EX :=
1

2
P2
X = −

1

2
H2
µ (38)

Generalized Schrödinger representation

Let Q denote the operator of multiplication

by the coordinate in L2([−2,2], µ) and V the

isometry from L2([−2,2], µ) into L2(R, λ) given
by

f ∈ L2([−2,2], µ) 7→ f(Q)ρ ∈ L2(R, λ) (39)

where ρ ∈ L2(R, λ) is de�ned by

ρ(x) :=
1√
2π

(4− x2)1/4χ[−2,2](x), x ∈ R

(40)



Notice that, with 1 denoting the constant func-

tion = 1,

VΦ0 = V 1 = ρ ∈ L2(R, λ) (41)

De�ne aε (ε ∈ {+,0,−}) the free CAP opera-

tors and set

Aε := V aεV ∗ (42)

Since V is isometric, the Aε satisfy the free

commutation relations:

[A−, A+] = (VΦ0)(VΦ0)∗ = ρρ∗ (43)



Theorem 2 1. The free position operator X

is mapped into the usual position operator

Q = V XV ∗ in L2(R, λ):

Qf(x) = xf(x) , x ∈ R (44)

2. The free momentum operator PX is mapped

into the operator P = V PXV
∗ in L2(R, λ)

given by:

P = iρHµρ
−1 (45)

where, here and in the following, ρ−1 :=

1/ρ is understood on the support of ρ and

we use the same symbol for ρ and the mul-

tiplication operator by ρ.

3. The free CAP operators aε (ε ∈ {+,0,−})
are mapped by V ( · )V ∗ into the following

CAP operators

A+ =
1

2

(
X+ρHµρ

−1
)
A− =

1

2

(
X−ρHµρ−1

)



4. The free kinetic energy operator EX is mapped

into the operator

E := V EXV
∗ in L2(R, λ) given by:

E =
1

2
P2 = −

1

2
ρH2

µρ
−1 (46)



Harmonic oscillators in generalized

quantum mechanics

The results in this slide are true

for any principal Jacobi sequence (ωn).

The Hamiltonian of the

generalized harmonic oscillator

with frequency ω̂ is de�ned by:

Hω̂ :=
1

2
(p2 + ω̂2q2) (47)

In generalized quantum mechanics this becomes

Hω̂ (48)

=
1

2
((ω̂2−1)(a+2 +a2)+(ω̂2 +1)(ωΛ +ωΛ+1))

Putting ω̂2 = 1 in (47), one �nds

H1 = ωΛ + ωΛ+1 (49)



Semi�circle harmonic oscillators

In the semi�circle case with ωn = 1 for each n,

this implies

eitH1 + eit(ωΛ+ωΛ+1)P⊥Φ0

= eitω1PΦ0
+ eit2ω1P⊥Φ0

. (50)

Therefore, for any unit vector

ξ = PΦ0
ξ + P⊥Φ0

ξ =: ξ0 + ξ⊥ ∈ ΓX

one has

〈ξ, eitH1ξ〉 = ‖ξ0‖2eitω1 + ‖ξ⊥‖2eit2ω1.

Thus, denoting

pξ := |ξ0|2 ∈ [0,1] ; 1− pξ := ‖ξ⊥‖2

one obtains

〈ξ, eit(ωΛ+ωΛ+1)ξ〉 = pξe
itω1 + (1− pξ)eit2ω1

i.e. the characteristic function of the Bernoulli

random variable with values {ω1,2ω1} and

distribution (pξ,1− pξ).



The case ω̂2 6= 1

In this case:

the generalized harmonic oscillator Hamil-

tonian is

=
1

2
((ω̂2−1)(a+2 +a2)+(ω̂2 +1)(ωΛ +ωΛ+1))

so that the kinetic energy (free) Hamilto-

nian is

1

2
p2 =

1

2

(
a+2 + a2

)
+

1

2
(ωΛ + ωΛ+1))



The semi�circle coherent vectors are

ψz :=
∞∑
n=0

zn√
ωn!

Φn =
∞∑
n=0

znΦn , |z| < 1

so that the associated kernel is given by the

geometric series.

〈ψu, ψv〉 =
∞∑
n=0

(ūv)n =
1

1− ūv
, |u|, |v| < 1



Evolutions generated by the free

momentum

Recall that the momentum operator

canonically associated to the semi�circle ran-

dom variable X = a+ + a is

P := i(a+ − a)

Both X and P are bounded operators.

We study the Schrödinger evolution eitP and

the associated Heisenberg evolution eitP ( · )e−itP



Lemma 2

a+
t := eitPa+e−itP

= a+ +
∫ t

0
ds(eisPXΦ0)(eisPXΦ0)∗ (51)

hence, for any n ∈ N,

a+
t Φn = Φn+1 +

∫ t
0
ds〈eisPXΦ0,Φn〉eisPXΦ0

(52)

In other words, a+
t = eitPXa+e−itPX is

completely determined by eitPXΦ0.

But then also the action of eitPX( · )e−itPX on

the whole quantum algebra AX is completely

determined by eitPXΦ0.



Action on the number vectors of the

Schrödinger evolution generated by PX

We want to compute

eitPΦn =
∑
k≥0

(it)k

k!
P kΦn =

∑
k≥0

(it)k

k!
(i)k(a+−a)kΦn

=
∑
k≥0

(−t)k

k!

∑
ε∈{+,−}k

(−1)|{j:ε(j)=−1}|aε(k) · · · aε(1)Φn ; ∀n ∈ N

(53)

Thus the problem is to evaluate the products

aε(k) · · · aε(1)Φn (54)

Usual approach: reduce the products

aε(k) · · · aε(1) (55)

to their normally ordered form using the

commutation relation

ωΛ+1 = aa+ = 1



Any product (55) can be reduced to the form

aε(k) · · · aε(1) = (a+)m+am− (56)

where the numbers m+,m− ∈ N are uniquely

determined by ε and, when ε varies in {+,−}k,
are all possible pairs satisfying

m+ +m− ∈ {0,1, . . . , k} (57)

So we know that eitP can be written in the

form

eitP =
∑

m,n≥0

Im,n(t)(a+)m(a−)n (58)

for some numerical coe�cients Im,n(t).
The problem is to

calculate these coe�cients.

The solution of this problem requires the so-

lution of the inverse normal order problem,

namely:

parametrize the set of ε ∈ {+,−}k that satisfy

the identity

aε(k) · · · aε(1) = (a+)m+am− (59)

when k varies in N.



The vacuum distribution of P and X

Lemma 3 X and P = PX have the same spec-

trum and the vacuum distribution of X and of

the X�momentum operator

P := −i(a− − a+) (60)

coincide (semi�circle distribution on the inter-

val [−2,2]).

The evolutions eitP , eitX

Theorem 3 If ωn = 1 for any n ≥ 1 then, for

any t ∈ C,

eitP =
∑

m,n≥0

Im,n(t)(a+)m(a−)n (61)

where both series converges strongly on

Γ
(
C, {ωn}n≥1) and



eitP =
∑

m,n≥0

Im,n(t)(a+)m(a−)n (62)

Im,n(t) :=
∑
p≥0

tm+n+2p

(m+ n+ 2p)!
(63)

(−1)p+m|Θm+n+2p(m,n)| = 〈Φm, e
itPΦn〉

where, for any m+,m−, p ≥ 0,

|Θm++m−+2p(m+,m−)| (64)

=
m+ +m−+ 1

2p+m+ +m−+ 1

(
2p+m+ +m−+ 1

p

)

The expression (63) looks complicated, but it

can be written in terms of familiar functions

in mathematical physics.



Lemma 4 Let, for any m,n ∈ N,

Jn(t) :=
∑
p≥0

(−1)p

p!(n+ p)!

(
t

2

)n+2p
(65)

denote the Bessel function of �rst kind. Then,

for any t ∈ C∗

I0,n(t) = (n+ 1)
Jn+1(2t)

t
= Jn+2(2t) + Jn(2t)

Im,n(t) = (−1)mI0,m+n(t) = (−1)nIm+n,0(t)

(−1)m

t
(m+ n+ 1)Jm+n+1(2t)

Im,n(0) = δm+n,0



From the above result we deduce the explicit

action of eitP on the orthogonal polynomials

Φk(x) (i.e. the non�normalized number

vectors).

Proposition 2 For any t ∈ C and any

k ∈ N,

eitPΦk(x) =
∞∑
l=0

〈Φl, e
itPΦk〉Φl(x)

where

〈Φl, e
itPΦk〉 =

l∧k∑
m=0

Il−m,k−m(t) (66)

In particular,

eitPΦ0(x)

=
1

t

∞∑
l=0

(−1)l(l + 1)Jl+1(2t)Φl(x) (67)



Remark 1 Notice that the characteristic

function of P with respect to the state 〈Φl, · Φl〉
on B(Γ

(
C, {ωn}n≥1)) is

〈Φl, e
itPΦl〉 = Il,l(t) =

l∑
m=0

Im,m(t) (68)

In particular, the vacuum expectations of eitP

is given by

〈Φ0, e
itPΦ0〉 = I0,0(t) =

∞∑
p=0

(−t2)p

(2p)!
Cp =

J1(2t)

t

(69)

Formula (69) was known in the literature (the

characteristic function of the semi�circle law).

Formula (68) seems to be new.

At the moment we do not know the explicit

form of the probability measure corresponding

to this characteristic function.



Lemma 5 We have∑
m≥1

(−1)mJm(2t) sin(mθ)

= −
sin(2t sin θ)

2
−

sin(θ)

2π

∫ π
0

cos(2t sinϕ)

cos(θ)− cos(ϕ)
dϕ

(70)

and ∑
m≥1

(−1)mJm(2t) cos(mθ)

=
∑
m≥1

(−1)mJm(2t) cos(mθ) =
cos(2t sin θ)− J0(2t)

2
−

1

2π

∫ π
0

sin(2t sinϕ) sin(ϕ)

cos(θ)− cos(ϕ)
dϕ



Proposition 3 For any t ∈ C, one has

eitXΦ0(x) = eitx − ixJ1(2t) (71)

and for any k ≥ 1,

eitXΦk(x) = J0(2t)Φk(x)+x
k∑

n=1

inJn(2t)φk−n+1(x)+
k∑

n=0

∑
m≥n+2

imJm(2t)Tm+k−2n(x)

(72)

Remark 2 Since the vacuum distributions of

X and P coincide with the semi-circle distri-

bution µ, the vacuum expectations of eitP and

eitX coincide with the the characteristic func-

tion of the measure µ which can be computed

directly by expending eixt into a power series

then using the fact that odd-moments are zero

and even-moments are the Catalan numbers

interchanging integral and sum, one obtains:

ϕµ(t) =
∑
n≥0

(it)n

n!

∫
R
xndµ(x)



=
∑
n≥0

(−1)n

n+ 1

(2n
n

) t2n

(2n)!
=
J1(2t)

t
(73)

The 1�parameter ∗�automorphism groups

associated to P

In this section, we determine the action of

eitP ( · )e−itP on the algebra generated by cre-

ation and annihilation operators. For this it is

su�cient to determine this action on a+.

Proposition 4 One has

∂ωΛ,t := eitP∂ωΛe
−itP = (eitPΦ0)(eitPΦ0)∗

(74)

a+
t := eitPa+e−itP = a++ω

∫ t
0
ds(eisPΦ0)(eisPΦ0)∗

(75)

Xt := eitPXe−itP = X+2ω
∫ t

0
ds(eisPΦ0)(eisPΦ0)∗

(76)



Remark. From formula (76) one deduced an

elegant extension of the action of the usual

quantum mechanical formula

eitPXe−itP = X + t

The main di�erence is that translation by a

number is here replaced by translation by

translation by an operator.



In order to give a more explicit form to (75),

one needs the following estimates.

Lemma 6 The following inequalities hold

|I0,n(s)| ≤
|s|n

n!
e|s|

2
(

1 +
|s|2

2

)
(77)

and

|Im,n(s)| ≤
|s|m+n

m!n!
e|s|

2
(

1 +
|s|2

2

)
(78)



Theorem 4 One has, for each t ∈ R,

a+
t = a++ω

∑
m,n,p,q≥0

(−1)m+n+p+q(m+ 1)(n+ 1)

p!q!(p+m+ 1)!(q + n+ 1)!

tm+n+2p+2q+1

m+ n+ 2p+ 2q + 1
ΦmΦ∗n

(79)

Remark 3 Using the expression (4), one can

also rewrite (79) as

a+
t = a+ + ω

∑
m,n≥0

(−1)m+n(m+ 1)(n+ 1)·

·
∫ t

0

ds

s2
Jm+1(2s)Jn+1(2s)ΦmΦ∗n (80)



Evolutions associated to the kinetic energy

operator

Proposition 5 If ωn = 1 for any n ≥ 1, for any

t,

eitP
2

=
∑

m,n≥0

I
(2)
m,n(t)(a+)man (81)

where for any m,n ∈ N,

I
(2)
m,n(t) = χ2N (m+ n) (−1)

3m+n
2 ·

·
∑
p≥0

(it)
m+n

2 +p(
m+n

2 + p
)
!
|Θm+n+2p(m,n)| (82)



Proposition 6 For any m,n ∈ N,

I
(2)
m,n(t) = (−1)mI(2)

0,m+n(t) = (−1)nI(2)
m+n,0(t)

(83)

with

I
(2)
0,n(t) = χ2N (n)

(−it)
n
2(

n
2

)
!

1F1

(
n+ 1

2
;n+ 2; 4it

)
(84)

where 1F1 is the con�uent hypergeometric func-

tion

1F1(a, b, z)
∞∑
n=0

a(n)zn

b(n)n!
= 1F1(a; b; z)

where:

a(0) = 1 , a(n) = a(a+1)(a+2) · · · (a+n−1)



The 1�parameter ∗�automorphism groups

associated to P2

With the notation ∂ωΛ := ωΛ+1 − ωΛ, we now

study the Heisenberg evolutions:

∂ωΛ,t := eitP
2
∂ωΛe

−itP2
= (eitP

2
Φ0)(eitP

2
Φ0)∗

(85)

a+
t := eitP

2
a+e−itP

2

Recall that, once one knows a+
t and ∂ωΛ,t, one

has the action of the Heisenberg evolution on

the whole reduced quantum algebra of X.



Theorem 5 One has

a+
t = a++ (86)

∑
m,p,n,q≥0

(−1)m+q|Θ2m+2p(2m,0)||Θ2n+2q(2n,0)|
(m+ p)! (n+ q)!

(it)m+n+p+q+1

m+ n+ p+ q + 1

(
T2m−1Φ∗2n −Φ2nT

∗
2m−1

)
where

|Θ2m+2p(2n,0)| =
(2m+ 1)(2m+ 2p)!

p!(2m+ p+ 1)!

and

Tn(x) = 2 cos(narccos(x/2)) (87)

are the monic Chebyshev polynomial of �rst

kind Tn, related with the Φn through the iden-

tities

Tn+1(x) = Φn+1(x)−Φn−1(x) (88)



Theorem 6 One has

a+
t = a++ (89)

∑
m,p,n,q≥0

(−1)m+q|Θ2m+2p(2m,0)||Θ2n+2q(2n,0)|
(m+ p)! (n+ q)!

(it)m+n+p+q+1

m+ n+ p+ q + 1

(
T2m−1Φ∗2n −Φ2nT

∗
2m−1

)
where

|Θ2m+2p(2n,0)| =
(2m+ 1)(2m+ 2p)!

p!(2m+ p+ 1)!

are again the monic Chebyshev polynomial of

�rst kind Tn



Abstract It is now known that each classical

random variable has a canonical quantum de-

composition in terms of creation, annihilation

and preservation (CAP) operators satisfying

commutation relations uniquely determined by

their Jacobi coe�cients or their multi�dimensional

extensions.

Symmetric classical random variables also have

a canonically conjugated moment and the two

are intertwined by a generalization, to arbitrary

random variables, of the Gauss�Fourier trans-

form.

Thus every classical random variable determines

its own quantum mechanics. Usual QM corre-

sponds to the Gaussian�Poisson class.

Quadratic QM corresponds to the 3 non�standard

classes of Meixner measures.

According to the information complexity index

for probability measures on R, the semi�circle�

arcsine class has a lower complexity index than



the above mentioned 5 classes. Thus it is in-

teresting to investigate how does the QM asso-

ciated to these probability measures look like.

I will discuss the solution of this problem in

the case of the semi�circle law. It turns out

that in this case the canonically conjugate mo-

ment is given by the Hilbert transform with re-

spect to the semi�circle measure. This allows

to express the momentum evolution and the

free evolution (generated by kinetic energy) in

terms respectively of Bessel functions and of

con�uent hypergeometric series.


