Asymptotic transport properties in open quantum spin chains

Fabio Benatti

Department of Physics, University of Trieste, Italy

52 Symposium on Mathematical Physics "Channels, Maps and All That"

Toruń, June 14-17

Work with R. Floreanini and L. Memarzadeh

Outline I

(1) Open quantum spin chains
2) Master equation in the global approach

- Global Hamiltonian diagonalization
- Global approach: master equation
(3) Stationary state
- Stationary Transport Properties
- Bipartite entanglement

Open quantum systems: weak coupling limit

- Open quantum systems:

$$
H=H_{S}+H_{E}+\lambda H_{i n t}
$$

- Weak-coupling limit:

$$
t \mapsto \tau:=\lambda^{2} t, \quad \lambda \mapsto 0 \quad \& \quad t \mapsto+\infty
$$

- Elimination of fast oscillating terms:

$$
\exp \left(i t\left(E_{j}-E_{i}\right)-\left(E_{p}-E_{q}\right)\right), \quad E_{\ell} \quad \text { eigenvalues of } H_{S}
$$

Open quantum spin chains: nearest neighbour interactions

Figure: Open 3-spin chain

Global vs Local approach

$$
H_{S}=H_{1}+H_{2}+H_{3}+g\left(H_{12}+H_{23}\right): \text { if } g \ll 1
$$

- Local approach: E_{ℓ} eigenvalues of $H_{1,3}$ or
- Global approach: E_{ℓ} eigenvalues of H_{S} ?

Local approach: some literature

- D. Karevski, T. Platini, Phys. Rev. Lett. 102 (2009) 207207
- M. Znidaric, Phys. Rev. Lett. 106 (2011) 220601
- T. Prosen Phys. Rev. Lett. 107 (2011) 137201
- V. Popkov, J. Stat. Phys. 2012 (2012) P12015
- J.J. Mendoza-Arenas et al., J. Stat. Phys. 2013 (2013) P07007
- A. Asadian et al., Phys. Rev. E 87 (2013) 012109
- G.T. Landi et al, Phys. Rev. E 90 (2014) 042142
- D. Manzano, P.l. Hurtado, Phys. Rev. B 90 (2014) 125138
- G. De Chiara et al., New J. Phys. 20 (2018) 113024
- F. Carollo et al., Phys. Rev. B 98 (2018) 094301
- K. V. Hovhannisyan, A. Imparato, New J. Phys. 21 (2019) 052001

Global approach: Some literature

- E.B. Davies, J. Stat. Phys. 18 (1978) 161
- H. Spohn and J.L. Lebowitz, Adv. Chem. Phys. 38 (1978) 109
- R. Alicki, J. Phys. A: Math. Gen. 12 (1979) L103
- H. Zoubi, M. Orenstien and A. Ron, Phys. Rev. A 67 (2003) 063813
- H. Wichterich, M.J. Henrich, H.-P. Breuer, J. Gemmer and M. Michel, Phys. Rev. E 76 (2007) 031115
- J.P. Santos and F.L. Semiao, Phys. Rev. A 89 (2014) 022128
- J.P. Santos and G.T. Landi, Phys. Rev. E 94 (2016) 062143
- A. Rivas and M.A. Martin-Delgado, Scient. Rep. 7 (2017) 6350

Global vs Local: a comparison

- Levy A. Levy, R. Kosloff, Europh. Lett. 107 (2014) 20004
- A.S. Trushechkin, I.V. Volovich, Europh. Lett. 113 (2016) 30005
- J.T. Stockburger, T. Motz, Fortschr. Phys. 65 (2017) 1600067
- J.O. Gonzalez et al., Open Syst. Inf. Dyn. 24 (2017) 1740010
- P.P. Hofer et al., New J. Phys. 19 (2017) 123037
- J. Kolodynski et al., Phys.Rev. A 97 (2018) 062124
- M.T. Mitchison, M. Plenio, sNew J. Phys. 20 (2018) 033005
- M. Cattaneo et al., New J. Phys. 21 (2019) 113045
- D. Farina et al., Phys. Rev. A 102 (2020) 052208

Stationary transport properties: 3-qubit chain
 F.B., R. Floreanini, L. Memarzadeh, PRA 102 (2020)

- Global approach: analytic stationary state
- Spin flux continuity equation: sinks and sources
- Local approach: stationary state up to first order perturbation in g : no sinks and sources
- The local stationary state does not emerge from the global stationary state by sending $g \rightarrow 0$

Spin chains of length N : nearest neighbour XX interactions

- $X X$ Hamiltonian:

$$
H=g \sum_{\ell=1}^{N-1}\left(\sigma_{x}^{(\ell)} \sigma_{x}^{(\ell+1)}+\sigma_{y}^{(\ell)} \sigma_{y}^{(\ell+1)}\right)+\Delta \sum_{\ell=1}^{N} \sigma_{z}^{(\ell)}
$$

- $g>0$: interspin coupling
- $\Delta>0$: transverse constant magnetic field

Open quantum spin chains

- Left $(\ell=1)$ and right spin $(\ell=N)$ coupled to independent, free Bosonic thermal baths
- Bath Hamiltonians: $\alpha=L, R$,

$$
\begin{aligned}
H_{\alpha} & =\int_{0}^{+\infty} \mathrm{d} \nu \nu \mathfrak{b}_{\alpha}^{\dagger}(\nu) \mathfrak{b}_{\alpha}(\nu) \\
{\left[\mathfrak{b}_{\alpha}(\nu), \mathfrak{b}_{\beta}^{\dagger}\left(\nu^{\prime}\right)\right] } & =\delta_{\alpha \beta} \delta\left(\nu-\nu^{\prime}\right)
\end{aligned}
$$

- Interaction Hamiltonian: $\lambda \ll 1$ dimensionless coupling constant

$$
\begin{aligned}
H^{\prime} & =\lambda \sum_{\alpha=L, R}\left(\sigma_{+}^{(\alpha)} \mathfrak{B}_{\alpha}+\sigma_{-}^{(\alpha)} \mathfrak{B}_{\alpha}^{\dagger}\right), \quad \sigma_{ \pm}^{(\ell)} \equiv \frac{1}{2}\left(\sigma_{x}^{(\ell)} \pm i \sigma_{y}^{(\ell)}\right) \\
\mathfrak{B}_{\alpha} & =\int_{0}^{\infty} \mathrm{d} \nu h_{\alpha}(\nu) \mathfrak{b}_{\alpha}(\nu), \quad\left[h_{\alpha}(\nu)\right]^{*}=h_{\alpha}(\nu)
\end{aligned}
$$

Thermal baths

- Bath Gibbs states at inverse temperatures $\beta_{L, R}$:

$$
\rho_{e n v}=\frac{\mathrm{e}^{-\beta_{L} H_{L}}}{\operatorname{Tr}\left(\mathrm{e}^{-\beta_{L} H_{L}}\right)} \otimes \frac{\mathrm{e}^{-\beta_{R} H_{R}}}{\operatorname{Tr}\left(\mathrm{e}^{-\beta_{R} H_{R}}\right)}
$$

- Thermal expectations:

$$
\begin{aligned}
& \operatorname{Tr}_{B}\left(\rho_{\text {env }} b_{\alpha}^{\dagger}(\nu) b_{\alpha^{\prime}}\left(\nu^{\prime}\right)\right)=\delta_{\alpha \alpha^{\prime}} \delta\left(\nu-\nu^{\prime}\right) n_{\alpha}(\nu) \\
& \operatorname{Tr}_{B}\left(\rho_{\text {env }} b_{\alpha}(\nu) b_{\alpha^{\prime}}^{\dagger}\left(\nu^{\prime}\right)\right)=\delta_{\alpha \alpha^{\prime}} \delta\left(\nu-\nu^{\prime}\right)\left(1+n_{\alpha}(\nu)\right) \\
& n_{\alpha}(\nu)=\frac{1}{\mathrm{e}^{\beta_{\alpha} \nu}-1}, \quad \nu \geq 0 .
\end{aligned}
$$

Weak-Coupling Limit

- Initial state: $\rho_{\text {tot }}(0)=\rho(0) \otimes \rho_{\text {env }}$
- Weak-coupling limit conditions: $\lambda\left\|\mathfrak{B}_{\alpha}\right\| \ll\|H\|$
- Kraus operators:

$$
A_{\alpha}^{\dagger}(\omega)=\sum_{E_{i}-E_{j}=\omega}\left|E_{i}\right\rangle\left\langle E_{i}\right| \sigma_{+}^{(\alpha)}\left|E_{j}\right\rangle\left\langle E_{j}\right|
$$

- Global approach:
$H\left|E_{j}\right\rangle=E_{j}\left|E_{j}\right\rangle, \quad H=g \sum_{\ell=1}^{N-1}\left(\sigma_{x}^{(\ell)} \sigma_{x}^{(\ell+1)}+\sigma_{y}^{(\ell)} \sigma_{y}^{(\ell+1)}\right)+\Delta \sum_{\ell=1}^{N} \sigma_{z}^{(\ell)}$
- Local approach: $H_{l o c}=\Delta \sum_{\ell=1}^{N} \sigma_{z}^{(\ell)}$.

Global Hamiltonian diagonalization

$$
H=\Delta \sum_{\ell=1}^{N} \sigma_{z}^{(\ell)}+2 g \sum_{\ell=1}^{N-1}\left(\sigma_{+}^{(\ell)} \sigma_{-}^{(\ell+1)}+\sigma_{-}^{(\ell)} \sigma_{+}^{(\ell+1)}\right)
$$

- Jordan-Wigner fermionization:

$$
\begin{aligned}
& a_{j}:=\prod_{k=1}^{j-1}\left(-\sigma_{z}^{(k)}\right) \sigma_{-}^{(j)}, \quad a_{j}^{\dagger}=\prod_{k=1}^{j-1}\left(-\sigma_{z}^{(k)}\right) \sigma_{+}^{(j)}, \quad\left\{a_{j}, a_{k}^{\dagger}\right\}=\delta_{j k} \\
& H=-N \Delta+2 g \widetilde{H} \\
& \widetilde{H}=\gamma \sum_{j=1}^{N} a_{j}^{\dagger} a_{j}+\sum_{j=1}^{N-1}\left(a_{j}^{\dagger} a_{j+1}+a_{j+1}^{\dagger} a_{j}\right), \gamma:=\frac{\Delta}{g}
\end{aligned}
$$

Global approach: global Hamiltonian diagonalization

$$
\widetilde{H}=\gamma \sum_{j=1}^{N} a_{j}^{\dagger} a_{j}+\sum_{j=1}^{N-1}\left(a_{j}^{\dagger} a_{j+1}+a_{j+1}^{\dagger} a_{j}\right)
$$

- Bogoljubov transformation:

$$
b_{\ell}:=\sum_{j=1}^{N} u_{\ell j} a_{j}, \quad b_{\ell}^{\dagger}:=\sum_{j=1}^{N} u_{\ell j} a_{j}^{\dagger}, \quad u_{\ell k}=\sqrt{\frac{2}{N+1}} \sin \left(\frac{\ell k \pi}{N+1}\right)
$$

- Diagonal Fermionic Hamiltonian:

$$
H=-N \Delta+\sum_{\ell=1}^{N}\left(2 \Delta+4 g \cos \left(\frac{\ell \pi}{N+1}\right)\right) b_{\ell}^{\dagger} b_{\ell}
$$

Global Hamiltonian: eigenvalues and eigenvectors

$$
H=-N \Delta+\sum_{\ell=1}^{N}\left(2 \Delta+4 g \cos \left(\frac{\ell \pi}{N+1}\right)\right) b_{\ell}^{\dagger} b_{\ell}
$$

- Eigenvectors: $b_{\ell}^{\dagger} b_{\ell}|\mathbf{n}\rangle=n_{\ell}|\mathbf{n}\rangle$

$$
\begin{aligned}
& \left.|\mathbf{n}\rangle=\left(b_{1}^{\dagger}\right)^{n_{1}}\left(b_{2}^{\dagger}\right)^{n_{2}} \cdots\left(b_{N}^{\dagger}\right)^{n_{N}} \mid \text { vac }\right\rangle, \quad \mathbf{n}=n_{1}, n_{2}, \cdots, n_{N}, n_{\ell}=0,1 \\
& b_{\ell}|\mathbf{n}\rangle=(-1)^{\sum_{j=1}^{\ell-1} n_{j}} \sqrt{n_{\ell}}\left|\mathbf{n}_{\ell}^{-}\right\rangle, \quad \mathbf{n}_{\ell}^{-}=n_{1}, \cdots, n_{\ell}-1, \cdots n_{N} \\
& b_{\ell}^{\dagger}|\mathbf{n}\rangle=(-1)^{\sum_{j=1}^{\ell-1} n_{j}} \sqrt{1-n_{\ell}}\left|\mathbf{n}_{\ell}^{+}\right\rangle, \quad \mathbf{n}_{\ell}^{+}=n_{1}, \cdots, n_{\ell}+1, \cdots n_{N}
\end{aligned}
$$

- Eigenvalues: $H|\mathbf{n}\rangle=E_{\mathbf{n}}|\mathbf{n}\rangle$,

$$
E_{\mathrm{n}}=\Delta\left(2 \sum_{\ell=1}^{N} n_{\ell}-N\right)+4 g \sum_{\ell=1}^{N} n_{\ell} \cos \left(\frac{\ell \pi}{N+1}\right)
$$

GKSL Master equation

$$
\frac{\partial \rho(t)}{\partial t}=-i\left[H+\lambda^{2} H_{L S}, \rho(t)\right]+\mathbb{D}[\rho(t)]=\mathbb{L}[\rho(t)]
$$

- Lamb-shift correction: all transition frequencies

$$
\begin{aligned}
H_{L S} & =\sum_{\alpha=L, R} \sum_{\omega}\left[S_{\omega}^{(\alpha)} A_{\alpha}^{\dagger}(\omega) A_{\alpha}(\omega)+\widetilde{S}_{\omega}^{(\alpha)} A_{\alpha}(\omega) A_{\alpha}^{\dagger}(\omega)\right] \\
S_{\omega}^{(\alpha)} & =P \int_{0}^{+\infty} \mathrm{d} \nu\left[h_{\alpha}(\nu)\right]^{2} \frac{1+n_{\alpha}(\nu)}{\omega-\nu} \\
\widetilde{S}_{\omega}^{(\alpha)} & =P \int_{0}^{+\infty} \mathrm{d} \nu\left[h_{\alpha}(\nu)\right]^{2} \frac{n_{\alpha}(\nu)}{\nu-\omega}
\end{aligned}
$$

GKSL Master equation

$$
\frac{\partial \rho(t)}{\partial t}=-i\left[H+\lambda^{2} H_{L S}, \rho(t)\right]+\mathbb{D}[\rho(t)]=\mathbb{L}[\rho(t)]
$$

- Dissipator: positive transition frequencies

$$
\mathbb{D}[\rho(t)]=\lambda^{2} \sum_{\alpha=L, R} \sum_{\omega \geq 0} \mathbb{D}_{\omega}^{(\alpha)}[\rho(t)]
$$

GKSL Master equation

$$
\frac{\partial \rho(t)}{\partial t}=-i\left[H+\lambda^{2} H_{L S}, \rho(t)\right]+\mathbb{D}[\rho(t)]=\mathbb{L}[\rho(t)]
$$

- Dissipator: positive transition frequencies

$$
\mathbb{D}[\rho(t)]=\lambda^{2} \sum_{\alpha=L, R} \sum_{\omega \geq 0} \mathbb{D}_{\omega}^{(\alpha)}[\rho(t)]
$$

Why $\omega \geq 0$?

GKSL Master equation

$$
\frac{\partial \rho(t)}{\partial t}=-i\left[H+\lambda^{2} H_{L S}, \rho(t)\right]+\mathbb{D}[\rho(t)]=\mathbb{L}[\rho(t)]
$$

- Dissipator: positive transition frequencies

$$
\mathbb{D}[\rho(t)]=\lambda^{2} \sum_{\alpha=L, R} \sum_{\omega \geq 0} \mathbb{D}_{\omega}^{(\alpha)}[\rho(t)]
$$

Why $\omega \geq 0$? Bath energies $\nu \geq 0$; interaction terms $\sigma_{+} \mathfrak{b}_{\alpha}(\nu)$

GKSL Master equation

$$
\frac{\partial \rho(t)}{\partial t}=-i\left[H+\lambda^{2} H_{L S}, \rho(t)\right]+\mathbb{D}[\rho(t)]=\mathbb{L}[\rho(t)]
$$

- Dissipator: $\mathbb{D}[\rho(t)]=\lambda^{2} \sum_{\alpha=L, R} \sum_{\omega \geq 0} \mathbb{D}_{\omega}^{(\alpha)}[\rho(t)]$

$$
\begin{aligned}
& \mathbb{D}_{\omega}^{(\alpha)}[\rho(t)]=C_{\omega}^{(\alpha)}\left[\boldsymbol{A}_{\alpha}(\omega) \rho(t) \boldsymbol{A}_{\alpha}^{\dagger}(\omega)-\frac{1}{2}\left\{\boldsymbol{A}_{\alpha}^{\dagger}(\omega) \boldsymbol{A}_{\alpha}(\omega), \rho(t)\right\}\right] \\
&+\widetilde{C}_{\omega}^{(\alpha)}\left[\boldsymbol{A}_{\alpha}^{\dagger}(\omega) \rho(t) A_{\alpha}(\omega)-\frac{1}{2}\left\{\boldsymbol{A}_{\alpha}(\omega) \boldsymbol{A}_{\alpha}^{\dagger}(\omega), \rho(t)\right\}\right] \\
& C_{\omega}^{(\alpha)}=2 \pi\left[h_{\alpha}(\omega)\right]^{2}\left(n_{\alpha}(\omega)+1\right), \quad \widetilde{C}_{\omega}^{(\alpha)}=2 \pi\left[h_{\alpha}(\omega)\right]^{2} n_{\alpha}(\omega)
\end{aligned}
$$

Kraus operators: $A_{\alpha}(\omega)$

- Ladder operators in the Fermionic representation:

$$
\sigma_{+}^{(L)}=\sum_{\ell=1}^{N} u_{1 \ell} b_{\ell}^{\dagger}, \quad \sigma_{+}^{(R)}=-\left(\mathrm{e}^{i \pi \sum_{\ell=1}^{N} b_{\ell}^{\dagger} b_{\ell}}\right) \sum_{\ell=1}^{N} u_{N \ell} b_{\ell}^{\dagger}
$$

- Non-vanishing transition amplitudes:

$$
\begin{aligned}
& \left\langle\mathbf{n}_{1_{\ell}}\right| \sigma_{+}^{(L)}\left|\mathbf{n}_{0_{\ell}}\right\rangle=(-1)^{\sum_{j=1}^{\ell-1} n_{j}} \sqrt{1-n_{\ell}} u_{1 \ell} \\
& \left\langle\mathbf{n}_{1_{\ell}}\right| \sigma_{+}^{(R)}\left|\mathbf{n}_{0_{\ell}}\right\rangle=(-1)^{\sum_{j=1}^{\ell+1} n_{j}} \sqrt{1-n_{\ell}} u_{N \ell} \\
& \mathbf{n}_{1_{\ell}}=n_{1}, \cdots, n_{\ell}=1, \cdots, n_{N}, \quad \mathbf{n}_{0_{\ell}}=n_{1}, \cdots, n_{\ell}=0, \cdots, n_{N}
\end{aligned}
$$

Kraus operators $A_{\alpha}(\omega)$

- Transition frequencies contributing to the dissipator:

$$
\omega_{\ell}=E_{\mathbf{n}_{\ell}}-E_{\mathbf{n}_{0_{\ell}}}=2 \Delta+4 g \cos \left(\frac{\ell \pi}{N+1}\right)
$$

- Kraus operators:

$$
\begin{aligned}
& A_{L}^{\dagger}\left(\omega_{\ell}\right)=u_{1 \ell} \sum_{\widehat{n}_{\ell}}(-1)^{\sum_{j=1}^{\ell-1} n_{j}}\left|\mathbf{n}_{1_{\ell}}\right\rangle\left\langle\mathbf{n}_{0_{\ell}}\right| \\
& A_{R}^{\dagger}\left(\omega_{\ell}\right)=u_{N \ell} \sum_{\widehat{n}_{\ell}}(-1)^{\sum_{j=\ell+1}^{N} n_{j}}\left|\mathbf{n}_{1_{\ell}}\right\rangle\left\langle\mathbf{n}_{0_{\ell}}\right|
\end{aligned}
$$

$\widehat{\mathbf{n}}_{\ell}$ binary n-tuples with n_{ℓ} fixed, $u_{\ell k}=\sqrt{\frac{2}{N+1}} \sin \left(\frac{\ell k \pi}{N+1}\right)$

Observations

- $A_{\alpha}\left(\omega_{\ell}\right)$ contribute to the dissipator only if

$$
\omega_{\ell}=E_{\mathbf{n}_{1_{\ell}}}-E_{\mathbf{n}_{0_{\ell}}}=2 \Delta+4 g \cos \left(\frac{\ell \pi}{N+1}\right) \geq 0
$$

- The sign of ω_{ℓ} depends on g and Δ :

$$
\cos \left(\frac{\pi \ell}{N+1}\right)<0 \quad \text { for } \quad N \geq \ell>\frac{N+1}{2} .
$$

- Working assumption:

$$
g \leq g^{*}:=\frac{\Delta}{2 \cos \left(\frac{\pi}{N+1}\right)} \Longrightarrow \omega_{\ell} \geq 0, \quad \ell=1,2, \ldots, N
$$

Stationary state

Unique: the commutant of $\left\{\boldsymbol{A}_{\alpha}^{\dagger}(\omega), A_{\alpha}(\omega)\right\}_{\omega, \alpha}$ is trivial

- Diagonal Hamiltonian: $H+\lambda^{2} H_{L S}=\sum_{\mathbf{n}} \widetilde{E}_{\mathbf{n}}|\mathbf{n}\rangle\langle\mathbf{n}|$
- Set $\rho_{\infty}=\sum_{\mathbf{n}} \Lambda_{\mathbf{n}}|\mathbf{n}\rangle\left\langle\mathbf{n}\right.$ and ask $\mathbb{L}\left[\rho_{\infty}\right]=0$
- Solution: $\Lambda_{\mathbf{n}}=\prod_{\ell=1}^{N} \lambda_{n_{\ell}}^{(\ell)}, \quad \lambda_{n_{\ell}}^{(\ell)}=\frac{R_{n_{\ell}}^{(\ell)}}{R_{\ell}}$,

$$
\begin{aligned}
& R_{n_{\ell}}^{(\ell)}:=\left[h_{L}\left(\omega_{\ell}\right)\right]^{2}\left(1-n_{\ell}+n_{L}\left(\omega_{\ell}\right)\right)+\left[h_{R}\left(\omega_{\ell}\right)\right]^{2}\left(1-n_{\ell}+n_{R}\left(\omega_{\ell}\right)\right) \\
& R_{\ell}:=\left[h_{L}\left(\omega_{\ell}\right)\right]^{2}\left(1+2 n_{L}\left(\omega_{\ell}\right)\right)+\left[h_{R}\left(\omega_{\ell}\right)\right]^{2}\left(1+2 n_{R}\left(\omega_{\ell}\right)\right)
\end{aligned}
$$

Stationary state

- Identical baths: $h_{L, R}\left(\omega_{\ell}\right)=h, \beta_{L}=\beta_{R}=\beta$,

$$
\begin{aligned}
\lambda_{n_{\ell}}^{(\ell)} & =\frac{\mathrm{e}^{\beta\left(1-n_{\ell}\right) \omega_{\ell}}}{\mathrm{e}^{\beta \omega_{\ell}}+1} \\
\rho_{\infty} & =\sum_{\mathbf{n}} \prod_{\ell=1}^{N} \frac{\mathrm{e}^{\beta\left(1-n_{\ell}\right) \omega_{\ell}}}{\mathrm{e}^{\beta \omega_{\ell}}+1}|\mathbf{n}\rangle\langle\mathbf{n}|=\frac{\mathrm{e}^{-\beta H}}{\operatorname{Tr}\left(\mathrm{e}^{-\beta H}\right)}
\end{aligned}
$$

- Even with equal temperatures stationary entanglement : no threshold temperature difference
S. Khandelwal et al., NJP 222020

Tansport properties

- Time-dependence of averages of chain observables

$$
\frac{d}{d t} \operatorname{Tr}[X \rho(t)]=\operatorname{Tr}[\mathbb{L}[\rho(t)] X]=\operatorname{Tr}[\widetilde{\mathbb{L}}[X] \rho(t)]
$$

- Dual generator:

$$
\begin{aligned}
\widetilde{\mathbb{L}}[X] & =i\left[H+\lambda^{2} H_{L S}, X\right]+\widetilde{\mathbb{D}}[X] \\
\widetilde{\mathbb{D}}[X] & =\lambda^{2} \sum_{\alpha=L, R} \sum_{\omega_{\ell} \geq 0}^{N} \widetilde{\mathbb{D}}_{\omega_{\ell}}^{(\alpha)}[X] \\
\widetilde{\mathbb{D}}_{\omega_{\ell}}^{(\alpha)}[X] & =C_{\omega_{\ell}}^{(\alpha)}\left[A_{\alpha}^{\dagger}\left(\omega_{\ell}\right) X A_{\alpha}\left(\omega_{\ell}\right)-\frac{1}{2}\left\{A_{\alpha}^{\dagger}\left(\omega_{\ell}\right) A_{\alpha}\left(\omega_{\ell}\right), X\right\}\right] \\
& +\widetilde{C}_{\omega_{\ell}}^{(\alpha)}\left[A_{\alpha}\left(\omega_{\ell}\right) X A_{\alpha}^{\dagger}\left(\omega_{\ell}\right)-\frac{1}{2}\left\{A_{\alpha}\left(\omega_{\ell}\right) A_{\alpha}^{\dagger}\left(\omega_{\ell}\right), X\right\}\right]
\end{aligned}
$$

Spin flow at site k : local X

$$
X^{(k)}=\sigma_{Z}^{(k)}, \quad \frac{d}{d t} \operatorname{Tr}\left[\sigma^{(k)} \rho(t)\right]
$$

- Lamb-shift Hamiltonian: current divergence,

$$
\begin{aligned}
& i\left[H+\lambda^{2} H_{L S}, \sigma_{z}^{(k)}\right]=(g+\kappa)\left(J^{(k-1, k)}-J^{(k, k+1)}\right) \\
& J^{(k, k+1)}=4 i\left(\sigma_{-}^{(k)} \sigma_{+}^{(k+1)}-\sigma_{+}^{(k)} \sigma_{-}^{(k+1)}\right)=-4 i\left(a_{k} a_{k+1}^{\dagger}+a_{k}^{\dagger} a_{k+1}\right) \\
& =-4 i \sum_{j, \ell=1}^{N} u_{k j} u_{k+1 \ell}\left(b_{j} b_{\ell}^{\dagger}+b_{j}^{\dagger} b_{\ell}\right), \quad \kappa=\frac{i \lambda^{2}}{8 \sqrt{2}} \sum_{\alpha=L, R} \sum_{\ell=1}^{N}\left(S_{\omega_{\ell}}^{(\alpha)}-\widetilde{S}_{\omega_{\ell}}^{(\alpha)}\right)
\end{aligned}
$$

- Asymptotic current divergence: $\rho(t)=\rho_{\infty}$,

$$
\left\langle\boldsymbol{J}^{(k, k+1)}\right\rangle_{\infty}:=\operatorname{Tr}\left(\rho_{\infty} \boldsymbol{J}^{(k, k+1)}\right)=0
$$

Sinks and sources

$$
\mathfrak{Q}_{\alpha}^{(k)}:=\lambda^{2} \sum_{\ell=1}^{N} \operatorname{Tr}\left(\rho_{\infty} \widetilde{\mathbb{D}}_{\omega_{\ell}}^{(\alpha)}\left[\sigma_{z}^{(k)}\right]\right)
$$

- Non-singly vanishing sink and source terms:

$$
\begin{aligned}
\mathfrak{Q}_{R}^{(k)} & =2 \pi \lambda^{2} \sum_{\ell=1}^{N} u_{k \ell}^{2} u_{1 \ell}^{2}\left[h_{L}\left(\omega_{\ell}\right)\right]^{2}\left[h_{R}\left(\omega_{\ell}\right)\right]^{2} \frac{n_{R}\left(\omega_{\ell}\right)-n_{L}\left(\omega_{\ell}\right)}{R_{\ell}} \\
& =-\mathfrak{Q}_{L}^{(k)} \simeq \frac{1}{N} \text { when } N \rightarrow \infty
\end{aligned}
$$

- Stationarity: $\operatorname{Tr}\left(\rho_{\infty} \widetilde{\mathbb{D}}\left[\sigma^{(k)}\right]\right)=\mathfrak{Q}_{R}^{(k)}+\mathfrak{Q}_{L}^{(k)}=0$
- Equal baths: $h_{L}(\omega)=h_{R}(\omega)=h, n_{L}\left(\omega_{\ell}\right)=n_{R}\left(\omega_{\ell}\right)$,

$$
\mathfrak{Q}_{R}^{(k)}=\pi \lambda^{2} \sum_{\ell=1}^{N} u_{k \ell}^{2} u_{1 \ell}^{2} \frac{n_{R}\left(\omega_{\ell}\right)-n_{L}\left(\omega_{\ell}\right)}{1+n_{L}\left(\omega_{\ell}\right)+n_{R}\left(\omega_{\ell}\right)}=0
$$

Source terms $\mathfrak{Q}_{R}^{(4)}$ vs T_{R}
$T_{L}=0, N=10, \lambda=1, \Delta=15,30,50, g \simeq g^{*}=\frac{\Delta}{2 \cos \left(\frac{\pi}{N+1}\right)}$

- Global approach: sinks and sources at $k \neq 1, N$ due to the non-local structure of Lindblad operators
- Sinks and sources decrease as $1 / N$ due to $u_{k \ell}^{2} u_{1 \ell}^{2}$
- Local approach: no sinks and sources for Kraus ops depend only on the leftmost and rightmost spins
- Global approach: sinks and sources when $g \rightarrow 0$ due to g in $n_{L, R}\left(\omega_{\ell}\right) \neq 0$

Heat Flow: non-local X

$$
X=H, \quad \mathfrak{H}(t):=\operatorname{Tr}\left(\frac{\mathrm{d} \rho(t)}{\mathrm{d} t} H\right)=\operatorname{Tr}(\mathbb{L}[\rho(t)] H)
$$

- Stationary heat flow: $\rho(t)=\rho_{\infty}, \mathfrak{H}_{L}^{s t}+\mathfrak{H}_{R}^{\text {st }}=0$,

$$
\begin{aligned}
\mathfrak{H}_{R}^{s t} & =\sum_{\ell=1}^{N} \operatorname{Tr}\left(\mathbb{D}_{\omega_{\ell}}^{(R)}\left[\rho_{\infty}\right] H\right) \simeq 1 \text { when } N \rightarrow \infty \\
& =\lambda^{2} \sum_{\ell=1}^{N} \omega_{\ell} u_{1 \ell}^{2}\left[h_{L}\left(\omega_{\ell}\right)\right]^{2}\left[h_{R}\left(\omega_{\ell}\right)\right]^{2} \frac{n_{R}\left(\omega_{\ell}\right)-n_{L}\left(\omega_{\ell}\right)}{R_{\ell}}
\end{aligned}
$$

- Equal baths: $h_{L}(\omega)=h_{R}(\omega)=h, n_{L}\left(\omega_{\ell}\right)=n_{R}\left(\omega_{\ell}\right)$,

$$
\mathfrak{H}_{R}^{s t}=\pi \lambda^{2} \sum_{\ell=1}^{N} \omega_{\ell} u_{1 \ell}^{2} \frac{n_{R}\left(\omega_{\ell}\right)-n_{L}\left(\omega_{\ell}\right)}{1+n_{L}\left(\omega_{\ell}\right)+n_{R}\left(\omega_{\ell}\right)}=0
$$

Heat flow $\mathfrak{H}_{R}^{s t}$ vs $T_{R}: T_{L}=0, N=8, \lambda=1, \Delta=15,30,50, g \simeq g^{*}$

Two-spin entanglement along the chain: concurrence

$$
C(\rho)=\max \left\{0, \sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}-\sqrt{\lambda_{3}}-\sqrt{\lambda_{4}}\right\}
$$

$\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \lambda_{4}$: positive eigenvalues of $\rho\left(\sigma_{y} \otimes \sigma_{y}\right) \rho^{*}\left(\sigma_{y} \otimes \sigma_{y}\right)$

- Structure of stationary two-spin reduced density matrices:

$$
\rho_{(r, s)}=\left(\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & c & 0 \\
0 & c & d & 0 \\
0 & 0 & 0 & e
\end{array}\right)
$$

- Concurrence: $C(r, s)=2 \max \{0,(|c|-\sqrt{a e})\}$

Maximum concurrence over T_{R} of spins 1 and $s=2,3, \cdots 8$
 $N=8, \lambda=1, T_{L}=0, \Delta=15$ and $g=7.8 \simeq g^{*}$

Concurrence of spins 3 and 4 vs T_{R} $T_{L}=0, N=8, \Delta=15,30,50$ and g close to g^{*} for $\Delta=15$

Concurrence of spins 3 and 4 vs T_{R} $T_{L}=0, N=8, \Delta=15,30,50$ and g close to g^{*}

Conclusions

- N-spin chain with XX interactions
- End spins coupled to thermal Bosonic baths via energy preserving interactions
- Global approach: master equation
- Global approach: analytic stationary state
- Asymptotic transport: spin-flow sinks and sources
- Asymptotic transport: heat flow
- Bipartite concurrence as function of spin-distance, interaction strength and bath temperatures

