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Open quantum systems: weak coupling limit

Open quantum systems:

H = HS + HE + λHint

Weak-coupling limit:

t 7→ τ := λ2 t , λ 7→ 0 & t 7→ +∞

Elimination of fast oscillating terms:

exp
(

i t (Ej − Ei ) − (Ep − Eq)
)
, E` eigenvalues of HS
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Open quantum spin chains: nearest neighbour interactions

3

FIG. 1. Spin chain coupled to two di↵erent environments.
First spin is coupled to the left environment at temperature
TL and third spin is coupled to the right environment at tem-
pretaure TR.

As we want to see how taking two di↵erent approaches
for deriving master equation, a↵ects transport proper-
ties of spin chain, it is worth mentioning how an observ-
able evolves in such settings. We recall that for any lin-
ear operators X and Y in B(HS) we have Tr(XL[Y]) =
Tr(L†[X]Y) where adjoint of L in equation (7), is denoted
by L† and is given by

L†[•] = i
⇥
HS + HLS , •

⇤
+ D†[•] (15)

with

D†[•] =

�2
X

!

X

i,j

�i,j(!)

✓
A†

j(!) • A†
i (!) � 1

2
{A†

i (!)Aj(!), •}
◆

(16)

Hence for any observable O 2 B(H )S we have

hO(t)i = Tr(O⇢(t)) = Tr(O etL[⇢(0)]) = Tr(etL†
[O]⇢(0))

(17)
As this holds for any initial state ⇢(0), it is concluded
that the dynamics of observable O is governed by L†,
that is

@

@t
O(t) = L†[O(t)]. (18)

In general solving master equation (7) might be com-
plicated but asymptotic behavior of observables can be
computed having the steady state of dynamics. Con-
ditions for the dynamics to have a unique steady state
and its properties have been discussed in [53–59] and it
has been shown that master equation in equation (7) has
unique steady state if the only operator commuting with
the set of Lindblad operators Ai(!) is identity. We refer
to this theorem later to discuss the uniqueness of steady
states [54].

Based on this background in what follows we discuss
how master equation or Linblad operators are derived
in global and local approach and show that these two
approaches lead to di↵erent e↵ects on dynamics of ob-
servable such as rate of spin change and spin flux.

III. MODEL

In this section, to see how di↵erent approaches a↵ect
transport properties of system, we consider a spin chain

coupled to two separable thermal bath at two ends. So
the total Hamiltonian of system and two environments is
of the form in equation (1). We take XY model in lon-
gitudinal magnetic field for system Hamiltonian, which
is an integrable model for a spin chain of arbitrary size.
However, to highlight the di↵erent consequences of local
and global approaches and represent Lindblad operators
in explicit compact form, we restrict our attention to a
spin chain of size three as depicted in figure (1). Hence
system Hamiltonian is given by

HS = g

2X

i=1

⇣
�(i)

x �(i+1)
x + �(i)

y �(i+1)
y

⌘
+ �

3X

i=1

�(i)
z (19)

Where �
(i)
x , �

(i)
y , �

(i)
z are Pauli matrices at site i. Two

separate baths at two ends are described by following
Hamiltonian

HB = HL + HR

=
X

⇠

Z
d!b̂⇠(!)†b̂⇠(!), (20)

where ⇠ is either L or R labeling the left and right

bath Hamiltonian respectively and b̂†
⇠(!) and b̂⇠(!) are

Bosonic operators of baths obeying standard commuta-
tion relations

⇥
b̂⇠(!), b̂⇠0(!

0)†⇤ = �⇠,⇠0�(! � !0) (21)

Interaction of the system with these two baths are de-
scribed by

Hint =

Z !max

0

d!hL(!)(�
(1)
+ b̂L(!) + �

(1)
� b̂†

L(!)) (22)

+

Z !max

0

d!hR(!)(�
(3)
+ b̂R(!) + �

(3)
� b̂R(!)†) (23)

where we have absorbed � in equation (1) in h⇠(!) which
is the coupling function, !max is the maximum frequency
present in the Bosonic baths and

�
(i)
± =

1

2
(�(i)

x ± �(i)
y ), i = 1, 2 (24)

are spin operators. In a system described by total Hamil-
tonian HS + HB + Hint, in the following we derive the
Lindblad operators and consequently master equation in
two di↵erent approaches, global and local.

IV. GLOBAL APPROACH

In this section we follow the general formalism ex-
plained in section II to derive the master equation in
weak coupling limit without considering any further ap-
proximation or assumption. That is to derive the Lind-
blad operators of master equation as in (9), where the
spectrum of whole HS is required. The explicit form of

Figure: Open 3-spin chain

Global vs Local approach

HS = H1 + H2 + H3 + g
(

H12 + H23

)
: if g � 1

Local approach: E` eigenvalues of H1,3 or
Global approach: E` eigenvalues of HS ?
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Local approach: some literature

D. Karevski, T. Platini, Phys. Rev. Lett. 102 (2009) 207207
M. Znidaric, Phys. Rev. Lett. 106 (2011) 220601
T. Prosen Phys. Rev. Lett. 107 (2011) 137201
V. Popkov, J. Stat. Phys. 2012 (2012) P12015
J.J. Mendoza-Arenas et al., J. Stat. Phys. 2013 (2013) P07007
A. Asadian et al., Phys. Rev. E 87 (2013) 012109
G.T. Landi et al, Phys. Rev. E 90 (2014) 042142
D. Manzano, P.I. Hurtado, Phys. Rev. B 90 (2014) 125138
G. De Chiara et al., New J. Phys. 20 (2018) 113024
F. Carollo et al., Phys. Rev. B 98 (2018) 094301
K.V. Hovhannisyan, A. Imparato, New J. Phys. 21 (2019) 052001

F. Benatti Asymptotic transport properties in open quantum spin chains



Open quantum spin chains
Master equation in the global approach

Stationary state

Global approach: Some literature
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Global vs Local: a comparison
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Stationary transport properties: 3-qubit chain
F.B., R. Floreanini, L. Memarzadeh, PRA 102 (2020)

Global approach: analytic stationary state
Spin flux continuity equation: sinks and sources
Local approach: stationary state up to first order
perturbation in g: no sinks and sources
The local stationary state does not emerge from the
global stationary state by sending g → 0
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Spin chains of length N: nearest neighbour XX interactions

XX Hamiltonian:

H = g
N−1∑

`=1

(
σ

(`)
x σ

(`+1)
x + σ

(`)
y σ

(`+1)
y

)
+ ∆

N∑

`=1

σ
(`)
z

g > 0: interspin coupling
∆ > 0: transverse constant magnetic field
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Open quantum spin chains

Left (` = 1) and right spin (` = N) coupled to independent, free
Bosonic thermal baths
Bath Hamiltonians: α = L,R,

Hα =

∫ +∞

0
dν ν b†α(ν) bα(ν)

[
bα(ν), b†β(ν′)

]
= δαβ δ(ν − ν′)

Interaction Hamiltonian: λ << 1 dimensionless coupling constant

H ′ = λ
∑

α=L,R

(
σ

(α)
+ Bα + σ

(α)
− B†α

)
, σ

(`)
± ≡

1
2
(
σ

(`)
x ± iσ(`)

y
)

Bα =

∫ ∞

0
dν hα(ν) bα(ν) , [hα(ν)]∗ = hα(ν) ,
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Thermal baths

Bath Gibbs states at inverse temperatures βL,R :

ρenv =
e−βL HL

Tr
(

e−βL HL

) ⊗ e−βR HR

Tr
(

e−βR HR

)

Thermal expectations:

TrB

(
ρenv b†α(ν)bα′(ν′)

)
= δαα′δ(ν − ν′) nα(ν)

TrB

(
ρenv bα(ν)b†α′(ν

′)
)

= δαα′δ(ν − ν′) (1 + nα(ν))

nα(ν) =
1

eβαν − 1
, ν ≥ 0 .
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Weak-Coupling Limit

Initial state: ρtot(0) = ρ(0)⊗ ρenv

Weak-coupling limit conditions: λ‖Bα‖ � ‖H‖
Kraus operators:

A†α(ω) =
∑

Ei−Ej =ω

|Ei〉〈Ei |σ(α)
+ |Ej〉〈Ej |

Global approach:

H|Ej〉 = Ej |Ej〉 , H = g
N−1∑

`=1

(
σ

(`)
x σ

(`+1)
x + σ

(`)
y σ

(`+1)
y

)
+ ∆

N∑

`=1

σ
(`)
z

Local approach: Hloc = ∆
∑N
`=1 σ

(`)
z .
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Global Hamiltonian diagonalization
Global approach: master equation

Global Hamiltonian diagonalization

H = ∆
N∑

`=1

σ
(`)
z + 2g

N−1∑

`=1

(
σ

(`)
+ σ

(`+1)
− + σ

(`)
− σ

(`+1)
+

)

Jordan-Wigner fermionization:

aj :=

j−1∏

k=1

(−σ(k)
z )σ

(j)
− , a†j =

j−1∏

k=1

(−σ(k)
z )σ

(j)
+ ,

{
aj , a†k

}
= δjk

H = −N ∆ + 2g H̃

H̃ = γ

N∑

j=1

a†j aj +
N−1∑

j=1

(
a†j aj+1 + a†j+1aj

)
, γ :=

∆

g
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Global Hamiltonian diagonalization
Global approach: master equation

Global approach: global Hamiltonian diagonalization

H̃ = γ

N∑

j=1

a†j aj +
N−1∑

j=1

(
a†j aj+1 + a†j+1aj

)

Bogoljubov transformation:

b` :=
N∑

j=1

u`j aj , b†` :=
N∑

j=1

u`j a†j , u`k =

√
2

N + 1
sin

(
`kπ

N + 1

)

Diagonal Fermionic Hamiltonian:

H = −N ∆ +
N∑

`=1

(
2 ∆ + 4g cos

(
`π

N + 1

))
b†` b`
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Global Hamiltonian diagonalization
Global approach: master equation

Global Hamiltonian: eigenvalues and eigenvectors

H = −N ∆ +
N∑

`=1

(
2 ∆ + 4g cos

(
`π

N + 1

))
b†` b`

Eigenvectors: b†` b`|n〉 = n` |n〉

|n〉 = (b†1)n1 (b†2)n2 · · · (b†N)nN |vac〉 , n = n1,n2, · · · ,nN , n` = 0,1

b`|n〉 = (−1)
∑`−1

j=1 nj
√

n` |n−` 〉 , n−` = n1, · · · ,n` − 1, · · · nN

b†` |n〉 = (−1)
∑`−1

j=1 nj
√

1− n` |n+
` 〉 , n+

` = n1, · · · ,n` + 1, · · · nN

Eigenvalues: H |n〉 = En |n〉,

En = ∆
(

2
N∑

`=1

n` − N
)

+ 4g
N∑

`=1

n` cos

(
`π

N + 1

)
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Global Hamiltonian diagonalization
Global approach: master equation

GKSL Master equation

∂ρ(t)
∂t

= −i
[
H + λ2 HLS , ρ(t)] + D[ρ(t)] = L[ρ(t)]

Lamb-shift correction: all transition frequencies

HLS =
∑

α=L,R

∑

ω

[
S(α)
ω A†α(ω)Aα(ω) + S̃(α)

ω Aα(ω)A†α(ω)

]

S(α)
ω = P

∫ +∞

0
dν [hα(ν)]2

1 + nα(ν)

ω − ν

S̃(α)
ω = P

∫ +∞

0
dν [hα(ν)]2

nα(ν)

ν − ω
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Global Hamiltonian diagonalization
Global approach: master equation

GKSL Master equation

∂ρ(t)
∂t

= −i
[
H + λ2 HLS , ρ(t)] + D[ρ(t)] = L[ρ(t)]

Dissipator: positive transition frequencies

D[ρ(t)] = λ2
∑

α=L,R

∑

ω≥0

D(α)
ω [ρ(t)]

Why ω ≥ 0? Bath energies ν ≥ 0; interaction terms σ+ bα(ν)
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Global Hamiltonian diagonalization
Global approach: master equation

GKSL Master equation

∂ρ(t)
∂t

= −i
[
H + λ2 HLS , ρ(t)] + D[ρ(t)] = L[ρ(t)]

Dissipator: positive transition frequencies

D[ρ(t)] = λ2
∑

α=L,R

∑

ω≥0

D(α)
ω [ρ(t)]

Why ω ≥ 0?

Bath energies ν ≥ 0; interaction terms σ+ bα(ν)
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GKSL Master equation

∂ρ(t)
∂t

= −i
[
H + λ2 HLS , ρ(t)] + D[ρ(t)] = L[ρ(t)]

Dissipator: positive transition frequencies

D[ρ(t)] = λ2
∑

α=L,R

∑

ω≥0

D(α)
ω [ρ(t)]

Why ω ≥ 0? Bath energies ν ≥ 0; interaction terms σ+ bα(ν)
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Global Hamiltonian diagonalization
Global approach: master equation

GKSL Master equation

∂ρ(t)
∂t

= −i
[
H + λ2 HLS , ρ(t)] + D[ρ(t)] = L[ρ(t)]

Dissipator: D[ρ(t)] = λ2∑
α=L,R

∑
ω≥0 D

(α)
ω [ρ(t)]

D(α)
ω [ρ(t)] = C(α)

ω

[
Aα(ω)ρ(t)A†α(ω) − 1

2

{
A†α(ω)Aα(ω), ρ(t)

}]

+ C̃(α)
ω

[
A†α(ω)ρ(t)Aα(ω) − 1

2

{
Aα(ω)A†α(ω), ρ(t)

}]

C(α)
ω = 2π [hα(ω)]2

(
nα(ω) + 1

)
, C̃(α)

ω = 2π [hα(ω)]2 nα(ω)
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Global Hamiltonian diagonalization
Global approach: master equation

Kraus operators: Aα(ω)

Ladder operators in the Fermionic representation:

σ
(L)
+ =

N∑

`=1

u1` b†` , σ
(R)
+ = −

(
ei π

∑N
`=1 b†` b`

) N∑

`=1

uN` b†`

Non-vanishing transition amplitudes:

〈n1` |σ
(L)
+ |n0`〉 = (−1)

∑`−1
j=1 nj

√
1− n` u1`

〈n1` |σ
(R)
+ |n0`〉 = (−1)

∑`+1
j=1 nj

√
1− n` uN`

n1` = n1, · · · ,n` = 1, · · · ,nN , n0` = n1, · · · ,n` = 0, · · · ,nN
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Global Hamiltonian diagonalization
Global approach: master equation

Kraus operators Aα(ω)

Transition frequencies contributing to the dissipator:

ω` = En1`
− En0`

= 2 ∆ + 4 g cos

(
`π

N + 1

)

Kraus operators:

A†L(ω`) = u1`

∑

n̂`

(−1)
∑`−1

j=1 nj |n1`〉〈n0` |

A†R(ω`) = uN`

∑

n̂`

(−1)
∑N

j=`+1 nj |n1`〉〈n0` |

n̂` binary n-tuples with n` fixed, u`k =

√
2

N + 1
sin

(
`kπ

N + 1

)

F. Benatti Asymptotic transport properties in open quantum spin chains



Open quantum spin chains
Master equation in the global approach

Stationary state

Global Hamiltonian diagonalization
Global approach: master equation

Observations

Aα(ω`) contribute to the dissipator only if

ω` = En1`
− En0`

= 2 ∆ + 4 g cos

(
`π

N + 1

)
≥ 0

The sign of ω` depends on g and ∆:

cos

(
π`

N + 1

)
< 0 for N ≥ ` > N + 1

2
.

Working assumption:

g ≤ g∗ :=
∆

2 cos
(

π
N+1

) =⇒ ω` ≥ 0 , ` = 1,2, . . . ,N
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Stationary Transport Properties
Bipartite entanglement

Stationary state

Unique: the commutant of {A†α(ω) , Aα(ω)}ω,α is trivial

Diagonal Hamiltonian: H + λ2HLS =
∑

n Ẽn |n〉〈n|
Set ρ∞ =

∑
n Λn |n〉〈n and ask L[ρ∞] = 0

Solution: Λn =
N∏

`=1

λ
(`)
n` , λ

(`)
n` =

R(`)
n`

R`
,

R(`)
n` := [hL(ω`)]2

(
1− n` + nL(ω`)

)
+ [hR(ω`)]2

(
1− n` + nR(ω`)

)

R` := [hL(ω`)]2
(

1 + 2nL(ω`)
)

+ [hR(ω`)]2
(

1 + 2nR(ω`)
)
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Stationary state

Identical baths: hL,R(ω`) = h, βL = βR = β,

λ
(`)
n` =

eβ(1−n`)ω`

eβω` + 1

ρ∞ =
∑

n

N∏

`=1

eβ(1−n`)ω`

eβω` + 1
|n〉〈n| =

e−β H

Tr
(
e−β H

)

Even with equal temperatures stationary entanglement : no
threshold temperature difference

S. Khandelwal et al., NJP 22 2020
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Tansport properties

Time-dependence of averages of chain observables

d
dt

Tr
[
Xρ(t)

]
= Tr

[
L[ρ(t)] X

]
= Tr

[
L̃[X ] ρ(t)

]

Dual generator:

L̃[X ] = i
[
H + λ2HLS , X

]
+ D̃[X ]

D̃[X ] = λ2
∑

α=L,R

N∑

ω`≥0

D̃(α)
ω`

[X ]

D̃(α)
ω`

[X ] = C(α)
ω`

[
A†α(ω`) X Aα(ω`)−

1
2

{
A†α(ω`)Aα(ω`),X

}]

+C̃(α)
ω`

[
Aα(ω`) X A†α(ω`)−

1
2

{
Aα(ω`)A†α(ω`),X

}]
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Spin flow at site k : local X

X (k) = σ
(k)
z ,

d
dt

Tr
[
σ(k)ρ(t)

]

Lamb-shift Hamiltonian: current divergence,

i
[
H + λ2HLS, σ

(k)
z

]
= (g + κ)

(
J(k−1,k) − J(k,k+1)

)

J(k,k+1) = 4i
(
σ

(k)
− σ

(k+1)
+ − σ(k)

+ σ
(k+1)
−

)
= −4i

(
ak a†k+1 + a†k ak+1

)

= −4i
N∑

j , `=1

ukjuk+1`(bjb
†
` + b†j b`) , κ =

iλ2

8
√

2

∑

α=L,R

N∑

`=1

(
S(α)
ω`
− S̃(α)

ω`

)

Asymptotic current divergence: ρ(t) = ρ∞,

〈J(k,k+1)〉∞ := Tr
(
ρ∞ J(k,k+1)

)
= 0
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Sinks and sources

Q(k)
α := λ2

N∑

`=1

Tr
(
ρ∞ D̃(α)

ω`
[σ

(k)
z ]
)
,

Non-singly vanishing sink and source terms:

Q
(k)
R = 2πλ2

N∑

`=1

u2
k` u2

1` [hL(ω`)]2 [hR(ω`)]2
nR(ω`)− nL(ω`)

R`

= −Q(k)
L '

1
N

when N →∞

Stationarity: Tr
(
ρ∞ D̃[σ(k)]

)
= Q

(k)
R + Q

(k)
L = 0

Equal baths: hL(ω) = hR(ω) = h, nL(ω`) = nR(ω`),

Q
(k)
R = πλ2

N∑

`=1

u2
k` u2

1`
nR(ω`)− nL(ω`)

1 + nL(ω`) + nR(ω`)
= 0
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The Hamiltonian contribution to the rate of change in
time of the average of �z can be expressed in terms of
the dimensionless spin currents:

J (k,k+1) = 4i
⇣
�

(k)
� �

(k+1)
+ � �

(k)
+ �

(k+1)
�

⌘
, (80)

as

i
h
H+�2HLS , �(k)

z

i
= (g+)

⇣
J (k�1,k)�J (k,k+1)

⌘
, (81)

where the Lamb-shift contribution is characterized by a
constant

 =
i�2

8
p

2
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⇣
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� eS(↵)
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⌘
. (82)

The operator di↵erences in (81) thus contribute to the
continuity equation (76) as current divergence terms
with the right dimension of energy. Since we are in-
terested in the stationary transport properties, we set
⇢(t) = ⇢1 in the right hand side of (76) and find
hJ (k,k+1)i1 := Tr

�
⇢1 J (k,k+1)

�
= 0. Indeed, passing

from spin to Fermionic operators, by (26) and (36), one
finds

J (k,k+1) = �4i
�
aka†

k+1 + a†
kak+1

�

= �4i
NX

j `=1

ukjuk+1`(bjb
†
` + b†

jb`) . (83)

Hence, all their averages with respect to the energy eigen-
states vanish,

hn|J (k,k+1)|ni = �4i

NX

j=1

ukjuk+1j = huk|uk+1i = 0 .

(84)

Indeed, (32)-(33) yield hn|bjb
†
`|ni = �j` (1 � nj) and

hn|b†
jb`|ni = �j` nj , while the columns |uki of the or-

thogonal and symmetric matrix U (see Remark 2) are
orthogonal. Thus the stationary left, hJ (k�1,k)i1, and
right, hJ (k,k+1)i1, spin currents through site k both van-
ish.

Clearly, being ⇢1 time-independent, the right hand

side of (76) then yields Tr
�
⇢1 eD[�(k)]

�
= 0. However,

the left and right purely dissipative contributions,

Q(k)
↵ := �2

NX

`=1

Tr
�
⇢1 eD(↵)

!`
[�(k)

z ]
�

, (85)

do not separately vanish; indeed, as shown in Ap-
pendix E,

Q
(k)
L = 2⇡�2

NX

`=1

u2
k` u2

1` [hL(!`)]
2 [hR(!`)]

2 ⇥

⇥ nL(!`) � nR(!`)

R`
, (86)

Q
(k)
R = 2⇡�2

NX

`=1

u2
k` u2

N` [hL(!`)]
2 [hR(!`)]

2 ⇥

⇥ nR(!`) � nL(!`)

R`
, (87)

with R` as in (70). Furthermore, since from (30) one finds
that u1` = (�)`uN` for all ` = 1, 2, . . . , N , it follows that

Q
(k)
L = �Q

(k)
R as it should physically be.

Also, assuming hL(!) = hR(!) = h, one gets

Q
(k)
L = ⇡�2

NX

`=1

u2
k` u2

1`

nL(!`) � nR(!`)

1 + nL(!`) + nR(!`)
, (88)

Q
(k)
R = ⇡�2

NX

`=1

u2
k` u2

N`

nR(!`) � nL(!`)

1 + nL(!`) + nR(!`)
. (89)

One thus sees that, while the continuity equation (76)
in the stationary case does not contain any current di-
vergence at site k, it does however contain terms of a
di↵erent origin that are due to the presence of the two
baths. These terms vanish only if the temperatures are
the same so that nL(!`) = nR(!`) and are thus inter-
pretable as spin flow source or sink contributions, de-
pending on whether they are positive or negative.
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FIG. 1. Behaviour of the source term Q
(4)
R as functions of TR

in an N = 8-spin chain with left bath temperature TL = 10,
� = 1 � = 15, 30, 50 and g close to the saturation values
in (55).
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The Hamiltonian contribution to the rate of change in
time of the average of �z can be expressed in terms of
the dimensionless spin currents:
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where the Lamb-shift contribution is characterized by a
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The operator di↵erences in (81) thus contribute to the
continuity equation (76) as current divergence terms
with the right dimension of energy. Since we are in-
terested in the stationary transport properties, we set
⇢(t) = ⇢1 in the right hand side of (76) and find
hJ (k,k+1)i1 := Tr
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⇢1 J (k,k+1)
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= 0. Indeed, passing

from spin to Fermionic operators, by (26) and (36), one
finds
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Hence, all their averages with respect to the energy eigen-
states vanish,
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jb`|ni = �j` nj , while the columns |uki of the or-

thogonal and symmetric matrix U (see Remark 2) are
orthogonal. Thus the stationary left, hJ (k�1,k)i1, and
right, hJ (k,k+1)i1, spin currents through site k both van-
ish.

Clearly, being ⇢1 time-independent, the right hand

side of (76) then yields Tr
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the left and right purely dissipative contributions,
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do not separately vanish; indeed, as shown in Ap-
pendix E,
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with R` as in (70). Furthermore, since from (30) one finds
that u1` = (�)`uN` for all ` = 1, 2, . . . , N , it follows that

Q
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R as it should physically be.

Also, assuming hL(!) = hR(!) = h, one gets
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One thus sees that, while the continuity equation (76)
in the stationary case does not contain any current di-
vergence at site k, it does however contain terms of a
di↵erent origin that are due to the presence of the two
baths. These terms vanish only if the temperatures are
the same so that nL(!`) = nR(!`) and are thus inter-
pretable as spin flow source or sink contributions, de-
pending on whether they are positive or negative.
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FIG. 1. Behaviour of the source term Q
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R as functions of TR

in an N = 8-spin chain with left bath temperature TL = 10,
� = 1 � = 15, 30, 50 and g close to the saturation values
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Note that, due to the scaling as 1/N2 of the products
u2

k` u2
N` (see (30)) and the presence of N of them in (88)

and (89), the source and sink terms scale as 1/N with
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Open quantum spin chains
Master equation in the global approach

Stationary state

Stationary Transport Properties
Bipartite entanglement

Global approach: sinks and sources at k 6= 1,N due to
the non-local structure of Lindblad operators
Sinks and sources decrease as 1/N due to u2

k` u2
1`

Local approach: no sinks and sources for Kraus ops
depend only on the leftmost and rightmost spins
Global approach: sinks and sources when g → 0 due to g
in nL,R(ω`) 6= 0
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Heat Flow: non-local X

X = H , H(t) := Tr
(

dρ(t)
dt

H
)

= Tr (L[ρ(t)] H)

Stationary heat flow: ρ(t) = ρ∞, Hst
L + Hst

R = 0,

Hst
R =

N∑

`=1
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(
D(R)
ω`

[ρ∞] H
)
' 1 when N →∞

= λ2
N∑

`=1
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1` [hL(ω`)]2[hR(ω`)]2

nR(ω`)− nL(ω`)

R`

Equal baths: hL(ω) = hR(ω) = h, nL(ω`) = nR(ω`),

Hst
R = π λ2

N∑

`=1

ω` u2
1`

nR(ω`)− nL(ω`)

1 + nL(ω`) + nR(ω`)
= 0
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The Hamiltonian contribution to the rate of change in
time of the average of �z can be expressed in terms of
the dimensionless spin currents:
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The operator di↵erences in (81) thus contribute to the
continuity equation (76) as current divergence terms
with the right dimension of energy. Since we are in-
terested in the stationary transport properties, we set
⇢(t) = ⇢1 in the right hand side of (76) and find
hJ (k,k+1)i1 := Tr
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Hence, all their averages with respect to the energy eigen-
states vanish,
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(84)

Indeed, (32)-(33) yield hn|bjb
†
`|ni = �j` (1 � nj) and

hn|b†
jb`|ni = �j` nj , while the columns |uki of the or-

thogonal and symmetric matrix U (see Remark 2) are
orthogonal. Thus the stationary left, hJ (k�1,k)i1, and
right, hJ (k,k+1)i1, spin currents through site k both van-
ish.

Clearly, being ⇢1 time-independent, the right hand

side of (76) then yields Tr
�
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the left and right purely dissipative contributions,
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do not separately vanish; indeed, as shown in Ap-
pendix E,
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with R` as in (70). Furthermore, since from (30) one finds
that u1` = (�)`uN` for all ` = 1, 2, . . . , N , it follows that

Q
(k)
L = �Q

(k)
R as it should physically be.

Also, assuming hL(!) = hR(!) = h, one gets

Q
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Q
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nR(!`) � nL(!`)

1 + nL(!`) + nR(!`)
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One thus sees that, while the continuity equation (76)
in the stationary case does not contain any current di-
vergence at site k, it does however contain terms of a
di↵erent origin that are due to the presence of the two
baths. These terms vanish only if the temperatures are
the same so that nL(!`) = nR(!`) and are thus inter-
pretable as spin flow source or sink contributions, de-
pending on whether they are positive or negative.
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FIG. 1. Behaviour of the source term Q
(4)
R as functions of TR

in an N = 8-spin chain with left bath temperature TL = 10,
� = 1 � = 15, 30, 50 and g close to the saturation values
in (55).

Note that, due to the scaling as 1/N2 of the products
u2

k` u2
N` (see (30)) and the presence of N of them in (88)

and (89), the source and sink terms scale as 1/N with

8

increasing number of spins. In Figure 1 we consider a
chain with N = 8 spins, set TL = 0 so that nL(!`) = 0
and show the dependence of the source term

Q
(4)
R = ⇡�2

8X

`=1

u2
4` u2

8` e��R!` , (90)

in the middle of the chain as a function of the right tem-
perature TR and various values of the transverse mag-
netic field � and the inter-spin coupling strength g. The
values of g associated with � are chosen close to the
bound (55), for reasons that will become clear later when
we discuss the bipartite stationary entanglement.

Remark 4. The presence of sink and source contribu-
tions at sites k 6= 1, N is strictly related to the global
structure of the Lindblad operators in (48) and (52) that
involve all spins of the chain. Should the Lindblad oper-
ators depend only on the leftmost and rightmost spin op-
erators as in the local approach to open spin chains (see
Remark 3), sink and source terms would disappear as is
the case for the two spins in [81]. Notice that in the global
approach developed before sinks and sources are present
even in the limit where the inter-spin coupling g ! 0; in-
deed, g appears in the thermal factors nL,R(!`) through
the transition frequencies !` (see (9)). These terms re-
main di↵erent and non zero whenever �L 6= �R, even for
g = 0.

B. Stationary heat flow

Beside the spin flow, the presence of the two baths at
the far ends of the chain also establishes heat flows in and
out of the chain. According to standard quantum ther-
modynamics arguments [39, 40], the heat flow through
an open quantum system due to its weak coupling to a
thermal bath, is measured by

H(t) := Tr

✓
d⇢(t)

dt
H

◆
= Tr (L[⇢(t)] H) , (91)

where ⇢ 7! ⇢(t) is the dissipative evolution due to the
bath, generated by L, while H is the open system time-
independent Hamiltonian. Because of the structure of
the GKSL equation as in (11), only the dissipative term
of the generator contributes to the heat flow; therefore,
in the spin chain stationary state, the heat flow due to
the left, respectively right bath is given by

Hst
↵ =

NX

`=1

Tr
⇣
D(↵)

!`
[⇢1] H

⌘
, ↵ = L, R . (92)

Certainly, D[⇢1] = 0 implies Hst
L + Hst

R = 0; however,
as for the spin flow, the single bath contributions to the
heat flow need not separately vanish and their sign, if
positive, corresponds to heat flowing into the chain from
the bath, or to heat flowing out of the chain and into the
bath.

Using (47), (56), (67)-(70), (15) and (16) one computes

Hst
L =

NX

`=1

Tr
⇣
D(L)

!`
[⇢1] H

⌘
= �2

NX

`=1

X

n,k

En ⇤k u2
1` ⇥

⇥
⇣
C(L)

!`
�1k`

� eC(L)
!`

�0k`

⌘
hn|
⇣
Pk0`

� Pk1`

⌘
|ni

= �2
NX

`=1

!` u2
1`

⇣
C(L)

!`
�

(`)
1 � eC(L)

!`
�

(`)
0

⌘

= �2
NX

`=1

!` u2
1` [hL(!`)]

2[hR(!`)]
2 ⇥

⇥ nL(!`) � nR(!`)

R`
. (93)

Notice that the heat flow is positive, namely it flows from
the left bath into the chain if nL(!) > nR(!), that is
(see (9)) if the left bath is at higher temperature than
the right one. Furthermore, the simplifying assumption
hL(!) = hR(!) = h yields

Hst
R = ⇡ �2

NX

`=1

!` u2
1`

nR(!`) � nL(!`)

1 + nL(!`) + nR(!`)
. (94)

Notice that the transition frequencies !` in (47) are of
order 1 with respect to increasing N , whence each of the
N contributions !` u2

1` to the heat flow scales as 1/N due
to (30). Thus, unlike the sink and source terms in (88)
and (89) that scale as 1/N , the heat flow does not vanish
with increasing N . Setting N = 8 and TL = 0 as for
the source terms in (90), and choosing the same set of
parameters � and g as in Figure 1, the behaviour of the
heat flow Hst

R as a function of TR is reported in Figure 2.
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FIG. 2. Behaviour of the heat flow Hst
R as a function of the

right bath temperature TR in an N = 8-spin chain with left
bath temperature TL = 0, � = 15, 30, 50 and g close to the
corresponding saturation values.
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Open quantum spin chains
Master equation in the global approach

Stationary state

Stationary Transport Properties
Bipartite entanglement

Two-spin entanglement along the chain: concurrence

C(ρ) = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}

λ1 ≥ λ2 ≥ λ3 ≥ λ4: positive eigenvalues of ρ (σy ⊗ σy )ρ∗(σy ⊗ σy )

Structure of stationary two-spin reduced density matrices:

ρ(r ,s) =




a 0 0 0
0 b c 0
0 c d 0
0 0 0 e




Concurrence: C(r , s) = 2 max
{

0 ,
(
|c| − √a e

)}
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Stationary state

Stationary Transport Properties
Bipartite entanglement

Maximum concurrence over TR of spins 1 and s = 2,3, · · · 8
N = 8, λ = 1,TL = 0,∆ = 15 and g = 7.8 ' g∗
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Here the combinadic indices of the entries of S(p) con-
tributing to the only o↵-diagonal term c involve di↵erent
sites r and s. The combinadic indices are instead the
same for the entries of S(p) contributing to the diagonal
entries:

a =
NX

p=0

X

N (rs)
p (1,1)

S(p)

N (rs)
p (1,1)N (rs)

p (1,1)
, (121)
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(122)
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. (124)

For such states the concurrence takes the following ana-
lytic expression

C(r, s) = 2 max
n

0 ,
⇣
|c| � p

a e
⌘o

. (125)

whence the stationary bipartite entanglement corre-
sponding to a non-vanishing positive C(r, s), can be eval-
uated as a function of the sites r and s and their distance
s � r. The concurrences C(1, 2), C(2, 3) and C(1, 3) for
a three spin chain are studied in Appendix I.

C. Two-spin concurrence

In this section we study the stationary two-spin en-
tanglement in a N -spin chain. In doing so, we use Ap-
pendix J which shows how the coe�cients a, b, c, d and e
appearing in the concurrence C(r, s) in (125) can be algo-
rithmically reconstructed. The quantity C(r, s) depends
on the parameters � and g of the chain Hamiltonian, on
the temperatures TL,R, on the number of spins, N , and
on the spin sites 0  r  s  N .

Firstly, although the algorithm developed in Ap-
pendix J works for all N , its symbolic numerical imple-
mentation rapidly becomes time-consuming so that, in
the following figures, we shall focus upon a chain con-
sisting of N = 8 spins. In full generality, we observe
that, similarly to the sink and source terms in (86),
and (87), the bipartite entanglement between any pair
of sites scales as 1/N ; this follows from the fact that, for
large N , such is the leading order of the matrix elements

S(p)
N 0

pN 00
p

in (104). In turn, such a behaviour is due to the

fact that the transition frequencies !` in (47), and thus
the eigenvalues (67), are of order 1 with respect to N ,

while the quantities D(p)
N 0

pN 00
p

introduced in Remark 5 are

of order 1/(
p

N)p and, in each of the expressions (120)–
(124), there appear sums from p = 1 to p = N of products
of pairs of such terms.

Secondly, as much as in the case of source and sink
terms and of heat flows, we set TL = 0 and then in-
spect the dependence on the right temperature TR only.
What one expects by letting TL > 0 is that when
TR = TL > 0 one reaches the Gibbs state in (75). This
thermal equilibrium state can not provide transport ef-
fects, for nL(!`) = nR(!`), but may however support
bipartite entanglement at finite non-vanishing tempera-
tures. On the other hand, for TL = TR = 0 the state
becomes the vacuum state |vaci in (25) which is clearly
separable. close to the maximum value (55) that ensure
the positivity of all transition frequencies !` in (47))) and
plot various concurrences versus TR.

Fig3.pdf

FIG. 3. Maximum achievable entanglement between sites 1
and s = 2, 3, · · · 8 by varying TR. Here N = 8, � = 1, TL =
0,� = 15 and g = 7.8 is close to its upper bound in Eq. (55).

Expected features of the concurrence C(r, s) are that
by increasing the distance s � r between the spins with
fixed r, the maximum achievable bipartite entangle-
ment Cmax(r, s) diminishes, as shown in Figure 3 for
Cmax(1, s) in a chain of size N = 8 with TL = 0, � = 1,
� = 50 and g = 7.8 is very close to upper bound in
Eq. (55). while the concurrence itself vanishes at lower
temperatures, in agreement with the fact that distance
and temperature play against correlations. Furthermore,
the lack of translational invariance makes C(r, s) depend
not only on s � r, but also on the position r of the first
spin.

As regards the dependence of the concurrence on the
parameters � and g, Figure 4 first shows that, with tem-
perature TL = 0, and g fixed, close to the saturation
the bound (55) for � = 15, the entanglement as a func-
tion of TR diminishes while increasing �. This behaviour
agrees with the fact that augmenting the transverse ex-
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whence the stationary bipartite entanglement corre-
sponding to a non-vanishing positive C(r, s), can be eval-
uated as a function of the sites r and s and their distance
s � r. The concurrences C(1, 2), C(2, 3) and C(1, 3) for
a three spin chain are studied in Appendix I.
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Firstly, although the algorithm developed in Ap-
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mentation rapidly becomes time-consuming so that, in
the following figures, we shall focus upon a chain con-
sisting of N = 8 spins. In full generality, we observe
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and (87), the bipartite entanglement between any pair
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large N , such is the leading order of the matrix elements
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spect the dependence on the right temperature TR only.
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TR = TL > 0 one reaches the Gibbs state in (75). This
thermal equilibrium state can not provide transport ef-
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FIG. 3. Maximum achievable entanglement between sites 1
and s = 2, 3, · · · 8 by varying TR. Here N = 8, � = 1, TL =
0,� = 15 and g = 7.8 is close to its upper bound in Eq. (55).

Expected features of the concurrence C(r, s) are that
by increasing the distance s � r between the spins with
fixed r, the maximum achievable bipartite entangle-
ment Cmax(r, s) diminishes, as shown in Figure 3 for
Cmax(1, s) in a chain of size N = 8 with TL = 0, � = 1,
� = 50 and g = 7.8 is very close to upper bound in
Eq. (55). while the concurrence itself vanishes at lower
temperatures, in agreement with the fact that distance
and temperature play against correlations. Furthermore,
the lack of translational invariance makes C(r, s) depend
not only on s � r, but also on the position r of the first
spin.

As regards the dependence of the concurrence on the
parameters � and g, Figure 4 first shows that, with tem-
perature TL = 0, and g fixed, close to the saturation
the bound (55) for � = 15, the entanglement as a func-
tion of TR diminishes while increasing �. This behaviour
agrees with the fact that augmenting the transverse ex-
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with eD[�
(k)
z ] = �2

P
↵=L,R

PN
!`�0

eD(↵)
!` [�

(k)
z ], where

eD(↵)
!`

[�(k)
z ] = C(↵)

!`


A†

↵(!`)�
(k)
z A↵(!`)

� 1

2

⇢
A†

↵(!`)A↵(!`), �
(k)
z

��
(78)

+ eC(↵)
!`


A↵(!`)�

(k)
z A†

↵(!`)

� 1

2

⇢
A↵(!`)A

†
↵(!`), �

(k)
z

��
. (79)

The Hamiltonian contribution to the rate of change in
time of the average of �z can be expressed in terms of
the dimensionless spin currents:

J (k,k+1) = 4i
⇣
�

(k)
� �

(k+1)
+ � �

(k)
+ �

(k+1)
�

⌘
, (80)

as

i
h
H+�2HLS , �(k)

z

i
= (g+)

⇣
J (k�1,k)�J (k,k+1)

⌘
, (81)

where the Lamb-shift contribution is characterized by a
constant

 =
i�2

8
p

2

X

↵=L,R

NX

`=1

⇣
S(↵)
!`

� eS(↵)
!`

⌘
. (82)

The operator di↵erences in (81) thus contribute to the
continuity equation (76) as current divergence terms
with the right dimension of energy. Since we are in-
terested in the stationary transport properties, we set
⇢(t) = ⇢1 in the right hand side of (76) and find
hJ (k,k+1)i1 := Tr

�
⇢1 J (k,k+1)

�
= 0. Indeed, passing

from spin to Fermionic operators, by (26) and (36), one
finds

J (k,k+1) = �4i
�
aka†

k+1 + a†
kak+1

�

= �4i
NX

j `=1

ukjuk+1`(bjb
†
` + b†

jb`) . (83)

Hence, all their averages with respect to the energy eigen-
states vanish,

hn|J (k,k+1)|ni = �4i

NX

j=1

ukjuk+1j = huk|uk+1i = 0 .

(84)

Indeed, (32)-(33) yield hn|bjb
†
`|ni = �j` (1 � nj) and

hn|b†
jb`|ni = �j` nj , while the columns |uki of the or-

thogonal and symmetric matrix U (see Remark 2) are
orthogonal. Thus the stationary left, hJ (k�1,k)i1, and
right, hJ (k,k+1)i1, spin currents through site k both van-
ish.

Clearly, being ⇢1 time-independent, the right hand

side of (76) then yields Tr
�
⇢1 eD[�(k)]

�
= 0. However,

the left and right purely dissipative contributions,

Q(k)
↵ := �2

NX

`=1

Tr
�
⇢1 eD(↵)

!`
[�(k)

z ]
�

, (85)

do not separately vanish; indeed, as shown in Ap-
pendix E,

Q
(k)
L = 2⇡�2

NX

`=1

u2
k` u2

1` [hL(!`)]
2 [hR(!`)]

2 ⇥

⇥ nL(!`) � nR(!`)

R`
, (86)

Q
(k)
R = 2⇡�2

NX

`=1

u2
k` u2

N` [hL(!`)]
2 [hR(!`)]

2 ⇥

⇥ nR(!`) � nL(!`)

R`
, (87)

with R` as in (70). Furthermore, since from (30) one finds
that u1` = (�)`uN` for all ` = 1, 2, . . . , N , it follows that

Q
(k)
L = �Q

(k)
R as it should physically be.

Also, assuming hL(!) = hR(!) = h, one gets

Q
(k)
L = ⇡�2

NX

`=1

u2
k` u2

1`

nL(!`) � nR(!`)

1 + nL(!`) + nR(!`)
, (88)

Q
(k)
R = ⇡�2

NX

`=1

u2
k` u2

N`

nR(!`) � nL(!`)

1 + nL(!`) + nR(!`)
. (89)

One thus sees that, while the continuity equation (76)
in the stationary case does not contain any current di-
vergence at site k, it does however contain terms of a
di↵erent origin that are due to the presence of the two
baths. These terms vanish only if the temperatures are
the same so that nL(!`) = nR(!`) and are thus inter-
pretable as spin flow source or sink contributions, de-
pending on whether they are positive or negative.
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FIG. 1. Behaviour of the source term Q
(4)
R as functions of TR

in an N = 8-spin chain with left bath temperature TL = 10,
� = 1 � = 15, 30, 50 and g close to the saturation values
in (55).

Note that, due to the scaling as 1/N2 of the products
u2

k` u2
N` (see (30)) and the presence of N of them in (88)

and (89), the source and sink terms scale as 1/N with
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Here the combinadic indices of the entries of S(p) con-
tributing to the only o↵-diagonal term c involve di↵erent
sites r and s. The combinadic indices are instead the
same for the entries of S(p) contributing to the diagonal
entries:

a =

NX

p=0

X

N (rs)
p (1,1)

S(p)

N (rs)
p (1,1)N (rs)

p (1,1)
, (121)

b =
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p=0
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(122)

d =

NX

p=0

X

N (rs)
p (0,1)

S(p)

N (rs)
p (0,1)N (rs)

p (0,1)
, (123)

e =

NX

p=0

X

N (rs)
p (0,0)

S(p)

N (rs)
p (0,0)N (rs)

p (0,0)
. (124)

For such states the concurrence takes the following ana-
lytic expression

C(r, s) = 2 max
n

0 ,
⇣
|c| � p

a e
⌘o

. (125)

whence the stationary bipartite entanglement corre-
sponding to a non-vanishing positive C(r, s), can be eval-
uated as a function of the sites r and s and their distance
s � r. The concurrences C(1, 2), C(2, 3) and C(1, 3) for
a three spin chain are studied in Appendix I.

C. Two-spin concurrence

In this section we study the stationary two-spin en-
tanglement in a N -spin chain. In doing so, we use Ap-
pendix J which shows how the coe�cients a, b, c, d and e
appearing in the concurrence C(r, s) in (125) can be algo-
rithmically reconstructed. The quantity C(r, s) depends
on the parameters � and g of the chain Hamiltonian, on
the temperatures TL,R, on the number of spins, N , and
on the spin sites 0  r  s  N .

Firstly, although the algorithm developed in Ap-
pendix J works for all N , its numerical implementation
rapidly becomes time-consuming so that, in the following
figures, we shall focus upon a chain consisting of N = 8
spins. In full generality, we observe that, similarly to the
sink and source terms in (86), and (87), the bipartite en-
tanglement between any pair of sites scales as 1/N ; this
follows from the fact that, for large N , such is the leading

order of the matrix elements S(p)
N 0

pN 00
p

in (104). In turn,

such a behaviour is due to the fact that the transition
frequencies !` in (47), and thus the eigenvalues (67), are

of order 1 with respect to N , while the quantities D(p)
N 0

pN 00
p

introduced in Remark 5 are of order 1/(
p

N)p and, in
each of the expressions (120)–(124), there appear sums
from p = 1 to p = N of products of pairs of such terms.

Secondly, as much as in the case of source and sink
terms and of heat flows, we set TL = 0 and then in-
spect the dependence on the right temperature TR only.
What one expects by letting TL > 0 is that when
TR = TL > 0 one reaches the Gibbs state in (75). This
thermal equilibrium state can not provide transport ef-
fects, for nL(!`) = nR(!`), but may however support
bipartite entanglement at finite non-vanishing tempera-
tures. On the other hand, for TL = TR = 0 the state
becomes the vacuum state |vaci in (25) which is clearly
separable. Expected features of the concurrence C(r, s)
are that by increasing the distance s�r between the spins
with fixed r, the maximum achievable bipartite entangle-
ment diminishes vanishing at decreasing temperatures, in
agreement with the fact that distance and temperature
play against correlations. Furthermore, the lack of trans-
lational invariance makes C(r, s) depend not only on s�r,
but also on the position r of the first spin.
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FIG. 3. Bipartite entanglement between spins 3 and 4, as
measured by the concurrence C(3, 4), versus TR for N = 8,
TL = 0, with � = 15, 30, 50 and g close to the saturation
value relative to � = 15.
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FIG. 4. Bipartite entanglement between spins 3 and 4, as
measured by the concurrence C(3, 4), versus TR for N = 8,
TL = 0, with � = 15, 30, 50 and g close to the corresponding
saturation values.

As regards the dependence of the concurrence on the
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The Hamiltonian contribution to the rate of change in
time of the average of �z can be expressed in terms of
the dimensionless spin currents:

J (k,k+1) = 4i
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where the Lamb-shift contribution is characterized by a
constant
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The operator di↵erences in (81) thus contribute to the
continuity equation (76) as current divergence terms
with the right dimension of energy. Since we are in-
terested in the stationary transport properties, we set
⇢(t) = ⇢1 in the right hand side of (76) and find
hJ (k,k+1)i1 := Tr

�
⇢1 J (k,k+1)

�
= 0. Indeed, passing

from spin to Fermionic operators, by (26) and (36), one
finds
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aka†

k+1 + a†
kak+1
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Hence, all their averages with respect to the energy eigen-
states vanish,

hn|J (k,k+1)|ni = �4i
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(84)

Indeed, (32)-(33) yield hn|bjb
†
`|ni = �j` (1 � nj) and

hn|b†
jb`|ni = �j` nj , while the columns |uki of the or-

thogonal and symmetric matrix U (see Remark 2) are
orthogonal. Thus the stationary left, hJ (k�1,k)i1, and
right, hJ (k,k+1)i1, spin currents through site k both van-
ish.

Clearly, being ⇢1 time-independent, the right hand

side of (76) then yields Tr
�
⇢1 eD[�(k)]
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= 0. However,

the left and right purely dissipative contributions,

Q(k)
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do not separately vanish; indeed, as shown in Ap-
pendix E,

Q
(k)
L = 2⇡�2

NX
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k` u2

1` [hL(!`)]
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2 ⇥

⇥ nL(!`) � nR(!`)

R`
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with R` as in (70). Furthermore, since from (30) one finds
that u1` = (�)`uN` for all ` = 1, 2, . . . , N , it follows that

Q
(k)
L = �Q

(k)
R as it should physically be.

Also, assuming hL(!) = hR(!) = h, one gets
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One thus sees that, while the continuity equation (76)
in the stationary case does not contain any current di-
vergence at site k, it does however contain terms of a
di↵erent origin that are due to the presence of the two
baths. These terms vanish only if the temperatures are
the same so that nL(!`) = nR(!`) and are thus inter-
pretable as spin flow source or sink contributions, de-
pending on whether they are positive or negative.
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FIG. 1. Behaviour of the source term Q
(4)
R as functions of TR

in an N = 8-spin chain with left bath temperature TL = 10,
� = 1 � = 15, 30, 50 and g close to the saturation values
in (55).
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N` (see (30)) and the presence of N of them in (88)

and (89), the source and sink terms scale as 1/N with

11

Here the combinadic indices of the entries of S(p) con-
tributing to the only o↵-diagonal term c involve di↵erent
sites r and s. The combinadic indices are instead the
same for the entries of S(p) contributing to the diagonal
entries:

a =
NX

p=0

X

N (rs)
p (1,1)

S(p)

N (rs)
p (1,1)N (rs)

p (1,1)
, (121)

b =

NX

p=0

X

N (rs)
p (1,0)

S(p)

N (rs)
p (1,0)N (rs)

p (1,0) ,
(122)

d =

NX

p=0

X

N (rs)
p (0,1)

S(p)

N (rs)
p (0,1)N (rs)

p (0,1)
, (123)

e =

NX

p=0

X

N (rs)
p (0,0)

S(p)

N (rs)
p (0,0)N (rs)

p (0,0)
. (124)

For such states the concurrence takes the following ana-
lytic expression

C(r, s) = 2 max
n

0 ,
⇣
|c| � p

a e
⌘o

. (125)

whence the stationary bipartite entanglement corre-
sponding to a non-vanishing positive C(r, s), can be eval-
uated as a function of the sites r and s and their distance
s � r. The concurrences C(1, 2), C(2, 3) and C(1, 3) for
a three spin chain are studied in Appendix I.

C. Two-spin concurrence

In this section we study the stationary two-spin en-
tanglement in a N -spin chain. In doing so, we use Ap-
pendix J which shows how the coe�cients a, b, c, d and e
appearing in the concurrence C(r, s) in (125) can be algo-
rithmically reconstructed. The quantity C(r, s) depends
on the parameters � and g of the chain Hamiltonian, on
the temperatures TL,R, on the number of spins, N , and
on the spin sites 0  r  s  N .

Firstly, although the algorithm developed in Ap-
pendix J works for all N , its numerical implementation
rapidly becomes time-consuming so that, in the following
figures, we shall focus upon a chain consisting of N = 8
spins. In full generality, we observe that, similarly to the
sink and source terms in (86), and (87), the bipartite en-
tanglement between any pair of sites scales as 1/N ; this
follows from the fact that, for large N , such is the leading

order of the matrix elements S(p)
N 0

pN 00
p

in (104). In turn,

such a behaviour is due to the fact that the transition
frequencies !` in (47), and thus the eigenvalues (67), are

of order 1 with respect to N , while the quantities D(p)
N 0

pN 00
p

introduced in Remark 5 are of order 1/(
p

N)p and, in
each of the expressions (120)–(124), there appear sums
from p = 1 to p = N of products of pairs of such terms.

Secondly, as much as in the case of source and sink
terms and of heat flows, we set TL = 0 and then in-
spect the dependence on the right temperature TR only.
What one expects by letting TL > 0 is that when
TR = TL > 0 one reaches the Gibbs state in (75). This
thermal equilibrium state can not provide transport ef-
fects, for nL(!`) = nR(!`), but may however support
bipartite entanglement at finite non-vanishing tempera-
tures. On the other hand, for TL = TR = 0 the state
becomes the vacuum state |vaci in (25) which is clearly
separable. Expected features of the concurrence C(r, s)
are that by increasing the distance s�r between the spins
with fixed r, the maximum achievable bipartite entangle-
ment diminishes vanishing at decreasing temperatures, in
agreement with the fact that distance and temperature
play against correlations. Furthermore, the lack of trans-
lational invariance makes C(r, s) depend not only on s�r,
but also on the position r of the first spin.
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FIG. 3. Bipartite entanglement between spins 3 and 4, as
measured by the concurrence C(3, 4), versus TR for N = 8,
TL = 0, with � = 15, 30, 50 and g close to the saturation
value relative to � = 15.
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FIG. 4. Bipartite entanglement between spins 3 and 4, as
measured by the concurrence C(3, 4), versus TR for N = 8,
TL = 0, with � = 15, 30, 50 and g close to the corresponding
saturation values.

As regards the dependence of the concurrence on the
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