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Employing a formulation of quantum statistical ensembles in terms of classical probability
distributions on projective Hilbert space, it is shown that the wave function of an open quantum
system represents a stochastic process. The stochastic dynamics of the state vector is obtained from a
microscopic system-plus-reservoir model by deriving within the Markov approximation the differential
Chapman-Kolmogorov equation for the classical distribution of the reduced system. The realizations
of the stochastic process are found to be similar to those of the Monte Carlo wave function simulation
method proposed, in general form, by Zoller et al. [Phys. Rev. A 46, 4363 (1992)].

Introduce: Ply] with | DyDy*Ply| = 1

Unitary dynamics: Ply,t] = P [e"y, 1|

Expectation values: (A) = [ DyDy™ | dxy*(x)Ay(x)Ply]
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Combination of systems:
Plyl = (P, ® P,)[wl = | Dy, Dy | Dya Dy [w — yws| Py [y | Py |w]

Reduction:

Py [wi] = | DyDy* ) w,[y18, [r.[v] — yi] Ply]

with  2.[wl(x)) = wy [yl | dxgi (x,) (X, x,)
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Markov approximation: P, [l//l,t] = | Dy Dy T [l/fpf | 1/71afo] P, [1/71»%]
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Open Quantum Systems

Unravelling

o )

dp(t) = —i (H -5 DA+ Z’”A"‘”(t)z) ¥(t)dt

(0 ,
3 (s — o) 4

0i5AN; (t)
vil| A ()] |7d

GKSL equation :



Open Quantum Systems

Stochastic simulation algorithm

Generate sample of realizations ¥" (¢)

(Assume that the normalized state ¢" (t) was reached through\

ajumpattime ¢ andset " (t) =
_ . J
rDetermine the random waiting time © o

_ o] — 32 SRWATD.
n=1—=F, 7] = |[exp(—iHT)|

_ ; J
e NN )

Within [t, t+ 7 exnD(—1H s

D7 (¢ 3%: P .A)le, 0<s<T
. | exp(—iH s)1|| y
# )
At time t + 7 select a specific jump
with probability pi = <A (T i
P 4 D YillAipr (t + 7)||?
and replace (¢ + 1) — A" (t +7)
A (t +7)|]
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<
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Quantum Forking



Quantum Forking

Classical Forking

. ;‘74 ¥ X
y iy * \\r;' \5;
G J

e A
WIKIPEDIA

The Free Encyelopedia

In computing, particularly in the context of the Unix operating
system and its workalikes, fork is an operation whereby
a process creates a copy of itself.

52 Symposium on Mathematical Physics
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https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Computer_process

Quantum Forking
Motivation: QRAM

Redundant
— State
preparations

Require
repetition

Quantum forking bypasses this fundamental problem:
A qubit can undergo independent processes in superposition.

D Park, F Petruccione, J-K K Rhee, Circuit-Based Quantum Random
Access Memory for Classical Data, Scientific Reports (2019) 9:3949
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Quantum Forking

Quantum Forking Swap Test

Idea

1
Prob(0) = 5[1 + Re({®; | D,))]

Prepare |®) only once!

(D) =U,|®), i=12

Un-forking: |Ws5) = EHO) \\ + D)) + | 1)(| D) — | @) )

D Park, F Petruccione, J-K K Rhee, Circuit-Based Quantum Random
Access Memory for Classical Data, Scientific Reports (2019) 9:3949
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Quantum Forking

ldea 2 d
Contro Zaﬂz) Useful when
Can speedup Data rﬁsogr:e
certain tasks if overhead for an
followed by some initial state
Ancillas reparation Is
clever measurement ! prep

large

) =au[1) S(E)B161) ® [62) © ... © [ga-1)
+a3(2) R |¢1) & ?/J) & ¢2\> D ... ®|Pg-1)
+0a3|3) ® [d2) ® |¢1) K (VYD ... @ |da—1)

agld) @ [¢g-1) @ [¢1) ® |d2) D ... @@

D K Park, | Sinayskiy, M Fingerhuth, F Petruccione, J-K K Rhee, Parallel trajectories
via forking for sampling without redundancy, New Journal of Physics 21, 083024 (2019)
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Quantum Forking
Forking - Unforking

&
@
O

-

Data register

Unforking  1,) =3 vaili)Uil) |8
1=1
Measurement (0) => a;(¢|UfOU;|v)
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Unravelling on a NISQ Computer



Unravelling on a QC

Quantum Forking: Idea

:f - |y (1))
|y (0)) —| l’?(t» - tr (Qp(t))

Iy [ yi(@))

a; | i) (2—WN (N—(2)

X -

|y (0)) - T1 - <0>
$)

| ¢>. TN

| Sinayskiy, D K Park, J-K K Rhee, F Petruccione, soon in the arXiv (2021)
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Unravelling on a QC

Quantum Forking

:_1 >y (0)
Oy —f el

TN ()

|¢>-4 Tn

D@D -@O—® N
= p(0)) ] T, ke (0)
#) T

%

- tr (Op(1))

>

(0) =tr (Op,(1))

solution of the Master equation
N

. {0y~ ) atr (Oy(0)wi(®)|)

l

Since ps(t)zzaill//i(t»(%(t)l with ) =1 and >0 Vi

l

solution of the i-the realisation of the SSE

1
l\ i) = [17;
j=M

1
)/ | ]

1 [ (O))|

=M \ operators representing deterministic

Expectation value can be written as

N

drift or quantum jump

N
(0) Zai<l//(0) | to7j0to7i|l//(o)>/||to7i|l//(0)>||2 = (02611‘“//1'(0)(%(1) |> =1 (0,05(1))
i=1

l

1

where 7,=]]7, and |w®)=7,;|w(0))

J=M
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Unravelling on a QC

Example 1: Spontaneous emission (i)

Master Equation:

§
Cd

\_ J

Unravelled SSE:

= (-pos — 5 {oro-}) | win 00~ (

-
dly(t)) = —iG(|¢(t)))dt + (HZ: Z

-

with  G(I(1)) = 700 hb(6) + sallo— b (@)1 (1)



Unravelling on a QC
Example 1: Spontaneous emission (ii)

Only two possible scenarios for a single trajectory

Non-hermitian evolution:  |¢(s)) = e M0 _ (1 0<s<
on-nermitian evolution. S — ||6—isI:I O>H — 0 : T

Quantum jump:
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Unravelling on a QC

Example 1: Spontaneous emission (iii)

This SSE was implemented QF step

via QF with two trajectories:
/ \ Quantum barrier

— H

“index register”

|
“wave function __.__é_ﬂ_
register” |

| \ E , A
/ \

Realisation of the trajectory

. q0o 'E ' qZo -E ; q30 -E
Other possible 0 ) ) m .
- . qui | 1 i 1 :
quantum circults T 2 m T 3 " ; T
. 02 : gec2 i 2 :
for this SSE ’ n ! q "
cO 0 Cc2 C3 0
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Unravelling on a QC

Example 1: Spontaneous emission, experiment

1.0 n —
\ =
L&
\ *
08 \ A
\ ®
\
0.6 X
- \
Q. \
\
0.4 \&
\
\\i A
0.2 . ¥
\\.\
0.0
0 1 2

Analytical solution

QASM Simulation without noise
QASM Simulation with device noise
Real Device without error mitigation
Real Device with error mitigation

A A
A
T - *
e o —
3 4 5
vt

For each time moment - 250 runs x 2 trajectories = 500 trajectories
each run 8192 shots @ IBM Ourense 5-qubit Quantum Device

21



Unravelling on a QC
Example 2: Dephasing of a qubit (i)

Master Equation:

~

d

.+ W0

L%ﬂ — 2[70-2710] T (O-Z/OO-Z — /0)

~

_J

Corresponding SSE:

where p(0) = |+){(+| =
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Unravelling on a QC
Example 2: Dephasing of a qubit (ii)
Only two possible scenarios for a single trajectory
Non-hermitian evolution:

€

g)) — _ w(t» _ e—iswoaz/2 S -
SRR P O] v, 0<s<

Quantum jump:
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Unravelling on a QC
Example 2: Dephasing of a qubit (ii)

measurement in
the X basis

SS E was “index register” / \ /

Im plemented “wave function

via QF with | register s RO s ROz
two -
traject()ries “initial state B \

preparation” \

l. . .
Realisation of the trajectory

Other possible quantum | 9°° i

|
- u n i ’R—z’
circuits for this SSE q31 ﬂ— m n] ‘ H | Tﬁ g4 ﬂ_ aoasz) mu} Mmz)\ 10028052
. __Em |
a3z 7 a0y | H 942 o 09054) . 20751 u&195)
0
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Unravelling on a QC

Example 2: Dephasing of a qubit, experiment

1.00 =n == == Analytical solution
\‘ s  QASM Simulation without noise
t \ * QASM Simulation with device noise
0.8 \ o Real Device without error mitigation
i I/:\ e Real Device with error mitigation
N \ P ¥ N
=0.6- \ { \ R *
> ‘ \ / £
+ \ le . o / ®
= \ J X A
| 6 I \ /
0.4 \ f \ y
t 7 . 3
\ ]
\ 8/
0.2- \ * /
\/
|
0.0 0.2 0.4 0.6 0.8 1.0
yt
wo /7y = 10

For each time moment - 250 runs x 2 trajectories = 500 trajectories
each run 8192 shots @ IBM Ourense 5-qubit Quantum Device
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Unravelling on a QC

Example 3: Depolarsing GKSL equation, experiment

d | o,
0.8 p:_l Gzap E }/] Gpg—p
/l\ dt 2
0.7 1 ¥ J=X,9:2
/ \
os| B3 )
! \ / * }\

05 | \ A = P L T
S I \ / ~k _& w
+ 27
0.3

| - = Analytical solution
e | m QASM Simulation without noise
01 i ' * OQASM Simulation with device noise .
0)=|— — | I o Real Device without error mitigation vi=7
p0) =] —){—| , e T
0.0{ o e Real Device with error mitigation wyy = 20
0.0 0.2 0.4 0.6 0.8 1.0
vt

For each time moment - 252 runs x 2 trajectories = 504 trajectories
each run 8192 shots @ IBM Ourense 5-qubit Quantum Device
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Implementation of a generic SSE

Non-hermitian operations (l)

ANH‘W)
| |Ang [w) | ]

Idea: Couple system to an ancilla and apply unitary to both and post selection

() Generic system-ancilla unitary:
Using Axy = UDV'

In general |y) —

* Usy = Ay ® 100 = DT @ [ 1)(1] +VI-D'DVI @ [1)(0] + UVI-D'D ® [0)(1]
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Implementation of a generic SSE

Non-hermitian operations (l)

Idea: Couple system to an ancilla and apply unitary to both and post selection

(Il) Projective measurement on ancilla

W) @ 10)4 = Usy (1) ®10),)

A
— PyUsa (1w) ® 10),) = HAZE A ® |0)4

where P, is projective measurement in the computational basis followed by post-
selection on the ancillary system |0) ,

28



Implementation of a generic SSE

Parallelisation via forking (i)

Problem: To propagate an input quantum state under multiple arbitrary non-
hermitian dynamics in parallel, it is necessary to normalise the
state of each trajectory independently

Solution:

Experiment 1 pre-compute the normalisqtion constants for all states resulting
from independent trajectories
. parallelise multiple trajectories with non-uniform weights given by
Experiment 2 the index register

29



Implementation of a generic SSE

Parallelisation via forking (ii)

Experiment 1 Experiment 2

N
a; | i) <23 (D(D@ BHH2H2)
g}\/_"’” 5 UéilUéfBU&-:‘t’l=. = z
” .. aulU 3 — Z

.
9 9 1o A\ -
. vz 1 U2 o 1 R
) g g | L
Uy 1 U B UG I AR

) — u

N1 N2 NM
Usa 1Usy B Us,” MR
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Implementation of a generic SSE

Example: Driven spontaneous emission

d
E'D: — 1 [A0Z+Q0x,p] +y p0+——{0+ ,p}
1.001 % - = Analytical solution
*‘\ s QASM Simulation without noise
0.751 \ * QASM Simulation with device noise
s | 4 Real Device without error mitigation
0.50 \ ¢ Real Device with error mitigation
\ -
\ ){ \
—~ 0725 \ /% kb
N i re g ¢
0.001 i ! \ R -
\ / \ N - , >
~0.25 \ p { ¥/ “a_ o
P & N d
\ ! i
p(0) = [0){0] ~0.50 ol
\ 7/
[l
0.0 0.5 1.0 1.5 2.0 2.5 3.0
vt

Aly =1
Qly =3

For each time moment - 252 runs x 2 trajectories = 504 trajectories
each run 8192 shots @ IBM Ourense 5-qubit Quantum Device
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Conclusion



THE THEORY OF

open quantum systems

Quantum Science and Technology

Maria Schuld - Francesco Petruccione

Supervised
Learning with

Quantum
Computers

@ Springer




J. Phys. A: Math. Theor. 51 (2018) 115301 (11pp)

Open quantum generalisation of Hopfield

neural networks

P Rotondo!*®, M Marcuzzi':?, J P Garrahan'-?,

| Lesanovsky'> and M Miiller’

N
p=—ilH.pl+) > (L - {LT Li,.p}

4
=1 7'::|:

e:lzﬁ/zAEi

~ (2cosh(BAE))

=
.

N
H:QZJf
i=1

https://doi.org/10.1088/1751-8121/aaabcb

(a)

5(13 re

Figure 1. Sketch of the classical-to-quantum mapping for the Hopfield NN. (a) In the
Hopfield model neurons (dots) are binary spins describing the activity of the neurons
(+1 firing, —1 silent). The OQSs framework allows us to study the competition
between thermal and quantum effects. In particular, the ith neuron changes its activity
state at a rate 1';+ as in the classical model or undergoes a quantum state change, due
to the coherent driving introduced in equation (4). (b) If 2 = 0, the stationary state is
at thermal equilibrium. The qualitative behavior of the energy function of the classical
NN is sketched in a one dimensional projection of the configurational space. Memory
patterns are stored as the energy minima of the energy function. Whenever the NN is
initialized close enough (close in the sense of the Hamming distance between spin
configurations) to a specific memory pattern, the dynamics in equation (1) allows to
retrieve the corresponding stored pattern. In the presence of quantum effects (€2 # 0),
the nature of the stationary state can be non-trivial, i.e. it may be non-thermal, due to the
competition between quantum coherence and irreversible classical dynamics.
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(9 July 2019)

t-index = 1
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“He sips coffee and reads an
interesting paper by Maria
Schuld, Ilya Sinayskiy, and
Francesco Petruccione on
prediction by linear regression
on a quantum computer. Their
algorithm is fascinating.

But it is, he knows, a
distraction, something for future
analysis.”

Chapter 61, p. 287
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