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Abstract. Most of text categorization research exploit bag-of-words
text representation. In this approach, however, all contextual information
contained in text is neglected. Therefore, capturing semantic similarity
between text documents that share very little or even no vocabulary is
not possible. In this paper we present an approach that combines well
established kernel text classifiers with external contextual commonsense
knowledge. We propose a method for computing semantic similarity be-
tween words as a result of diffusion process in ConceptNet semantic
space. Evaluation on a Reuters dataset show a substantial improvement
in precision of classification.

1 Introduction

Text is the primary medium of representing and distributing information. Cat-
egorization is one of the basic methods of organizing textual data. Research on
this topic have been dominated with machine learning approach and a predomi-
nant number of papers focus on kernel methods [1]. In most reported works text
were represented with a Vector Space Model (a.k.a. bag-of-words) and similar-
ity between two pieces of text were computed as a function of words shared by
the two. This assumption, however, makes it very hard to capture any semantic
similarity between text documents that share very little or even no vocabulary.
This issue was addressed with statistical and algebraic tools [2]. On the other
hand, there is a long history of works evaluating word relatedness using hierar-
chical semantic network representations that gets back to 1960s [3]. More recent
works concentrate on WordNet [4] as a primal source of information on relations
between words (e.g. [5][6]). In this paper we present an approach that tries to
combine well established kernel text classifiers with contextual common-sense
knowledge brought by ConceptNet [7]. We propose a method for computing se-
mantic similarity between words that is backed by the common-sense relations
graph. The similarity is expressed as a result of diffusion process. Resulting
kernel function is later evaluated in a text categorization problem.

This paper is organized as follows. In next section we briefly describe linear
kernels for text classification problems. In the third section we define proxim-
ity of words and outline methods for construction word proximity matrices. In



fifth section we describe in details our diffusion algorithm. Results of experimen-
tal evaluation are presented in sixth section. Finally, we conclude and give an
outlook for future works in the last section.

2 Linear Kernels for Text

Simple linear kernels perform very well in text categorization problems [1]. They
implement an IR-developed Vector Space Model (VSM) using a mapping φ(d)
that embeds a piece of text d into a space where each dimension corresponds
to one of N words in dictionary D. Order in which words appear in text is
neglected. Similarity between two pieces of text, d1, d2 ∈ Docs, is computed as
a dot product of their embeddings,

κ(d1, d2) = 〈φ(d1), φ(d2)〉 = d1d
T
2 .

The more words documents have in common, the more similar they are.
Due to simplistic assumption, however, linear kernels are not able to cap-

ture any semantic similarity between text documents that share very little or
even no vocabulary. This problem can be addressed by extending from VSM
to GVSM [8] [9]. Semantic linear kernels [10] implement this extension, and
incorporate additional information on words similarity. They are defined as,

κs(d1, d2) = 〈φs(d1), φs(d2)〉 = φ(d1)SST φ(d2)T . (1)

where S is a semantic matrix. The S matrix could be any N × k matrix with
all positive entries that captures semantic similarity between words. If k is equal
to N , the semantic matrix can be regarded as a word-to-word similarity matrix.
Indeed, the sij entry would express semantic similarity between i-th and j-th
words in a dictionary. When k is smaller then N , this leads to some dimen-
sionality reduction step, so that subsequent computations are performed in this
k-dimensional, reduced space.

3 Proximity of Words

Proximity is usually defined with help of a distance function, ∆ : D × D → R
(e.g. [6]). A proximity is inverse of a distance. Two objects are given a large
proximity value if they are in a close distance. If they are the same, proximity
is equal to 1. With help of a distance function, proximity is given as

p(u, v) =
{

inv(∆(u, v) + 1) ⇐⇒ ∆(u, v) 6= ∞,
0 ⇐⇒ ∆(u, v) = ∞,

(2)

where inv : [1,∞) → [0, 1] is some monotonically decreasing function, e.g. 1/x or
exp(−x). A proximity function can also be constructed without explicit compu-
tation of a distance between words. It can be generalized to any monotonically
decreasing function p : D × D → [0, 1] that captures our intuitive proximity



of their meaning. By constructing such a function we define a corresponding
distance function implicitly.

To construct proximity matrix as in (1) we need

– source of information on relations between words,
– method for computing proximity and relevance of words.

In most approaches the training data itself is used to extract relations be-
tween words, with common co-occurrence being the most frequent indicator of
their relatedness. On the other hand there are relatively few works that involve
external sources of information of (e.g. [5], [6]). Methods to obtain proximity val-
ues are closesly related to a source of data used. For structured representations,
usually graphs, diffusion methods can be applied [2] [11].

In this paper we investigate application of external data and a novel method
of proximity computation. In two subsequent sections we discuss in details the
source of relations on words proximity and proposed diffusion algorithm.

4 ConceptNet as a Source of Information on Relations
between Words

Firstly, we should decide what properties a good source of information on words
relations should posses? Since we are analyzing general text classification prob-
lem it should cover wide scope of topics. Moreover, it should contain relations
and associations between words, that are typical and obvious to humans but not
clear to machines. At the same time, it should include sophisticated vocabulary
that turns out to make the most discriminative features. In fact, there are only
very few publicly available sources of structured information that could be used
for this purpose.

The best known and used in predominant number of works is WordNet [4].
This hand-crafted lexical database system consist of well structuralised infor-
mation organized within part of speech groups. WordNet’s recent version lacks,
however, relations between these groups. For instance, it does not provide ob-
vious information that a “dog” “barks”, but comes with a detailed mammals
taxonomy. For context aware processing such information are of a little value,
though. Additionally WordNet requires an disambiguation step to map analyzed
words to senses.

We argue that for classification problem information on contextual rather
then structural relations is of greater need. ConceptNet [7], made publicly avail-
able recently, is a semantic network designed for commonsense contextual rea-
soning. It was automatically built from a collection of 700,000 sentences, a corpus
being a result of collaboration of some 14,000 people. It provides commonsense
contextual associations not offered by any other knowledge base. ConceptNet
traded the precise relations given by WordNet for noisy and imprecise yet obvi-
ous and valuable for humans. For instance, ConceptNet lacks any fine informa-
tion on mammals taxonomy that WordNet provides, but comes with an obvious
hint that a “dog” is a “pet”.



ConceptNet is organized as a massive directed and labelled graph. It is made
of about 300,000 vertexes and about 1.5 million edges, corresponding to words
or phrases, and relations between them, respectively. Vast part of the vertexes
represent common actions or chores given as phrases, e.g. “drive a car” or “buy
food”. There are approx. 260,000 vertexes of this type. The remaining nodes
are single words (including stopwords). There are also six types of relations (or
edges) between vertexes. The largest connected component encompasses almost
the whole ConceptNet graph. Its structure is also a bit bushy, with a group
of highly connected nodes, and “person” being the most connected, having in-
degree of about 30,000 and outdegree of over 50,000. There are over 86,000 leaf
nodes and approximately 25,000 root nodes (nodes that have no incoming edges).
An average degree of a node is 4.69.

5 Proximity Evaluation

Having the structure of ConceptNet in mind, we propose an alternative proximity
function defined on graph vertexes. General idea of the algorithm is also in-
line with classic psycholinguistic theory of spreading activation [12] in semantic
memory. We have chosen the following objectives for its construction:

– proximity decreases with number of visited nodes,
– vertexes connected directly or through some niche links are in a short dis-

tance, hence they are proximate,
– connections going through highly connected nodes increase ambiguity, there-

fore proximity should be inversely proportional to number of nodes that
could be visited within given number of steps,

– computational complexity should be low.

An algorithm constructed according to these rules is presented in the follow-
ing.

Outline of the Algorithm Here we propose an algorithm that computes prox-
imity of words basing on a graph structure. It should be noted that this procedure
is not symmetric, i.e. p(t1, t2) does not necessarily have to be equal to p(t2, t1),
depending on a graph.

Our procedure is made on an assumption that the proximity is proportional
to amount of some virtual substance that reaches the destination node v as a
result of injection to node u, followed by diffusion through graph edges. The
diffusion process is governed according to the following simple rules,

1. at every node the stream splits into smaller flows proportional to number of
edges going out from the node,

2. at every junction, a fraction % of the substance sinks in and does not go any
further,

3. if some edge points to a node that has been visited before, we assume that
the node is saturated and can not take in any more substance.

The process continues until all reachable nodes “get wet”.
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Fig. 1. A fragment of ConceptNet graph; rounded nodes correspond to single words
and rectangular nodes represent phrases, all types of relations were collapsed into a
single one.

Description After this somewhat informal introduction, we will discuss the
algorithm in details and give relationale for particular design choices that justify
our approach. We will use ConceptNet’s fragment given in Fig. 1 as an illustra-
tion. In this illustrative example we compute proximity of the programmer node
to the rest of the nodes. In the kick off step, the programmer has been injected
with 2,000 units of some fluid.

The first rule of the diffusion process assures that proximity of a node to its
direct neighbors is proportional to number of neighbors. Consequently, highly
connected nodes are given some penalty. On the other hand, if there are very
few outlinks, they are considered much more informative. The programmer (see
Fig. 1) has five adjacent nodes, therefore each of them is flooded with one fifth
of the amount of the substance available to programmer. The purpose of this
rule is to diminish proximity of nodes reachable through some highly connected
nodes. For instance, ConceptNet’s “person” is connected to about 50,000 other
nodes. Clearly, any association going through this node can not be considered
informative or unique. This rule assures that any connection going through the
“person” node will yield very low proximity to the source.

The second rule of the diffusion process was introduced to decrease proximity
with number of intermediate nodes required to reach the destination node. Since
with every junction risk of drifting off the topic increases, this rule requires paths
connecting proximate nodes to be as short as possible. In our example, at every
intermediate node half of the substance is retained (% is equal to 0.5), and only
the other half diffuses further through edges. If this rule was omitted programmer
would be equally related to program and code. While this turns out to be quite
accurate, such relation does not hold in general.

The purpose of the third rule is to assure monotonicy of the function with
increasing length of a path connecting some nodes. By saturating a node we
make sure that its proximity always takes fixed value that is smaller then the
amount of substance injected to the source node. This rule also assures that
the algorithm terminates after a finite number of steps. If this rule were to be



suspended, every node reachable with more then one walk would be boosted with
every such connection. Popular nodes that are members of many walks would be
pumped-up to infinity. On the other hand, the saturation rule seems to be in line
with the way humans associate words — our first guesses are usually the most
accurate. In Fig. 1 edges pointing to saturated nodes are dashed. They are not
taken into account when a degree of a node is computed. For instance, computer
has four outgoing edges. However, since an edge pointing back to programmer is
neglected, the effective degree of computer is decreased to three.

There is one more point to be discussed about the algorithm. We have not
decided yet on the order in which nodes and edges are visited during diffusion
process. We propose to process a graph in order of node’s proximity values. This
process will mimic a wave surging in a pipe system — the strongest wave goes
furthest. To implement this flow we pick nodes in order of their proximity —
proximate vertexes go first. If some nodes are equally proximate, then the degree
decides and nodes having lower number of outgoing edges are given a privilege.
However, if there is more then one node of the same degree, a conflict arises. We
show how to resolve it in the next paragraph.

Conflicts Resolution As we have said the vertexes are picked in order of
their proximity to the source node. A problem arises when there is more then
one equally proximate vertex. In fact this is the situation that always occurs
immediately after the initial step of the algorithm, because the kick-off injection
is always split equally between nodes adjacent to the source. We have chosen
degree of a node as the second criterion — the lower the better. However, what
to do when this is not conclusive and there is still more then one possibility?

To solve this problem we propose to process all conflicting nodes in a single
step. As a ’single step’ we understand that nodes adjacent to the conflicting
vertexes are not saturated until the last of them is processed. The order in which
nodes are processed might change proximity results only if it affects effective
degrees of nodes. It will not happen if the saturation is postponed. There are
two cases to be analyzed — when conflicting vertexes share no adjacent nodes
and the other situation when there are some shared adjacent nodes.

Clearly, if there are no shared adjacent nodes the effective degree of any of
conflicting nodes will not be affected by any other. Therefore, all nodes adjacent
to S yield equal proximity of p′%

d .
In the other case, there are some nodes that share adjacent nodes. Now by ap-

plying the normal processing routine that involves immediate saturation to some
node, we would decrease the effective degree of some of the remaining nodes. Al-
though, if saturation of edges is postponed until the last of the conflicting nodes
is processed, effective degree of any node will not be changed. Hence, the order
in which the nodes are picked does not matter and all adjacent nodes are given
equal proximity value of p′%

d .
A way in which node are processed resemble Dijkstra SP-algorithm. The

main difference are changed criteria used for picking a next node. Moreover, the



purpose is quite opposite — the algorithm is used not to compute SP-distances
but to assign values to nodes.

Running Time Running time of a single diffusion operation using a standard
binary heap as a backing data structure is O((|V |+ |E|)log|V |), where |V | and
|E| are numbers of vertexes and edges of ConceptNet graph, respectively. Since,
to construct complete proximity matrix we require results of diffusion operations
for all words in the graph, total running time rises to O(W (|V | + |E|)log|V |),
where W is number of words. It should be noted that W << |V | because word
nodes are a small fraction of of the whole ConceptNet graph and most of nodes
correspond to phrases.

6 Experiments

Here we want to investigate how does the algorithm presented above perform in
practice and how does it compare to established text classifiers. In our experi-
mental works we intended to answer the following questions:

(Q1) Do ConceptNet and the diffusion algorithm described above improve classi-
fication performance?

(Q2) Are there any cases where they can decrease performance? Why?
(Q3) What is the influence of diffusion parameter %?

In order to answer them we conducted a series of experiments using a stan-
dard benchmark for text classification problems: the Reuters-21578 “ModApte
split”. We experimented only on ten most frequent categories, i.e. acquisition,
corn, crude, earn, grain, interest, money-fx, ship, trade and wheat.

6.1 Preprocessing

ConceptNet as it comes is a bit noisy. For propose of our experiments we cleaned
it a little. At first, all redundant entries were removed. Subsequently all entries
containing digits and self-loops were deleted. Afterwords we extracted the largest
connected component of the graph and removed other nodes. Remaining nodes
were then indexed in a dictionary and divided into three groups — words, phrases
and junk words. By a phrase we considered a string with white spaces. There
are 260,954 nodes of this type. Words were stemmed with a Lovins stemmer [13]
and ones sharing a common stem were collapsed down into a single node. As
junk words we considered stopwords found on Weka [14] stoplist and words with
stems shorter then four letters. There were 1,638 such words. The junk words
were retained to keep connectivity of the graph. After this filtering procedure
there were 20,227 words left that we consider features.

Documents of the Reuters corpus were indexed using two separated dictio-
naries. The first dictionary was built in a usual way from all words that occurred
in a training set. The other dictionary was constructed from ConceptNet’s fea-
ture words. We also removed terms that occurred in a training less then three



times. Documents indexed with these dictionares made two experimental data
sets, D and DCN , respectively. Vectors were then normalized with L1-norm.

6.2 Comparative Evaluation

In order to answer questions Q1 and Q2 we experimentally compared SVM
classifiers built on diffusion proximity kernels and standard linear kernels. Ex-
periments were conducted on DCN and D datasets, while the latter was used
as a baseline. In all experiments SVMs’ C parameter was set to 1 and diffusion
parameter % to 0.5. Results obtained with a 10-fold cross-validation are given in
Table 1.

Class Precision Recall F1

L-D L-DCN DD-DCN L-D L-DCN DD-DCN L-D L-DCN DD-DCN

acq 0.954 0.903 0.943 0.946 0.905 0.740 0.950 0.904 0.829
corn 0.097 0.089 - 0.099 0.110 - 0.098 0.098 -
crude 0.848 0.841 - 0.776 0.630 - 0.810 0.720 -
earn 0.981 0.959 0.984 0.974 0.935 0.819 0.978 0.947 0.894
grain 0.303 0.315 0.366 0.127 0.150 0.025 0.179 0.204 0.047
interest 0.678 0.649 0.944 0.553 0.400 0.049 0.609 0.495 0.094
money-fx 0.707 0.672 0.719 0.745 0.687 0.143 0.725 0.679 0.239
ship 0.650 0.689 - 0.484 0.461 - 0.555 0.553 -
trade 0.854 0.810 1.000 0.826 0.724 0.057 0.840 0.764 0.107
wheat 0.086 0.033 - 0.103 0.004 - 0.094 0.008 -

Table 1. Results of experimental evaluation. Columns: L-D — linear kernel and D
dataset; L-DCN — linear kernel and DCN dataset; DD-DCN — diffusion kernel and
DCN dataset;

The proposed kernels improved precision while decreasing recall of the classi-
fiers. For 5 out of 10 classes precision increased even over results obtained with a
full vectors (L-D column). However, for 4 classes (marked with a “-”) our method
could not recognize any positive sample, and simply gradated into a majority
voter. Moreover, the increase in precision came at a price of lower recall for
classes that were learned correctly. Relatively high recall was reported only for
acq and earn classes. We suspect that introduction of relations between words
brought with ConceptNet allowed for disambiguation of words, and as a result
improved precision of categorization. However, they also reduced the influence of
individual words that were allowed to play a discriminative role in linear kernels.
Low recall may also be due to a a weak fitting between the ConceptNet graph
and Reuters corpus. The latter uses rather formal and precise vocabulary, while
the former is organized around informal activities. We expect our algorithm to
work much better in more casual text categorization tasks.



6.3 Diffusion Parameter %

For % = 1 the diffusion kernel coincides with a standard linear kernel and the
diffusion process is not performed at all. At the other extreme, when % = 0,
the distribution of the substance depends only on the structure of the graph. To
examine influence of the parameter % on classification performance we conducted
a series of experiments in a whole domain of the parameter, % ∈ [0, 1], with a 0.05
step. Results for selected classes obtained with 10-fold cross-validation for C set
to 1 are presented in Fig. 2. The plots are rather flat with very small differences
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Fig. 2. Precision (left) and recall (right) of classifier in function of %; Classes: acq (solid
line), earn (dashed line), interest (dash-dotted line), money (dotted line)

in a whole range of the parameter with larger fluctuations at the extremes.
This indicates that the influence of the diffusion parameter % is limited and
the proximity of words comes mostly from the structure of ConceptNet graph.
Therefore, for practical usage % could be set any value within its domain and
does not introduce much additional burden to a learning task.

7 Conclusions

In this paper we presented an approach that combined kernel text classifiers
with contextual common-sense knowledge brought by ConceptNet. Experimantal
evaluation have shown that contextual relations contained in ConceptNet allowed
for increased precision. This came, however, at a price of low recall. This might
be due to limitations of the semantic space. In future, we plan to address this
problem by extanding semantic space by combining ConcepNet, WordNet and
Microsoft Mindnet [15] into a single graph.
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