
Meta-learning as a scheme-based search with
complexity control

Abstract. Recent years revealed growing need for efficient meta-learning. For
much longer time it is known that there is no single adaptive algorithm, eligible
to provide satisfactory (i.e. close to optimal) solutions for every kind of problem,
however computing power facilitates practical applications of more and more
sophisticated learning strategies and more and more thorough search in the space
of models. Because testing all possible models is not (and never will be) feasible,
we need intelligent tools to combine human expert knowledge, the knowledge
extracted by means of computational intelligence and different search strategies
to disclose the nature of a problem and provide attractive models. We present
some techniques, we have successfully used in our meta-learning approaches,
describe the crucial ideas of our general architecture for meta-learning, and show
some applications.

1 Introduction

The need for and feasibility of successful meta-learning are growing. For know, search-
ing for as accurate models as possible was usually within thedomain of humans, but
we are never as precise, thorough and systematic as computers can be, so there is no
reason why machines could not perform better than us in such tasks.

The progress of computational capabilities, already now, facilitates successful artifi-
cial approaches to meta-learning. Obviously, searching for optimal models is NP-hard,
so the progress in computing hardware does not facilitate a complete search through the
space of possible models, so we need (and will always need) intelligent systems for this
purpose.

There may be many different views of meta-learning and many different algorithms
putting stress on different aspects of the field. Till now, the term “meta-learning” was
used in a number of meanings. For example, some articles use this name when talking
about building rankings of methods on the basis of their predicted eligibility for solving
particular tasks [1, 2]. The rankings were constructed according to some similarity of
the problem being solved to other known problems. The similarity was measured as a
distance in some space of the datasets, where each dataset was described by a number
of values corresponding to the types of values contained within the data, some other
statistical coefficients [3], results obtained with some simple learning algorithms [4, 5]
(this technique was given a name oflandmarking),some features of decision trees built
for the data [6], etc. In some other approaches instead of measuring similarity between
datasets, decision trees were used to decide which algorithm should perform better [7]

Another meaning was given to meta-learning in numerous papers devoted to ensem-
ble models, since building complex structured model can also be seen as a meta-level
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task. The complex models include different kinds of committees (including ones con-
sidering member-model competence when making decisions [8, 9]), stacking models
etc. [10–12]

All the above-mentioned methods build complex models or prepare models rank-
ings to act as method selection advisers, which is not satisfactory for us. We understand
meta-learning as automation of the process of finding most accurate models for given
task (which eventually should replace human interaction).It is not enough to com-
pare the datasets to provide a reliable advise on which method can be more useful to
solve the problem, especially because different methods usually require different data
preprocessing to obtain optimal results and data transformations may move datasets
into completely different point in the space of datasets. Thus we emphasize the need
for an intelligent search for the (sub)optimal solution which can not be based only on
some statistical information about the form of the data, butmust integrate meta-level
information of different kinds and sources including humanexpert knowledge and the
knowledge gained by means of computational intelligence (CI).

2 Meta-learning

From our point of view, meta-learning is the process of learning how to learn, to obtain
as good solution to defined problem as possible. It corresponds exactly to what humans
are trying to do when mining given data: in order to find very good models we try
many different methods, their combinations etc., observe and analyze the subsequent
results and use our general knowledge about building CI models, to control the search
in such a way that only the sensible combinations are tested and those maximizing our
suspicions of attractiveness. So meta-learning is a very complex process incorporating
the search for (sub)optimal solutions, using meta-knowledge to conduct the search and
(simultaneously) gaining new meta-knowledge.

The meta-knowledge which indicates attractive search directions may have different
sources:

– human experts can formulate rules to restrict the search to what they regard as
sensible, and what they know about the specificity and requirements of particular
methods,

– statistics calculated for different data analyzed in the past, about which methods
were successful in which circumstances, correlations between the different meth-
ods results (usefulness), usability of different data transformation techniques for
different learning methods and different data etc. can alsohelp us restrict the search
to the most promising areas,

– performing tests of different methods is always a source of valuable information
about the characteristics of the data being currently analyzed, which sometimes
may be in contradiction with the statistics mentioned in theprevious item—such
context-dependent information must be of higher priority and must be continuously
updated.

It is important to provide a uniform representation of the meta-knowledge, regard-
less its source, so that for example the expert knowledge maybe extended, adjusted
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according to performed tests, etc. It must be capable of expressing rules of miscella-
neous types, concerning different levels of abstraction.

Exact representation of the meta-knowledge satisfying these conditions is itself a
subject for a broad discussion, so we do not go into more details here, where we pay
more attention to the algorithmic part of our meta-learningapproach.

2.1 Goals of meta-learning

Meta-learning aims at finding optimal (regarding some criteria) models. It is not re-
stricted to maximizing classification accuracy, minimizing regression error or any lim-
ited set of tasks. It is important to have the possibility of providing the criterion without
the need of any changes within the engine of the data mining system. Fortunately it
is not very difficult in search-based approaches - although particular methods optimize
different measures, they are usually quite compatible (models optimal from different
points of view, are close to each other in the space of models), so that the meta-pursuit
can be successful when searching around the optimal and close to optimal models. Out
system provides such openness and has already been used to obtain different goals.
Here we discuss only classification tasks, but still some maximized (classical) accuracy
and some balanced accuracy.

In classification problems, the goal is usually to maximize the classification accu-
racy (or balanced accuracy), but its estimation can never bedevoid of error. Thus we
are often interested in high stability of our validation results (i.e. the minimization of
their variance). To achieve this, we prefer maximization of

µ − ασ, (1)

whereµ is an estimation of the expected value of accuracy,σ is the standard deviation
of the accuracy within the validation tests, andα is a parameter (usually equal to 1 in
our approaches). Such measure is sound with the ideas of testing statistical hypotheses
and its optimization may be seen as the maximization of the threshold, below which we
will not fall with given probability (equal to 0.5 in the caseof α = 0, and greater for
larger values ofα).

Another important feature of adaptive methods is time complexity. Obviously the
methods which are fast should be tested before more time consuming ones. Moreover
simple models are preferable to complex ones, when their quality does not differ sig-
nificantly. In this context, a comfortable measure of model complexity is theLevin’s
complexity, which is defined as the sum of model (description) length andlogarithm of
the time of its adaptive method execution:

L + log(T ). (2)

Control of this complexity allows us to stop long-lasting processes and those, that will
certainly end up with unacceptably complex models, withoutwaiting till the end of their
adaptive processes (thus saving computation time).

When striving to meta-learning goals we must not forget about justification of the
validation methods we use. Incorrect validation usually leads to overoptimistic results,
and provides no real confirmation of generalization achievements of the model. Thus, it
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is very important to validate not just the final model (e.g. classifier or approximator), but
the whole sequence of operations performed from raw data to the decider. No supervised
part of the sequence is allowed to be put outside of the validation process and treated
as an element of the data preprocessing stage. The split of data analysis processes into
data preprocessing and final learning is very common in the literature, but it is often not
justifiable.

2.2 Meta-level exploration

In our approach, the pursuit to the optimum model is a heuristic search, which can be
seen as divided into a number of stages, although only at the beginning the borders
between stages are sharp—further stages are rather fuzzy, because in fact, the whole
search is a single loop in which we test different models starting with the fastest and
simplest ones and proceeding to more and more complex and time-consuming methods.
Such order is natural because we do not want to test complicated models when simple
models provide satisfactory solutions or run time-consuming processes when fast ones
perfectly do the job.

Thus, to control model complexity we introduced the mechanisms ofabstraction
levels andcomputational complexity level. The abstraction levels allow to organize the
search by imposing constraints on each stage of the search, for example:

– at the beginning only simple classifiers will be used,
– then classifiers after simple data transformations,
– then sequences consisting of a normalization followed by feature selection and then

by a classifier etc.

The meta learner can define model structures which are to be exploited at subse-
quentlevels of abstraction. The structures are defined by means of meta-schemes de-
scribed in section 2.4. This facilitates penetrating different areas of the model space
with different density and avoiding insensible combinations (like multiple standardiza-
tion). We always try to define the scenarios we regard as most sensible, however we
also accept some less convincing constructions to leave some chance for a surprising
invention.

In parallel, there are another constraints on Levin complexity of methods to be tried.
This is to avoid using time-consuming or building very complex models too early. As
soon as the first model is built (regardless its optimality) we may put restrictions on
learning new models (both running time and model complexity). The methods, for
which we can predict (or at least show lower bounds of) model complexity and run-
ning time, may be put into proper queue to wait for their time.The methods, for which
the prediction is not possible, are run and properly controlled. Thanks to using Levin
complexity, we may calculate the thresholds of acceptable values of method run time
and model complexity. For estimating model complexity we use a criterion resembling
Minimum Description Length, which reflects the numbers and types of values describ-
ing the model. Passing to next stage of the meta-search is in fact including additional
level of abstraction in the set of accepted meta-schemes.

Although definition of the abstraction levels is up to meta-learning methods, there
are some tests which in our opinion should definitely be performed (and their order also
seems natural). These are:
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– tests of simple methods of different types (e.g. classifiersof different nature,
– combinations of different data transformation algorithms(normalizations, feature

selecion, vector selection etc.) and methods specialized in solving problems of the
type (classifiers, approximators etc.),

– multiple data transformations, both sequential (like standardization followed by
feature selection) and parallel (like committees of feature selection models),

– ensemble methods including committees respecting members’ competence.

Within each search stage, some searches for optimum values of different parameters
of the methods are tried and the results saved for further analysis. It must be empha-
sized here, that introducing a data transformation can significantly change the task, so
after such operation, additional search for optimum parameter values of final decision
methods is necessary.

Search for optimal values of parameters may be performed more reasonably, thanks
to meta-parameters descriptions, we have allowed for in oursystem. Such descriptions
usually include the information about the scope of sensiblevalues and the type of the
parameter changes (linear, exponential etc.). Moreover, ameta-learner can be provided
with information about how to efficiently perform the search(e.g. committee decision
modules should be tried just after the member-models have been created, to reduce
computation time). To avoid repetitions in running adaptive processes we have created
a cache system, which when asked again for the same model doesnot build it but shares
the one created earlier (in future we plan a cache system which could save the data to a
disk and load from it when necessary, which will allow to takeadvantage of the cache
also between different instances of the system, also running on different machines).

The major difference between our approach and the ones described so far in the
literature is that the crucial part of our meta-learning is the heuristic search continuously
analyzing the feedback of running different tests. It givesmuch more possibilities than
simple ranking construction. It turned out advantageous inour different data mining
competition efforts.

In fact, the main loop of our meta-search may be seen as an infinite procedure, which
tries more and more complicated models for given data. Afterthe first model is built,
at each time of the search we can get the information about currently best model. Thus,
there is no single stop point of our meta-search. We may stop after some pre-defined
time, on user request, after obtaining appropriately smallerror, after no improvement
within a time period etc.

We start with some meta-knowledge, which continuously changes according to what
we have learnt. First meta-models use only some general meta-knowledge provided by
experts, but then the meta-knowledge may be appropriately adjusted and exchanged
between different meta-learning methods. It is very important to differentiate between
the general knowledge (averaged for all the data sets) and the knowledge in the context
of particular data, because they should have different influence on the meta-search.

2.3 Meta-space

By now, our meta-learning approaches have been solving classification problems. The
first stage has always concerned testing basic classification algorithm. The set of exam-
ined methods included:
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– k Nearest Neighbors,
– Naive Bayesian Classifier,
– Support Vectors Machines (with Gaussian or linear kernel),
– SSV decision tree,
– Feature Space Mapping neural network.

The list is consistent with our assumption that methods of different nature should be
tested—it contains statistical methods, neural networks,decision trees and SVM (which,
with linear kernel, is a linear discriminant method.

For each model we search for optimum values of parameters. For example: in kNN
model we can search for optimal number of neighbors to analyze, in SVM we can
determine best values of Gaussian dispersion and the C parameter, in SSV decision
tree we may try different settings of discrete parameters defining the way the tree is
constructed and/or pruned.

In our OCR competition effort [13] the first stage gave unexpected results: simple
5NN classifier significantly outperformed all the other classifiers, though this was not
the final result—just the result of the first stage of the pursuit.

As the second stage we usually define testing different data transformations. It is one
of the most important parts of meta-learning, because thereis plenty of transformations
that must be performed, and they may be combined in many different ways, so that it
is easy to be entrapped by combinatorial explosion. It is important not only to avoid
senseless combinations but even to drive the search into most attractive directions.

Some of the basic transformations we use are:

– different kinds of normalizations (rescaling to[0, 1] or [−1, 1] interval, standard-
ization, the same methods with respect to the data without outliers etc.)

– feature selection methods (based on correlation coefficient, F-rank, SSV criterion
and some information theory measures),

– numerous vector selection methods [13],
– discretization and its reverse (converting continuous features to symbolic),
– Principal Components Analysis (PCA), usually accompaniedby selection of sev-

eral PCs.

Even in the case of standardization we have many possibilities. Apart from eliminat-
ing outliers, we may considerper-feature standardization (the classical approach, where
each feature is standardized independently) andper-dataset standardization, which re-
sults in mean 0 and variance 1 within the values of all features together—it makes more
sense for instance in the case of text analysis data, where word occurrences are counted
and thus it is advantageous to keep the proportion between counts for different words.
The per-dataset standardization was crucial in our participation in the NIPS 2003 con-
test, where one of the datasets was devoted to text classification (as it turned out after
contest adjudication).

Another version of normalization we used in our OCR data analysis. Our models
erroneously classified some vectors representing numbers with very easy to understand
shape, but with lower pixel intensity than in the case of other numbers. We called the
transformationdarkening, but in fact it can be seen as aper-vector normalization, which
may be useful also in other tasks (e.g. again in text analysiswith word occurrence counts
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as features, it is one of possible methods to eliminate the influence of text length on
classification).

Our experience with using PCA is quite diverse. In the case ofthe OCR efforts
it was completely useless (as all the feature selection attempts). Actually it is not a
surprise, because in the 8x8 pixel images there is no unimportant information—only
the corner pixels are less important, but still they are not anoise in the data. On the
other hand, PCA was the key to our best model for the Dorothea dataset of the NIPS
2003 competition.

Some meta-learning approaches are based on the idea that datasets which are simi-
lar with respect to some statistical information will be best solved by similar methods.
In the context of data transformations it is not justifiable,because a dataset before and
after a transformation may be completely different. Moreover, very often different clas-
sification methods require different data preprocessing toobtain the highest possible
accuracy, so their runs on the same form of dataset may be incomparable. And in-
versely: it is easy to create two datasets with the same typesof features, such that one
will be perfectly classified by a decision tree and poorly by kNN, and the other with the
opposite result.

Since data transformations can not be tested separately, they must go through tests
as a whole with the final models (in our cases: classifiers). Thus the basic scenario with
a data transformation model looks like the one given in figure1, described in more detail
in the following section. Our system architecture is organized in such a way, that allows
meta-search to operate on any parameter of any method withina defined scenario. This
applies also to discrete-values parameters like the one in SVM, which determines the
way of multi-class classification. So we perform a complex, multidimensional search
for optimal values of method parameters. Unfortunately, because of this complexity, it
is very difficult to present the results of such a search as a spectacular 2D or even 3D
plot.

2.4 Meta-schemes

As mentioned in previous sections, meta-schemes are our fundamental tools for efficient
meta-search. They are directed acyclic graphs (DAG) of boxes representing scheme
placeholders and particular models, interconnected according to the input–output con-
nections. The scheme placeholders define places in the DAG, where meta-learning algo-
rithms, in their adaptive processes, try to put different hierarchies of models (they need
not to be just single models, but also some complex structures which we callschemes).
We have introduced the meta-schemes to provide an easy way toput restrictions on the
search. Such constraints facilitate significant reductionof the space searched through,
so that we can eliminate insensible schemes of models, and atthe same time define the
directions of the search. Thence, the key point is to design such meta-schemes, that the
space is significantly reduced, but it still contains the interesting models.

The meta-search algorithm uses the meta-schemes accordingto their roles. We may
define meta-schemes to play the role of classification, data transformation etc. We can
nest the meta-schemes, i.e. fill the placeholders in one meta-scheme with an instantia-
tion of another meta-scheme, so there are no limits in complex schemes construction.
The possibility of nesting is especially precious, for example when searching for most
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Fig. 1. Basic scenario for data transformation
and classification Fig. 2. Typical feature selection transformation

useful data transformation, which may have different length (unknown at the start of
the search).

An example of simple meta-scheme is presented in figure 1, where we have two
placeholders to be filled while learning: one for data transformation and another one for
a classification model. The whole meta-scheme, has one input(where training dataset
is expected) and two outputs: one for classification and the other for data preparation
before classification. Thus after proper substitutions, itmay be used everywhere a clas-
sifier is needed.

An example of a complex data transformation is presented in figure 2. The transfor-
mation performs feature selection for a data table. It is split into two parts: first a ranking
of features is created and then proper selection performed.It is again a meta-scheme,
because it contains a placeholder for a feature ranking model. The feature selection
part is a precise model here, because given ranking the selection is always performed
in the same way. The meta scheme of figure 2 can be put in the placeholder for data
transformation in figure 1 (the idea of nesting schemes, mentioned above).

A more complex, but also more practical meta-scheme is presented in figure 3. It is
more eligible for meta-search, because it allows to validate the models substituted for
the placeholders. The meta-search can perform the substitutions, run the whole scenario
by a single command, and check the validation results afterward. The left side figure
concerns the configuration time of the “Meta model”. The “Validator” model will vali-
date model configurations composed of a data transformer anda classifier (substituted
by the “Meta-model” in runtime). The right side figure presents an iteration of the run-
time. The “Meta model” substituted F-score feature selection for the “Transformer” and
SVM for “Classifier” and executed the “Validator” which usedtrain-test data distributor
to validate the configuration prepared by the “Meta-model” (the details of the validation
model are beyond the scope of this article, they can be found in [13]).

2.5 Advanced techniques of meta-learning

Meta-schemes provide very powerful means for meta-search restriction and direction.
The task of meta-learning method designer is to define such set of meta-schemes and
items to fill placeholders, that allows to avoid spending time on testing insensible model



9

Fig. 3. A model validation meta-scheme (configuration—left side diagram and runtime—right
side diagram)

structures and to point out the most promising structures. The task of meta-learning
algorithms that use meta-schemes is not only to search for the most accurate solutions,
but also to learn from the search experience. Such learning includes:

– Finding the correlations of occurring different items in most accurate results. It will
enable to learn which data transformations are most useful for given classification
model, to define some areas of model structures successful insimilar environment,
so that finding out, that a model structure is successful, we can check some other
structures which worked in similar circumstances, etc.

– Finding new successful complex structures and converting them into meta-schemes
(which we callmeta abstraction) by replacing proper substructures with placehold-
ers.

– Extracting meta-rules, describing the advantageous directions of the search.
– Depositing the knowledge they gain in a reusable meta-knowledge repository. The

possibility to exchange meta-learning heuristics is very precious, because saves
much time—otherwise each meta-learning method would have to learn itself, what
other meta-learners have already learnt.

3 Summary

We have presented basic ideas and some examples of our meta-learning approaches
based on intelligent search. The idea of meta-schemes is very precious tool in defin-
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ing heuristics for the search process. The meta search starting with the simplest models
and proceeding to more and more complex ones by means of the abstraction levels and
Levin complexity control turned out to be successful and promising, since its gates to
further development are open, and new directions of advanced meta-learning are evi-
dent. We believe, that quite soon such techniques will be more successful, than human
driven search for (sub)optimal solutions to many problems addressed to computational
intelligence.
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