Meta-learning as a scheme-based search with
complexity control

Abstract. Recent years revealed growing need for efficient meta-ileguror
much longer time it is known that there is no single adaptigerithm, eligible
to provide satisfactory (i.e. close to optimal) solutioasdvery kind of problem,
however computing power facilitates practical applicasi@f more and more
sophisticated learning strategies and more and more thbreearch in the space
of models. Because testing all possible models is not (aneréll be) feasible,
we need intelligent tools to combine human expert knowledge knowledge
extracted by means of computational intelligence and wiffesearch strategies
to disclose the nature of a problem and provide attractiveleiso We present
some techniques, we have successfully used in our metaiflgaapproaches,
describe the crucial ideas of our general architecture ftarearning, and show
some applications.

1 Introduction

The need for and feasibility of successful meta-learnimggowing. For know, search-
ing for as accurate models as possible was usually withimtmeain of humans, but
we are never as precise, thorough and systematic as compateibe, so there is no
reason why machines could not perform better than us in sisist

The progress of computational capabilities, already nagilifates successful artifi-
cial approaches to meta-learning. Obviously, searchingfitimal models is NP-hard,
so the progress in computing hardware does not facilitatergtete search through the
space of possible models, so we need (and will always netdljgent systems for this
purpose.

There may be many different views of meta-learning and mafgrdnt algorithms
putting stress on different aspects of the field. Till nove tarm “meta-learning” was
used in a number of meanings. For example, some articledisseadme when talking
about building rankings of methods on the basis of theiripted eligibility for solving
particular tasks [1, 2]. The rankings were constructed @tog to some similarity of
the problem being solved to other known problems. The siitylavas measured as a
distance in some space of the datasets, where each datasgéseaibed by a number
of values corresponding to the types of values containelinvthe data, some other
statistical coefficients [3], results obtained with sonmae learning algorithms [4, 5]
(this technigue was given a namelafdmarking),some features of decision trees built
for the data [6], etc. In some other approaches instead o$umigg similarity between
datasets, decision trees were used to decide which algositiould perform better [7]

Another meaning was given to meta-learning in numerousigajeoted to ensem-
ble models, since building complex structured model cano bésseen as a meta-level



task. The complex models include different kinds of comaeitt (including ones con-
sidering member-model competence when making decisiarg§)[&tacking models
etc. [10-12]

All the above-mentioned methods build complex models opare models rank-
ings to act as method selection advisers, which is not aatisfy for us. We understand
meta-learning as automation of the process of finding masirate models for given
task (which eventually should replace human interactitinls not enough to com-
pare the datasets to provide a reliable advise on which rdetan be more useful to
solve the problem, especially because different methodallysrequire different data
preprocessing to obtain optimal results and data transftitoms may move datasets
into completely different point in the space of datasetaisltve emphasize the need
for an intelligent search for the (sub)optimal solution g@thcan not be based only on
some statistical information about the form of the data,rust integrate meta-level
information of different kinds and sources including hunesmert knowledge and the
knowledge gained by means of computational intelligendg (C

2 Meta-learning

From our point of view, meta-learning is the process of laaymow to learn, to obtain
as good solution to defined problem as possible. It corredpexactly to what humans
are trying to do when mining given data: in order to find verpdonodels we try
many different methods, their combinations etc., obsentgeanalyze the subsequent
results and use our general knowledge about building ClI tepttecontrol the search
in such a way that only the sensible combinations are testédremse maximizing our
suspicions of attractiveness. So meta-learning is a vanpéex process incorporating
the search for (sub)optimal solutions, using meta-knogded conduct the search and
(simultaneously) gaining new meta-knowledge.

The meta-knowledge which indicates attractive searcletiies may have different
sources:

— human experts can formulate rules to restrict the searchhiat they regard as
sensible, and what they know about the specificity and reqents of particular
methods,

— statistics calculated for different data analyzed in thstpabout which methods
were successful in which circumstances, correlations éetvthe different meth-
ods results (usefulness), usability of different datagfarmation techniques for
different learning methods and different data etc. canlad¢dp us restrict the search
to the most promising areas,

— performing tests of different methods is always a sourceatdiable information
about the characteristics of the data being currently aealywhich sometimes
may be in contradiction with the statistics mentioned in phevious item—such
context-dependentinformation must be of higher prionitgl enust be continuously
updated.

It is important to provide a uniform representation of thetarlenowledge, regard-
less its source, so that for example the expert knowledge meagxtended, adjusted



according to performed tests, etc. It must be capable ofessprg rules of miscella-
neous types, concerning different levels of abstraction.

Exact representation of the meta-knowledge satisfyingahemnditions is itself a
subject for a broad discussion, so we do not go into morelddtare, where we pay
more attention to the algorithmic part of our meta-learrapgroach.

2.1 Goals of meta-learning

Meta-learning aims at finding optimal (regarding some gedemodels. It is not re-
stricted to maximizing classification accuracy, minimg@i@gression error or any lim-
ited set of tasks. It is important to have the possibility mhpding the criterion without
the need of any changes within the engine of the data ministgsy Fortunately it
is not very difficult in search-based approaches - althowgtiqular methods optimize
different measures, they are usually quite compatible @teodptimal from different
points of view, are close to each other in the space of madaidhat the meta-pursuit
can be successful when searching around the optimal aneltdagptimal models. Out
system provides such openness and has already been usethito different goals.
Here we discuss only classification tasks, but still someimized (classical) accuracy
and some balanced accuracy.

In classification problems, the goal is usually to maximize tlassification accu-
racy (or balanced accuracy), but its estimation can nevelelbeid of error. Thus we
are often interested in high stability of our validationuks (i.e. the minimization of
their variance). To achieve this, we prefer maximization of

1 — ao, (1)

wherey is an estimation of the expected value of accuradyg, the standard deviation
of the accuracy within the validation tests, amds a parameter (usually equal to 1 in
our approaches). Such measure is sound with the ideas ioftetatistical hypotheses
and its optimization may be seen as the maximization of trestiold, below which we
will not fall with given probability (equal to 0.5 in the casé o = 0, and greater for
larger values o).

Another important feature of adaptive methods is time caxipl. Obviously the
methods which are fast should be tested before more timaioting ones. Moreover
simple models are preferable to complex ones, when thelitga®es not differ sig-
nificantly. In this context, a comfortable measure of modghplexity is theLevin's
complexity, which is defined as the sum of model (description) lengthlagdrithm of
the time of its adaptive method execution:

L +1log(T). (2)

Control of this complexity allows us to stop long-lastingpesses and those, that will
certainly end up with unacceptably complex models, witheaiting till the end of their
adaptive processes (thus saving computation time).

When striving to meta-learning goals we must not forget alumstification of the
validation methods we use. Incorrect validation usualydieto overoptimistic results,
and provides no real confirmation of generalization achieaets of the model. Thus, it



is very important to validate not just the final model (e.gssifier or approximator), but
the whole sequence of operations performed from raw dakeetdeticider. No supervised
part of the sequence is allowed to be put outside of the u#id@rocess and treated
as an element of the data preprocessing stage. The splitaohdalysis processes into
data preprocessing and final learning is very common in theatiure, but it is often not
justifiable.

2.2 Meta-level exploration

In our approach, the pursuit to the optimum model is a hearsgtarch, which can be
seen as divided into a number of stages, although only ategabing the borders
between stages are sharp—further stages are rather fiezaide in fact, the whole
search is a single loop in which we test different modeldisigmwith the fastest and
simplest ones and proceeding to more and more complex apectimsuming methods.
Such order is natural because we do not want to test comgdicabdels when simple
models provide satisfactory solutions or run time-consungrocesses when fast ones
perfectly do the job.

Thus, to control model complexity we introduced the mectiasi ofabstraction
levels andcomputational complexity level. The abstraction levels allow to organize the
search by imposing constraints on each stage of the sear@xdmple:

— at the beginning only simple classifiers will be used,

— then classifiers after simple data transformations,

— then sequences consisting of a normalization followed bjufe selection and then
by a classifier etc.

The meta learner can define model structures which are to fleiesd at subse-
quentlevels of abstraction. The structures are defined by means of meta-schemes de-
scribed in section 2.4. This facilitates penetrating défe areas of the model space
with different density and avoiding insensible combinasi¢like multiple standardiza-
tion). We always try to define the scenarios we regard as neostilsle, however we
also accept some less convincing constructions to leave stance for a surprising
invention.

In parallel, there are another constraints on Levin compleX methods to be tried.
This is to avoid using time-consuming or building very coeymodels too early. As
soon as the first model is built (regardless its optimalityg) mvay put restrictions on
learning new models (both running time and model complgxityhe methods, for
which we can predict (or at least show lower bounds of) modeimexity and run-
ning time, may be put into proper queue to wait for their tiffilee methods, for which
the prediction is not possible, are run and properly col@dolThanks to using Levin
complexity, we may calculate the thresholds of acceptablees of method run time
and model complexity. For estimating model complexity we agriterion resembling
Minimum Description Length, which reflects the numbers gkt of values describ-
ing the model. Passing to next stage of the meta-search &irirfcluding additional
level of abstraction in the set of accepted meta-schemes.

Although definition of the abstraction levels is up to metarhing methods, there
are some tests which in our opinion should definitely be peréal (and their order also
seems natural). These are:



— tests of simple methods of different types (e.qg. classifiédifferent nature,

— combinations of different data transformation algorithfmsrmalizations, feature
selecion, vector selection etc.) and methods specializedlving problems of the
type (classifiers, approximators etc.),

— multiple data transformations, both sequential (like dtadization followed by
feature selection) and parallel (like committees of feaselection models),

— ensemble methods including committees respecting merdmrpetence.

Within each search stage, some searches for optimum vafulifesent parameters
of the methods are tried and the results saved for furthdysisalt must be empha-
sized here, that introducing a data transformation canifgigntly change the task, so
after such operation, additional search for optimum patamalues of final decision
methods is necessary.

Search for optimal values of parameters may be performed neasonably, thanks
to meta-parameters descriptions, we have allowed for irsgstem. Such descriptions
usually include the information about the scope of sensiblaes and the type of the
parameter changes (linear, exponential etc.). Moreovaeta-learner can be provided
with information about how to efficiently perform the seafelg. committee decision
modules should be tried just after the member-models haga beeated, to reduce
computation time). To avoid repetitions in running adapfivocesses we have created
a cache system, which when asked again for the same modeatdasild it but shares
the one created earlier (in future we plan a cache systemweoigld save the data to a
disk and load from it when necessary, which will allow to tadvantage of the cache
also between different instances of the system, also rgrovirdifferent machines).

The major difference between our approach and the onesibedso far in the
literature is that the crucial part of our meta-learnindiss heuristic search continuously
analyzing the feedback of running different tests. It ginesch more possibilities than
simple ranking construction. It turned out advantageousundifferent data mining
competition efforts.

In fact, the main loop of our meta-search may be seen as aitédiocedure, which
tries more and more complicated models for given data. Afterfirst model is built,
at each time of the search we can get the information abotgmily best model. Thus,
there is no single stop point of our meta-search. We may dtep some pre-defined
time, on user request, after obtaining appropriately seradir, after no improvement
within a time period etc.

We start with some meta-knowledge, which continuously gearaccording to what
we have learnt. First meta-models use only some generatknetaledge provided by
experts, but then the meta-knowledge may be appropriatglysged and exchanged
between different meta-learning methods. It is very imaatrto differentiate between
the general knowledge (averaged for all the data sets) anihibwledge in the context
of particular data, because they should have differenténfte on the meta-search.

2.3 Meta-space

By now, our meta-learning approaches have been solvingifitzgion problems. The
first stage has always concerned testing basic classificalgmrithm. The set of exam-
ined methods included:



— k Nearest Neighbors,

— Naive Bayesian Classifier,

— Support Vectors Machines (with Gaussian or linear kernel),
— SSV decision tree,

— Feature Space Mapping neural network.

The list is consistent with our assumption that methods féint nature should be
tested—it contains statistical methods, neural netwaldsision trees and SVM (which,
with linear kernel, is a linear discriminant method.

For each model we search for optimum values of parametergxamnple: in KNN
model we can search for optimal humber of neighbors to aralyz SVM we can
determine best values of Gaussian dispersion and the C ptagrim SSV decision
tree we may try different settings of discrete parametefimitg the way the tree is
constructed and/or pruned.

In our OCR competition effort [13] the first stage gave uneted results: simple
5NN classifier significantly outperformed all the other slisrs, though this was not
the final result—just the result of the first stage of the pitirsu

As the second stage we usually define testing different dataformations. Itis one
of the most important parts of meta-learning, because ibglenty of transformations
that must be performed, and they may be combined in manyéiffevays, so that it
is easy to be entrapped by combinatorial explosion. It isartgmt not only to avoid
senseless combinations but even to drive the search intbaticective directions.

Some of the basic transformations we use are:

— different kinds of normalizations (rescaling [, 1] or [—1, 1] interval, standard-
ization, the same methods with respect to the data withdliecaietc.)

— feature selection methods (based on correlation coeffidierank, SSV criterion
and some information theory measures),

— numerous vector selection methods [13],

— discretization and its reverse (converting continuoutufes to symbolic),

— Principal Components Analysis (PCA), usually accompabigdelection of sev-
eral PCs.

Evenin the case of standardization we have many possiilifipart from eliminat-
ing outliers, we may consideer-feature standardization (the classical approach, where
each feature is standardized independently)@eneiataset standardization, which re-
sults in mean 0 and variance 1 within the values of all feattomgether—it makes more
sense for instance in the case of text analysis data, wherkagourrences are counted
and thus it is advantageous to keep the proportion betweamsor different words.
The per-dataset standardization was crucial in our pp#imn in the NIPS 2003 con-
test, where one of the datasets was devoted to text clasisifiqas it turned out after
contest adjudication).

Another version of normalization we used in our OCR datayaisl Our models
erroneously classified some vectors representing numb#rsery easy to understand
shape, but with lower pixel intensity than in the case of pthenbers. We called the
transformatiormarkening, but in fact it can be seen ager-vector normalization, which
may be useful also in other tasks (e.g. again in text analyfisvord occurrence counts



as features, it is one of possible methods to eliminate tfieeince of text length on
classification).

Our experience with using PCA is quite diverse. In the casthefOCR efforts
it was completely useless (as all the feature selectiomatts). Actually it is not a
surprise, because in the 8x8 pixel images there is no uniapoinformation—only
the corner pixels are less important, but still they are nobige in the data. On the
other hand, PCA was the key to our best model for the Doroth¢ssdt of the NIPS
2003 competition.

Some meta-learning approaches are based on the idea ths¢tdavhich are simi-
lar with respect to some statistical information will be teslved by similar methods.
In the context of data transformations it is not justifialilecause a dataset before and
after a transformation may be completely different. Moegvery often different clas-
sification methods require different data preprocessingbtain the highest possible
accuracy, so their runs on the same form of dataset may benpa@ble. And in-
versely: it is easy to create two datasets with the same wypestures, such that one
will be perfectly classified by a decision tree and poorly biNs and the other with the
opposite result.

Since data transformations can not be tested separateyyntbst go through tests
as a whole with the final models (in our cases: classifiers)sThe basic scenario with
a data transformation model looks like the one given in figuescribed in more detail
in the following section. Our system architecture is orgadiin such a way, that allows
meta-search to operate on any parameter of any method wittefined scenario. This
applies also to discrete-values parameters like the on&M, Svhich determines the
way of multi-class classification. So we perform a complexjtidimensional search
for optimal values of method parameters. Unfortunatelgalge of this complexity, it
is very difficult to present the results of such a search asatapular 2D or even 3D
plot.

2.4 Meta-schemes

As mentioned in previous sections, meta-schemes are odafnental tools for efficient
meta-search. They are directed acyclic graphs (DAG) of §arpresenting scheme
placeholders and particular models, interconnected doapto the input—output con-
nections. The scheme placeholders define places in the DA&gmeta-learning algo-
rithms, in their adaptive processes, try to put differestdichies of models (they need
not to be just single models, but also some complex strustuhéch we callchemes).
We have introduced the meta-schemes to provide an easy vpay testrictions on the
search. Such constraints facilitate significant reduatibtihe space searched through,
so that we can eliminate insensible schemes of models, ahd aame time define the
directions of the search. Thence, the key point is to degigh meta-schemes, that the
space is significantly reduced, but it still contains theliasting models.

The meta-search algorithm uses the meta-schemes acctdirar roles. We may
define meta-schemes to play the role of classification, datesformation etc. We can
nest the meta-schemes, i.e. fill the placeholders in one-sof@me with an instantia-
tion of another meta-scheme, so there are no limits in coxgilhemes construction.
The possibility of nesting is especially precious, for ex¢éenwhen searching for most
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and classification Fig. 2. Typical feature selection transformation

useful data transformation, which may have different lar{ginknown at the start of
the search).

An example of simple meta-scheme is presented in figure lremve have two
placeholders to be filled while learning: one for data transftion and another one for
a classification model. The whole meta-scheme, has one (matre training dataset
is expected) and two outputs: one for classification and therdor data preparation
before classification. Thus after proper substitutionsigl be used everywhere a clas-
sifier is needed.

An example of a complex data transformation is presentedindi2. The transfor-
mation performs feature selection for a data table. It it syb two parts: first a ranking
of features is created and then proper selection perfortheddagain a meta-scheme,
because it contains a placeholder for a feature ranking mdtie feature selection
part is a precise model here, because given ranking thetiselés always performed
in the same way. The meta scheme of figure 2 can be put in thehmiter for data
transformation in figure 1 (the idea of nesting schemes, imead above).

A more complex, but also more practical meta-scheme is ptedén figure 3. It is
more eligible for meta-search, because it allows to vadidhé models substituted for
the placeholders. The meta-search can perform the sutmsigurun the whole scenario
by a single command, and check the validation results aftetwrlhe left side figure
concerns the configuration time of the “Meta model”. The ffator” model will vali-
date model configurations composed of a data transformea ataksifier (substituted
by the “Meta-model” in runtime). The right side figure pretsean iteration of the run-
time. The “Meta model” substituted F-score feature satedior the “Transformer” and
SVM for “Classifier” and executed the “Validator” which uskdin-test data distributor
to validate the configuration prepared by the “Meta-modibié details of the validation
model are beyond the scope of this article, they can be fauff8i).

2.5 Advanced techniques of meta-learning

Meta-schemes provide very powerful means for meta-seasthigtion and direction.
The task of meta-learning method designer is to define suobf seeta-schemes and
items to fill placeholders, that allows to avoid spendingetiom testing insensible model
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structures and to point out the most promising structurée. fsk of meta-learning
algorithms that use meta-schemes is not only to searchdantist accurate solutions,
but also to learn from the search experience. Such learnaigdes:

— Finding the correlations of occurring different items inshaccurate results. It will
enable to learn which data transformations are most usefgiven classification
model, to define some areas of model structures successinhilar environment,
so that finding out, that a model structure is successful,aveaheck some other
structures which worked in similar circumstances, etc.

— Finding new successful complex structures and convetti@gitinto meta-schemes
(which we callmeta abstraction) by replacing proper substructures with placehold-
ers.

— Extracting meta-rules, describing the advantageoustébirexof the search.

— Depositing the knowledge they gain in a reusable meta-kexbyé repository. The
possibility to exchange meta-learning heuristics is vemgcmus, because saves
much time—otherwise each meta-learning method would ralesatrn itself, what
other meta-learners have already learnt.

3 Summary

We have presented basic ideas and some examples of our eaeténh approaches
based on intelligent search. The idea of meta-schemesyspvecious tool in defin-
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ing heuristics for the search process. The meta searchgtaiith the simplest models

and proceeding to more and more complex ones by means of $haetion levels and

Levin complexity control turned out to be successful andhgsing, since its gates to
further development are open, and new directions of advhne#a-learning are evi-

dent. We believe, that quite soon such techniques will beeraoccessful, than human
driven search for (sub)optimal solutions to many probleddrassed to computational
intelligence.
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