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Abstract— Multi Layer Perceptron networks have been succes-
full in many applications, yet there are many unsolved problems
in the theory. Commonly sigmoidal activation functions have been
used, giving good results. The Back-prop algorithm might work
with any other activation function on one condition though -
it has to have a differential. In this paper we investigate some
possible activation functions and compare the results they give
on some sample data sets.

I. INTRODUCTION

MLP networks are popular due to their simplicity in im-
plementation, but the knowledge on how they really work is
still incomplete. Commonly such networks are interpreted as
universal approximators, and some of the geometrical aspects
of approximation process have been investigated. For example,
when we have a single neuron, the situation is quite easy.
Firstly a scalar product of input vector and wages vector is
computed. The scalar product in this case is a measure of
similarity between the input vector and the weights vector.
The computed value is then transformed by an activation
function (usually sigmoid). Geometrical interpretation of that
process is quite straight forward: neuron weights determine
a hyperplane that separates one data cluster from another.
There is one detail though, the hyperplane is not really a crisp
geometrical hyperplane. The sigmoid function is smooth, so
the coresponding plane is rather fuzzy. Fuzzy plane, might
be interpreted as a fuzzy logical rule separating data. This
interpretation gives some clues, on why different activation
functions might have a large inpact on networks dynamics,
since each function gives a fuzzy rule for separating data.

The geometric interpretation of multi layer networks is more
sophisticated. To better understand it, we use an example:
suppose we have an XOR problem. This known problem is not
linearly separable, and so the MLP network that solves it, has
to have a hidden layer. If we train such a network (for example
2:1) we will notice that the first layer transforms the input
data, so the output neuron could separate it. This geometrical
transformation (done by the hidden layer) leads from R? to
unit square (or [—1,1]? if we allow negative activations),
where the XOR problem can be linearly separated. In this
easy case, the transformation preserves dimension of the data,
but that is not a general rule. Often the first layer of a neural
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network tranforms the data into space of a higher dimension
in which the problem could be solved by the next layer. Now
it becomes obvious that by changing activation function of a
single neuron we slightly change the way it transforms data,
but that is not all. Another thing that we change is the training
process, based on the backprop algorithm, which is heavily
dependent on the choice of transfer function. With this in
mind, we remember to choose functions with their derivatives
easy to compute. In fact we first choose a differential that
would meet our needs, and then easily find an appropriate
activation function by integrating.

Fig. 1. Linearly separable data and the separating line (left). Note that we
don’t know if the line is optimal, which is not the case with the sigmoid
transfer function (right). Value of the function marked by lightness.

The rest of the paper is organized as follows. In the next
section we inspect in more detail the geometric aspects of
neural networks, and in section 3 we introduce a way of
visualizing neural network response, which gives a good
insight into the way network separates data. Next we discuss
some examples of activation functions, present some sample
results and conclude.

II. GEOMETRY OF DECISION

The idea of artificial neural networks is to mimic small scale
structure of natural neural networks in hope of achieving at
least slight similarity in functionality. In the process, several
simplifications have been made. One of them was to introduce
a

Geometrically speaking, the weight set of a single binary
neuron defines a half-space in the hyperspace of possible input



vectors. In fact, a threshold neuron is an implementation of
the characteristic function of this half-space. A set is an n-
dimensional half-space if it’s a set of vectors satisfying:
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for a collection (wq,...,w,) and ©® € R. A single
McCulloch-Pitts perceptron works by calculating the weighted
sum of its inputs and passing it to a threshold function,
returning either one or zero, like this:
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where (z1,...,2,) is the input pattern, (w1, ..., w,) are the
neuron’s weights. We can (and often do) interpret this as a
YES/NO answer or a binary categorial recognition.

The aim of a neuron training process is to determine a vector
of weights (with its corresponding hyperplane) that would best
separate sample input vectors of different categories. This is
not always possible as shown by the infamous XOR problem.
We’ll return to this later. If it is possible to separate the
samples, we want the solution to be as general as possible.
This means that if we add a vector that was not in the initial
training set, we expect it to be classified properly without re-
training the perceptron. This, of course, depends on the choice
of samples. If the samples are near the border hyperplane (in
the input space), there is no problem. But if the samples are
grouped in their category centers, as it would be with many
statistically collected datasets (where the typical specimens are
more likely to be selected than the others), there is nothing
that would tell us where to put the hyperplane for optimal
generalization. There is no measure of distance that could be
minimized.

Fig. 2. An example that is not linearly separatable (left) and the infamous
XOR problem (right), with values of two sigmoidal functions (density from
black to white), that transform the problem to make it separatable.

The modification of the neuron to provide not only a binary
(or bipolar) response, but a fuzzy value, requires specifying a
transfer function, f(x). The value returned by the neuron is
then defined as follows:

d(zo,. .., xn) = f(z wiT;)
i=0

Please note the lack of the threshold constant (©). This is
compensated for by an input (zg) with a constant value of 1
(often called a bias). The weight associated with this input

allows to control the influence of the bias on the output. This
might not seem like a simplification, but it allows to regulate
the bias weight together with other weights with a gradient
minimizing algorithm.

Not much is required from a transfer function. They usu-
ally satisfy f(0) = 0 (or f(0) = 1) and they’re usually
nondecreasing functions. It isn’t required but often practiced
that a transfer function has a range within (0,1) or (—1,1).
For practical purposes mentioned later, it’s practical if the
function is differentiable. It also helps if the differential is not
constant. The similarity to distribution functions is not quite
coincidental.

Equipped with a transfer function, the neuron’s output can
be interpreted in terms of fuzzy logic. It’s no longer a ’yes’
or a 'no’, but a "'maybe’, 'rather not’ or almost sure’ answer,
thus allowing us to maximize generalization, provided that the
training set of the input vectors is representative. The optimal
weights for a training set

T:{(zi,...,

e i=1...m}

where ¢t € {0,1} is the category of the i—th sample, are the
ones that minimize the mean square error:

E=Y (¢(x},...,2}) - c)?
=1

What if there are more than two categories to separate?
Simple. For k categories, train k perceptrons, each to separate
one category from the others. This parallel network of neurons
returns a vector (¢1,. .., ¢y) of responses, where the category
returned by the network is the number of the output with the
highest value (the winner. This requires a different method of
training.

Training the neurons separately would require a lot of effort
to lower the activations of many neurons while increasing
one. We don’t need that. If the winner wins, we don’t need
to punish the other neurons. Thus we train the network as a
whole, punishing only the neuron that won, but shouldn’t have.
Since this method will not be the one used in the following
sections, we won’t get into any more details.

Even with transfer functions, the problem of linear sep-
arability remains. Our weight set may be the optimal for
a problem, but some inputs may be mis-categorized. If the
dataset is not linearly separable, there might exist several
single sets of weights that minimize the mean square error
function and the value of the transfer function doesn’t help in
case of the badly classified vectors - it can be as low or as
high as it gets.

It has been proven that increasing the dimensionality of
the problem eventually makes it separable. It’s like giving
the network a hint that does not contain the answer but
helps to find the answer. XOR is not separable, but it gets
separable if you add the value of AND or OR as an extra
input. This kind of reasoning led to the creation of network
constructing algorithms like the towering or pyramid algorithm
where newly added neurons are being connected not only



to the inputs, but also to the currently existing neurons.
But constructing a network via network building algorithms
doesn’t prove efficient when it comes to separating multiple
categories. Instead, a more general approach is used.

Let’s sum it up. A threshold neuron is an instance of the
characteristic function of a half-space. A neuron with a transfer
function implements a transformation ¢ : R” — R creating a
fuzzy hyperplane that can be interpreted as a fuzzy logic rule
separating the data. A set of parallel neurons corresponds to
a function ¢ : R™ — R™, an inter-dimensional transformation
of with a transfer function applied to each vector in all
dimensions. The trained network is expected to transform
each sample vector to a vicinity of an axis in the resulting
hyperspace corresponding to the sample’s assigned category.
If the neurons are connected serially, on the other hand, the
network computes a function ¢ : R™ — R that tends to
increase near the vectors it is trained to recognize, giving nice
separability and generalization, but only for one category.

A network of neurons connected parallelly into layers and
then serially between layers is referred to as a Multi Layer
Perceptron, or MLP for short. MLPs can’t be trained like
single neurons (or like parallel networks for that matter)
because they have many layers, all of which should be trained.
They can’t be trained part by part in a constructive algorithm
because they work as a whole and no single part of the
structure is meant to recognize any particular part of the data,
although specialization might appear.

A trained Multi Layer Perceptron implements a transforma-
tion of R™ into R™ that moves an input vector to its corre-
sponding desired output. The transformation is the cumulative
result of transformations made by particular layers. The idea
of training an MLP is based on calculating the error (squared
difference between output and desired output) and propagating
it back - from the output layer to the layer connected to the
input. This is done with several assumptions:

« the transfer function is continuous

« the differential of the transfer function exists

« the differential has a maximum in the vicinity of zero
The weights in subsequent layers are changed depending on
to the value of the differential of the transfer function for the
current activation of the neuron. Note that the weights are not
changed if the output and the desired output coincide.

The geometric interpretation of the algorithm involves
the energy landscape. The energy landscape is simply the
multidimensional plot of the energy (error) function. It can
be visualized as an area with hills and valleys. The back-
propagation algorithm is like a ball that starts with a random
position and always tends to roll down to a local valley
(minimum). The word local is a key word here.

The rest of the paper will focus on Multi Layer Perceptrons
used to separate multiple categories of data, trained with the
back-propagation algorithm.

III. BARYCENTRIC PLOTTING

In order to investigate neural net performance, we use a
simple projection scheme - barycentric plotting. In this way we

get a lot more information about the network, than by simply
watching MSE or other error measures. Before we explain the
plot mechanism we have to make some assumptions about the
problems being solved:

« the input consists of n vectors E() € R*, each assigned
to one of k categories. Vector E() is assigned to category
Cat(i) € {1...k}

o the network consists of two layers. There are s inputs,
some number h of hidden neurons, and & output neurons.

o the network is trained to activate the ¢-th output neuron,
if the input vector E( is assigned to category ¢, while
others should not be activated. The desired output vector
co esPondmg to the i-th category will be denoted by
Cat(i) as opposed to the actual network output O,

Thus, the geometrical interpretation of a neural network’s
output can be easily made. A well trained network should
implement a transformation that maps some k sets from an n-
dimensional space into k diagonal vertices of a k-dimensional
unit hypercube. The geometry of data clusters in the input
space might be very sophisticated, as we only know that there
are k categories spread somewhere around the n-dimensional
space. The transformation the network implements changes
the dimensionality of the problem, and sets the samples from
each category scattered around the corresponding vertices of
the hypercube.

Although the dimensionality is often reduced by the net-
work, it still might be far too large for visualization, since
we have k (usually more than 3) categories. To overcome this
problem, we project the hypercube’s diagonal vertices into a
polygon (k-gon) as follows:
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put’s projection, (Cat(l),,Cat(l),) are coordinates of the I-
th category projection (I-th vertex of the k-gon),
Euclidean norm in a k-dimensional space. G(x;0,0) is a
scaling function. A simple Gaussian kernel is used:
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By making the dispersion parameter o smaller, we can inves-
tigate the mis-classified samples more thoroughly, while by
increasing it, we can get an overall view of the network’s
separation capabilities. The dispersion parameter can also
depend on the classification properties for each category. Such
adaptive scaling schemes might clear the plot up, and make
important information more visible. We introduce two adaptive
schemes:



o max-scaling, in which o is proportional to maximum
distance of sample from its assigned category:

max
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o avg-scaling, in which o is proportional to average dis-

tance of samples from their assigned category:
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To make the plotting mechanism more useful for investigating
the process of learning, we introduced some simple visual

enhancements:

o a badly classified sample is marked with small X. The
color of the X corresponds to the color of the category
the sample was classified to, and the color of the dot itself
is the color of the desired category.

« while the training process is in progress, the plot is being
refreshed every fixed amount of epochs. To show the
differences between two following network states, short
trajectories of samples can be drawn.

« a convex hull around samples from each category can be
drown, to enchance the view.

With the plot mechanism described above, we investigated
some differences between networks of the same topological
structure, but with different activation functions.

IV. TRANSFER FUNCTIONS

It was mentioned before that the transfer function can
be interpreted as a rule in fuzzy logic. Fuzzy logic is all
about uncertainity, but a formalized uncertainty. A fuzzy rule
requires a membership function that determines the degree of
accuracy in a decision. For example, the notion that a person is
“young” depends on the person’s numeric age. We generally
agree that people who are not adults are young. Depending
on who judges, people between twenty and thirty years of
age are considered young. Between thirty and fourty, a person
is only as young as they feel and people over fourty years
old, well, they don’t make the “mistakes of youth”, though
it doesn’t mean that they’re old. People older than sixty or
seventy are not considered “young” by the majority of human
populace. The fuzzy judgement of “youth” can be estimated
with a non-increasing membership function of the age with a
big downward slant between 20 and 40.

The choice of a membership function for a problem depends
on its nature, the required precision and speed, and the chosen
training algorithm. It’s useless to try to train a network based
on functions having constant second derivatives with a second-
order backprop algorithm. Sometimes some experimentation is
required - with an MLP trainer and a barycentric plotter for
example.

The transfer function of a threshold neuron is the threshold
function. Since the differential is constant, there is no use
trying to train a network composed of such neurons with a

gradient algorithm like the one described above. The energy
landscape is not continuous.

Neurons with a transfer function f(x) = z are often called
linear units. They just calculate the weighted sum of the inputs
(a scalar product of the input vector and the weight vector).
A layer of such neurons implements a linear transformation
via multiplying the input vector by the matrix of the weights.
Multiple layers are useless since the products of matrices is
a matrix - a multi-layer network composed only of linear
neurons can be replaced with a single layer with weights based
on a simple calculation. The problem of linear separability
returns. Still, linear layers are useful due to the linear nature
of the transformation they induce.

One of the most interesting and commonly used transfer
functions is the sigmoid function, or rather, the sigmoid

function class. 1

SCo0) = Ty

The sigmoid function is actually tanh(z) transposed from the
range (—1,1) to (0,1). As 3 approaches infinity, the function
approaches the threshold function. The differential has an
interesting property:

SG'(x) = SG(x)(1 — SG(x))

This is often used in back-propagation, not only with sigmoid
functions, though in general this is not valid.
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Fig. 3. Sigmoid transfer function (left) and its differential (right).

Another bad idea is trying to train the network to return the
extreme values - 0 and 1. Notice that o never reaches these and
the overall effect is that the weights increase to infinity very
quickly. That, in an implementation, results in a displeasing
effect of a sudden chaos. Good target values are 0.2 and 0.8.

The implementation of sigmoid functions requires calcu-
lating the value of the exponential function, but in many
implementations, the function is read from a previously pre-
pared array. This speeds up the training process, although the
tabelarisation involves a choice between low memory usage
and good precision.

The sigmoid transfer function, like the following transfer
functions, has been tested on a 216 vector dataset, fed to
a network architecture of 9-10-6. The network was trained
using a standard back-propagation algorithm with momentum.
Multiple re-runs were made. The plots from the barycentric
visualization module were selected to display phenomena
characterizing the particular functions, they were created in



different moments during the training process, with different
results in the MSE.

Fig. 4. Sigmoid-based network in early stages of training.

The result in this case was predictable. The learning process
was a slow but steady drop of the global error while more
and more patterns joined their proper categories. The plot
shows an interesting effect from early training - as the cyan,
green and violet categories were the first to be recognized, the
network warped the input space forming a U-shaped pattern
in the projection. This pattern broke after the network started
separating categories yellow and blue.

The semilinear function can be regarded either as a rough
aproximation of the sigmoid function or as a compromise
between the linear and the threshold function. It has certain
properties of all the three. It is the distribution function of a
uniform statistical distribution on a segment.

Fig. 5. Semilinear transfer function (left) and its differential (right).

The formula:
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where A, is responsible for the slant and a centers the
function. Both can be disposed of, theoreticaly, since the
relative size of the weights controls the slope and the weight
of the bias node centers the function. In practice, it’s very
important to synchronize the function with the initial weight
dispersion and the learning rate. If the initial weights are larger
than A,, you get the behavior of the threshold function. If the
initial learning rate is too big, the network might destabilize

and end the training process prematurely, returning only O-
s and 1-s. Still, destabilization during the training process is
possible.

Fig. 6. The semilinear function separating data, convex hulls added to exhibit
effectiveness of separation

Experiments show that this kind of function is very good at
separating multiple categories. The transformation induced by
a semilinear network is not linear, but partially linear. This,
combined with the ease of calculating it, gives very fast results,
though some problems might require a bigger network than
those with smoother functions.

The semiquadratic function is based on the triangular uncer-
tainty (figure 7) and approximates the sigmoid function with
two pieces of the parabola and two constant parts.

Fig. 7. Semiquadratic transfer function (left) and its differential (right).

The implementation is fast, since the only required opera-
tions are purely arithmetic and logical.

Barycentric plotting tests show a very interesting tendency
of the network’s output to jump between extreme and non-
extreme values, shown on the plot as long ’tails’. This effect
is highly dependent on the proportions of the initial weights
and the learning rate. Also, the target values were 0.2 and
0.8. Despite this curious behavior, the network was unable
to provide a satisfactory separation, with the MSE fluctuating
around 0.24 and samples being constantly assigned to wrong
categories.

The last function tested, referred to as log-exp, requires a
longer explanation. The differential is actually the difference
of two sigmoids, forming a bell-shaped plot depending on a
parameter that distances them. The function itself is a perfectly
smooth one with a controllable slope.



Fig. 8. The ’jumping’ effect of the semiquadratic function.
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Logarithmic-exponential transfer function (left) and its differential

The formula is:
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where, a is responsible for centering the function, b distances
the sigmoids and c is a coefficient that controls the slope. For
best results, it’s advisable to set it to a value that maximizes
the value of the differential at O (or rather at a).

The implementation requires calculating the exponential
function more than once, plus the natural logarithm. The
differential isn’t much better either. The training process,
unless accelerated with lookup tables, is therefore slow, but
surprisingly effective.

Fig. 10. The log-exp function in action.

Testing on the usual dataset shows great separation ca-
pabilities. The smoothness of the function causes the fuzzy
hyperplanes to move in their place with ease. The plot simply
reads itself as the geometry of the transformation is clearly
visible. The only remaining problem is with the category
marked as red, but it gets solved later in the process. This
category tends to be a problematic one for other transfer
functions as well.

V. SUMMARY

Transfer functions affect not only the geometry of the
transformation induced by the network, but also the amount of
calculations required and the speed of the training process as
a result. The optimal choice differs with various problems, but
some general rules can be stated. Understanding the process
of training MLPs combined the ancient scientific method of
trial and error, equipped with a barycentric plotter, helps to
chose the best transfer function and a suitable architecture.

REFERENCES
[1

—

W. Duch Uncertainty of data, fuzzy membership functions, and multi-layer
perceptrons (2003, subm. to IEEE Transactions on Neural Networks)
W. Duch Coloring black boxes: visualization of neural network decisions.
Int. Joint Conf. on Neural Networks, Portland, Oregon, 2003, Vol. I, pp.
1735-1740

[3] P. Pereto An introduction to the Modeling of Neural Networks Cambridge
University Press 1992

Stanistaw Osowski Sieci neuronowe do przetwarzania informacji. Po-
litechnika Warszawska, Warszawa 2000

J. Korbicz, A. Obuchowicz, D. Ucinski Sztuczne sieci neuronowe, Pod-
stawy i zastosowania. Akad. Oficyna Wyd. PLJ, Warszawa 1994

Robert A. Kosifiski Sztuczne sieci neuronowe, Dynamika nieliniowa i
chaos. Wyd. Nauk-Tech, Warszawa 2002

Stanistaw Osowski Sieci neuronowe w ujeciu algorytmicznym. Wyd.
Nauk-Tech, Warszawa 1996

W. Duch, J. Korbicz, L. Rutkowski, R. Tadeusiewicz Biocybernetyka
i inZynieria biomedyczna 2000 - tom 6 Sieci neuronowe Akademicka
Oficyna Wydawnicza Exit, Warszawa 2000.

[2

—

[4

—

[5

[utt}

[6

=

[7

—

[8

—



