
Instance Pruning with the SBL-PM-M-EKP
Training Data Reducer

Karol Grudziński
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Abstract. A prototype (case-based) way of data explanation is a pow-
erful method for data analysis and understanding. Interesting instance
vectors (prototypes) are usually generated by a training set pruning with
various partial memory learners. This approach is the alternative to the
rule induction techniques for knowledge discovery and understanding.In
this paper a completely new system, SBL-PM-M-EKP is introduced.
The study of suitability of SBL-PM-M-EKP for training data compres-
sion has been studied on ? datasets. As an underlying classifier we have
chosen the well known IB1 system from the WEKA package.We com-
pare the generalization ability of our system to the performance of IB1
trained on the entire training data. The results indicate that with only
one prototype per class which was generated by SBL-PM-EKP system,
on ? datasets we have obtained statistically indistinguishavble results
from those coming form IB1 or even the generalization ability has been
improved by our system over the IB1 one in several cases.

1 Introduction.

Data mining is commonly used in many domains. A case-based way of data
explanation is very popular among researchers. Such an approach to knowledge
discovery and understanding is particularly often employed in medicine, where a
medical doctor makes a diagnosis by referring to other similar cases in a database
of patients.

Interesting instance vectors (prototypes) are usually generated by a training
set pruning with various partial memory learners. The term ‘Partial Memory
Learning’ (PML) is most often reserved for on-line learning systems that select
and store a portion of the past learning examples. In this paper we stick to
this naming convention (i.e. PML), but this methodology is called also ‘instance
selection’, ‘training data compression, reduction or pruning’. The idea behind
this machine learning paradigm is that only a small fraction of a usually much



larger, original training set is used for a final classification of unseen samples.
[1–8].

The acronym SBL-PM-M-EKP is short for Similarity-Based-Learner-Partial-
Memory-Minimization-Exacly-k-Prototypes.We however want to stress here that
our new system is completely different from our earlier model, SBL-PM-M.
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Tables

Table 1. Results for the 10-fold CV Test on the Selected Datasets
Dataset IB1% std. dev % SBL-PM-M-EKP:IB1 % std. dev %
Breast-Cancer 68.6 7.5 73.6 6.4
Breast-Wisc. 95.7 2.4 95.5 2.5
Credit-Rating 81.6 4.6 79.6 6.1
Heart-Cleveland 76.1 6.8 80.3 7.2
Heart-Hungarian 78.3 7.5 82.5 6.5
Heart-Statlog 76.1 6.8 80.3 7.2
Hepatitis 81.4 8.6 80.7 9.2
Pima-Diabietes 70.6 4.7 70.4 5.9


