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omAbstra
t: A 
ompletely new system for a sele
tion of referen
einstan
es, whi
h is 
alled EkP (Exa
tly k Prototypes) has been in-trodu
ed by us re
ently. In this paper we study a suitability ofthe EkP method for training data redu
tion on seventeen datasets.As the underlying 
lassi�er the well known IB1 system (1-NearestNeighbor 
lassi�er) has been 
hosen. We 
ompare generalizationability of our method to performan
e of IB1 trained on the entiretraining data and performan
e of LVQ for whi
h the same numberof 
odebooks has been 
hosen as the number of prototypes whi
hhas been sele
ted by the EkP system. The results indi
ate, thateven with only a few prototypes whi
h have been 
hosen by the EkPmethod, on nearly all seventeen datasets statisti
ally indistinguish-able results from these attained with IB1 have been obtained. Onmany datasets generalization ability of the EkP system has beenlarger than the one attained with LVQ.1. Introdu
tionData mining is 
ommonly employed in many domains. A 
ase-based way of dataexplanation is very popular among resear
hers. Su
h an approa
h to knowledgedis
overy and understanding is parti
ularly often employed in medi
ine, wherea medi
al do
tor makes a diagnosis by referring to other similar 
ases in adatabase of patients.Interesting instan
e ve
tors, known as referen
e 
ases, 
an be either sele
tedfrom training data or 
an be generated out of a training set. In the latter
ase instan
es' features have in general di�erent values than the ones that arestored in the original training set. Both te
hniques (i.e. instan
e sele
tion andprototype generation) often lead to a signi�
ant training set size redu
tion.This paper 
on
erns the �rst above mentioned problem, i.e. `instan
e sele
-tion', `training data 
ompression, redu
tion or pruning'. The idea behind thisma
hine learning paradigm is that only a small fra
tion of a usually mu
h larger,original training set is used for a �nal 
lassi�
ation of unseen samples (Maloof
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halski, R. , 2000; Martinez T., Wilson D. , 1997, 2000; Gro
howski M. ,2003; Gro
howski M., Jankowski N. , 2004-1,-; Du
h. W., Grudzinski. K , 2000;Grudzinski K. , 2004, 2008).Prototype sele
tion is an extremely important problem whi
h has been fre-quently studied by ma
hine learning and pattern re
ognition resear
hers. Sele
-tion of referen
e instan
es 
an signi�
antly speed up 
lassi�
ation and analysisof data later and usually leads to better data understanding and may lowersensitivity to noise of some 
lassi�ers. Strong training set redu
tion may some-times result in statisti
ally signi�
ant degradation of the 
lassi�
ation a

ura
yattained on unseen samples, however as many experiments illustrate often itis the other way around, i.e. data pruning improves generalization ability of
lassi�ers. Samples sele
ted with the EkP system 
an be used for example tobuild prototype-based rules, whi
h had been introdu
ed by Du
h et. al. (Du
hW., Grudzinski K. , 2001; Bla
hnik M., Du
h W. , 2004) and whi
h are a veryinteresting alternative to 
lassi
 logi
al rules.The a
ronym EkP is short for Exa
tly-k-Prototypes. We want to stresshere that our new system di�ers 
ompletely from our earlier model, PM-M(Grudzinski K. , 2004).2. Methodologies for Referen
e Instan
es Sele
tionBefore we pro
eed to presentation of the EkP system and the results obtainedwith this method, a very 
on
ise review of some of the known te
hniques em-ployed in sele
tion of the referen
e 
ases is provided. This presentation drawsheavily on the ex
ellent work of Gro
howski 
ontained in his M.S
. thesis (Gro-
howski M. , 2003).2.1. Problem FormulationThe problem of sele
tion of the referen
e instan
es 
an be de�ned as a pro
essof �nding the smallest set S of 
ases representing the same population as theoriginal training set T and leading to 
orre
t 
lassi�
ation of the samples fromnot only T but more importantly of the unseen 
ases with minimal degradationof the generalization ability of the underlying 
lassi�er. In other words, referen
esele
tion is a method for sele
tion or generation of the most informative samplesfrom T and reje
tion of the noisy 
ases or of these instan
es that degrade thegeneralization when the original training set T is used for learning. Thus,restri
ting ourselves to prototype sele
tion by whi
h we understand sele
tionof referen
e 
ases in whi
h S is a subset of T , the problem is to �nd optimalsubset S of all possible 2n − 1 subsets with respe
t to generalization ability ofthe underlying 
lassi�er. By n, the number of samples of the original trainingset T is denoted.The referen
e ve
tors sele
tion algorithms 
an be divided into a few numberof te
hniques that share the same strategies.



Sele
tion of Prototypes with the EkP System 32.1.1. Noise FiltersThis 
ategory of methods, known also as editing rules, is based on reje
tingnoisy 
ases or outlayiers from T . The rate of data pruning is usually low andthese te
hniques are usually employed as the �rst data prepro
essing step whi
his then followed by other methods. ENN, RENN (Wilson D. , 1972), All k-NN(Tomek I. , 1976) and ENRBF (Jankowski N. , 2000) are the key examples ofthe algorithms that belong to this group.2.1.2. Data Condensation AlgorithmsThis group of methods is also known as data pruning or data 
ompression te
h-niques. The main idea behind this approa
h is to a
hieve the highest possibletraining data redu
tion without or with minimum sa
ri�
ation of generalizationof the employed underlying 
lassi�ers. CNN (Hart P. , 1968), RNN (Gates G. ,1972), GA, RNGE (Bhatta
harya B. K., Poulsen R. S., Toussaint G. T. , 1981),ICF (Brighton H., Mellish C. , 2002) and DROP 1�5 (Martinez T., Wilson D. ,2000) are the main systems that fell into this 
ategory.2.1.3. Prototype MethodsThe family of referen
e sele
tion algorithms that are aimed at �nding extremelylow number of highly informative super�ve
tors, 
arrying parti
ularly largeamount of information and 
apable of representing large number of 
ases, areknown as prototypes methods. However the di�eren
e between data 
onden-sation algorithms and prototype methods is very subtle, in our understandingprototype sele
tion and generation algorithms push the redu
tion of the trainingdata to the extreme taking sometimes the risk of slightly larger degradation ofgeneralization of the underlying 
lassi�ers. Thus, however both groups of meth-ods try to arrive at the smallest set S, the stress in data pruning te
hniquesis put on generalization, whilst in the 
ase of prototype algorithms it is on theextremely low amount of samples that are sele
ted. It should not be surprising,that some of the algorithms, parti
ularly these in whi
h one has the 
ontrolover the amount of the samples sele
ted, may be treated either as data pruningmethods or as prototype sele
tion models. LVQ (Kaski S., Kohonen T., Oja M., 2003), MC1 and RMHC (Skalak D. , 1994), IB3 (Aha D., Albert M., Kibler D., 1991), ELH, ELGrow and Expolore (Cameron-Jones R. , 1995) and our ownmodels PM-M (Grudzinski K. , 2004) and EkP (Grudzinski K. , 2008) 
an bein
luded into the prototype sele
tion group of methods.3. The EkP SystemThe EkP system is based on a minimization of a 
ost fun
tion whi
h returnsthe number of errors the 
lassi�er makes. Despite of this, the EkP method isextremely fast be
ause during every evaluation of the 
ost fun
tion the redu
ed



4 Karol Grudzi«skitraining set is 
onstru
ted out of only the preset number of k instan
es. Ittakes se
onds for the EkP method to perform 10-fold 
ross-validation on most
ommon UCI datasets. In our implementation we used the well known simplexmethod (Nelder J., Mead R. , 1965) for fun
tion minimization whi
h we havetaken from the Internet (Lampton M. , 2004).The simplex must be initialized �rst before a minimization pro
edure isstarted. The EkP system is very sensitive to the way in whi
h the simplexis initialized and therefore we have de
ided to provide the EkP's initializationalgorithm whi
h is given below. We have found in
lusion of this pseudo
odevery important for the repli
ation of this method.Algorithm 1 The EkP's simplex initialization algorithmRequire: A training set trainInstan
esRequire: A ve
tor p[℄ of optimization parameters (numProtoPerClass *numClasses * numAttributes dimensional)Require: A matrix simplex to 
onstru
t a simplexLet numPoints denote the number of points to build simplex onfor i = 0 to numPoints - 1 dofor j = 0 to numClasses * numProtoPerClass - 1 dofor k = 0 to numAttributes - 1 do
p[k + numAttributes * j℄ := trainInstan
es[i℄[k℄end forsimplex[k℄[numAttributes℄ := 
ostFun
tion(p[])end forend forTwo variants of the 
ost fun
tion algorithm have been implemented in oursystem. The �rst variant is based on the internal 
ross-validation learning ontraining partitions whilst in the se
ond algorithm variant a 
lassi�er is trainedby 
ondu
ting a plain test (the pruned training partitions are used for learningand the test on the entire training partition is used for estimating traininga

ura
y). The details about both variants of the 
ost fun
tion algorithm aregiven in the pseudo
ode listings whi
h are given below.Our implementation of the EkP method is not the simplest one as our 
odewill be
ome a basis for an extended version of this algorithm. In order to give ashort des
ription of the algorithm in the text of the paper, it is worth mentioningthat the array of optimization parameters is (numProtoPerClass * numClasses* numAttributes) dimensional but the instan
es stored in this ve
tor are notinvolved in any parameter modi�
ation. They are simply extra
ted from theparameter ve
tor and are added to the training partition in every 
ost fun
tionevaluation. In other words the training partitions are built by extra
ting samplesfrom a parameter ve
tor whi
h always 
ontains numProtoPerClass examplesfrom every 
lass o

urring in a problem domain. In a simpler implementationone 
ould store the indi
es of the training set instan
es instead of storing the



Sele
tion of Prototypes with the EkP System 5Algorithm 2 The EkP-1 
ost fun
tion algorithm (learning via internal 
ross-validation)Require: A training set trainInstan
esRequire: A ve
tor p[℄ of optimization parameters (numProtoPerClass *numClasses * numAttributes dimensional)for k = 1 to numCrossValidationLearningFolds doCreate the empty training set 
vTrainBuild the k-th test partition 
vTestfor i = 0 to numClasses * numProtoPerClass - 1 dofor j = 0 to numAttributes - 1 doAdd the prototype stored in p[℄ starting from p[j + numAttributes* i℄ and ending in p[numAttributes - 1 + numAttributes * i℄ to
vTrainend forend forBuild (train) the 
lassi�er on 
vTrain and test it on 
vTestend forRemember the optimal p[℄ value and the asso
iated with it lowest value ofnumClassi�
ationErrorsreturn numClassi�
ationErrorsAlgorithm 3 The EkP-2 
ost fun
tion algorithm (learning via test on theentire training partition taking pruned training partition for building (training)a 
lassi�er)Require: A training set trainInstan
esRequire: A ve
tor p[℄ of optimization parameters (numProtoPerClass *numClasses * numAttributes dimensional)Create the empty training set tmpTrainfor i = 0 to numClasses * numProtoPerClass - 1 dofor j = 0 to numAttributes - 1 doAdd the prototype stored in p[℄ starting from p[j + numAttributes* i℄ and ending in p[numAttributes - 1 + numAttributes * i℄ totmpTrainend forend forBuild (train) the 
lassi�er on tmpTrain and test it on trainInstan
esRemember the optimal p[℄ value and the asso
iated with it lowest value ofnumClassi�
ationErrorsreturn numClassi�
ationErrors



6 Karol Grudzi«skiTable 1. Datasets used in our experiments

numProtoPerClass * numClasses ve
tors themselves in the parameter array.Note that numAttributes denotes the total number of attributes in a datasetin
luding the 
lass attribute.4. Numeri
al ExperimentsIn order to verify suitability of the EkP system for data analysis the 
lassi�-
ation experiments on seventeen real-world problems (mainly taken from thewell-known UCI repository of ma
hine-learning databases (Mertz C., MurphyP.)) have been performed. The information about the datasets used 
an befound in Table 1. The EkP system 
an be based on an arbitrary 
lassi�er, i.e.it 
an be a neural-network, support-ve
tor ma
hine or a de
ision-tree method,et
. In our experiments the IB1 (Aha D., Albert M., Kibler D. , 1991) systemhas been used both as the underlying 
lassi�er for the EkP system and as thereferen
e method. The reason for sele
ting the IB1 system is that this methodrequires very small training datasets whi
h may 
onsist of just a few samplesin order to make 
lassi�
ation possible. Other 
lassi�ers, in
luding IBk (AhaD., Albert M., Kibler D. , 1991) require slightly larger training sets in order tooperate. Our aim when we were 
ondu
ting the experiments for this paper wasto show that even the 
al
ulations with the extremely low number of prototypessele
ted may lead to attaining ex
ellent results on unseen samples. The wellknown LVQ method (Hyninen, Kangas, Kohonen, Laaksonnen, Torkolla , 1996;Kohonen T. , 2001; Kaski S., Kohonen T., Oja M. , 2003), whi
h is however aprototype-generation system, has also been taken as the referen
e model in ourexperiments. The se
ond reason for 
hoosing the IB1 
lassi�er as the underlyingmethod for the EkP system is the fa
t that the LVQ method uses the k-NearestNeighbor 
lassi�er as its 
lassi�
ation engine.



Sele
tion of Prototypes with the EkP System 7Generalization ability of the EkP system with only one, two and three in-stan
es per 
lass sele
ted from a training set has been 
ompared to the 
lassi�-
ation performan
e of LVQ for whi
h the same number of 
odebooks has beenused. Additionally, the results obtained with the IB1 (1-Nearest Neighbor) sys-tem whi
h has been trained on the entire 
ross-validation training partitions(i.e. all training samples from every learning fold have been used) are provided.Ten-fold strati�ed 
ross-validation test has been performed for all seven-teen domains. In the experiments 
ondu
ted with the EkP system, in ea
h
ross-validation fold, the training partition has been pruned so that only theprototype 
ases remained, the EkP's underlying 
lassi�er has been trained andit's generalization ability has been estimated on the 
ross-validation test parti-tion. After the 
ompletion of the 
al
ulation on all ten folds the test has beenrepeated ten times and the average 
lassi�
ation a

ura
y and its standard de-viation whi
h were taken over the all available hundred partial results have beenreported.The single 
orre
ted re-sampled T-Test (Frank E. Witten I., , 2000; DoboszK. , 2006) has been used to 
al
ulate statisti
al signi�
an
e of the results (withthe fa
tor of 0.05) in order to help making the de
ision whether the EkP systemperformed better, the same or worse than the referen
e models.The LVQWeka implementation of the LVQ method that has been employedin our 
al
ulations was written by Jason Brownlee (Brownlee J. , 2004). Finally,what remains to be mentioned is, that the EkP system has been written by theauthor in the Java programming language as a plugin to the well known Wekama
hine learning workben
h (Frank E. Witten I., , 2000).4.1. Experiment 1: Generalization Ability � EkP vs. IB1In the �rst experiment our system under study has been 
ompared to the per-forman
e of IB1 on all seventeen domains. The results of the statisti
al testsagainst the majority 
lassi�er, both of IB1 and EkP, have not been 
ontainedin our paper. The base rate results however, whi
h are the values obtained bythe majority 
lassi�er1 on all tested datasets are listed in Table 1. It is worthmentioning that IB1 appeared to outperform the majority 
lassi�er on thirteendomains. On appendi
its, breast-
an
er, german-
redit and hepatitis datasetsthe results have been statisti
ally insigni�
ant.The EkP system has been used mainly with the same default settings forall seventeen problems be
ause the 
al
ulations have been performed in a bat
hmode whi
h made performing numeri
al experiments and 
olle
ting the resultsfor the paper mu
h easier. The simplex 
ost fun
tion toleran
e has been set to1E-16 and the maximum number of 
ost fun
tion evaluations has been restri
tedto 300 
alls ex
luding a 
ertain number of target fun
tion evaluations requiredto initialize the simplex. This latter value is the parameter whi
h is 
alled the1The majority 
lassi�er in the Weka system whi
h had been used in our experiments is
alled ZeroR



8 Karol Grudzi«skinumber of simplex points on whi
h a simplex is spanned. Thus, the maximumnumber of the 
ost fun
tion evaluations value has to be in
reased by the numberof simplex points in order to attain the total number of target fun
tion 
alls. Forall experiments that have been 
ondu
ted in our paper we have set the numberof simplex points to �fty. The upper limitation on the value of this parameteris the number of samples in the training partition. Therefore, be
ause thesmallest problem out of the studied seventeen domains 
onsists of hardly sixtysamples, the sele
ted by us value for this parameter seems to be a good 
hoi
e.The maximum number of 
ost 
alls setting of 300 was taken as the default forthe datasets of the size of a 
ouple of hundred 
ases and this 
hoi
e is basedon our earlier experien
e with similar minimization-based learning systems wehad been working on. What 
on
erns the EkP's form of learning used for theExperiment 1, both the �rst variant of the 
ost fun
tion algorithm involvingleave-one-out 
ross-validation learning as well as the se
ond variant has beenemployed. The IB1 
lassi�er has been 
hosen as the EkP's 
lassi�
ation engine.Tables 2 and 3 summarize the results of the Experiment 1. It is easy to noti
ethat generalization ability of the EkP system trained with the �rst algorithmvariant depends strongly on the number of prototypes sele
ted. Choosing oneprototype per 
lass to be sele
ted by EkP-1 statisti
ally degraded the resultswith respe
t to ones obtained with the IB1 system only on three out of the allseventeen domains. This is the ex
ellent result. When two prototypes per 
lasshave been sele
ted, the number of times training data redu
tion degraded theresults dropped to only two. With three prototypes per 
lass 
hosen the resultshave been statisti
ally insigni�
ant from these attained with IB1 on sixteenproblems. The �rst variant of the EkP algorithm that has been taken for ourexperiments was trained with leave�one�out 
ross�validation. The in�uen
e ofthe value of the 
ross�validation learning fold on the generalization has not beenyet fully investigated. Leave�one-out 
ross�validation seems to lead to obtainingvery stable models and the best generalization at the expense of signi�
antlylenghtenning the 
al
ulation time. In 
ase of the se
ond algorithm version (EkP-2) statisti
ally signi�
ant degradation of the generalization results with respe
tto ones attained with the IB1 system 
ould have been noted on three datasetsindependently on the number of prototypes per 
lass 
hosen.4.2. Experiment 2: Generalization Ability � LVQ vs. IB1 and LVQvs. EkPFor this experiment, LVQ version 1 with 'random training data proportional'as well as 'simple k-means' initialization, learning rate of 0.3, total trainingiterations of 1000, linear de
ay learning fun
tion and disabled voting has beenused. Generalization ability of LVQ against IB1 has been tested �rst. Be
ausethe method of initialization of the positions of 
odebooks seemed not to makeany statisti
ally signi�
ant in�uen
e on generalization of the LVQ system, onlyone table (Table 4) is provided in whi
h the LVQ system has been used with
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Table 2. A 
omparison of generalization results attained with the EkP system withone, two and three prototypes per 
lass sele
ted vs. the generalization obtained withthe IB1 
lassi�er. EkP has been trained with the �rst version of the 
ost fun
tionalgorithm whi
h is denoted as EkP-1. Fifty simplex points have been used to train theEkP system. The statisti
al degradation of the results with respe
t to the referen
eones (i.e. these of IB1) is marked with a bold font.

Table 3. A 
omparison of the generalization results attained with the EkP systemwith one, two and three prototypes per 
lass sele
ted vs. the generalization obtainedwith the IB1 
lassi�er. EkP has been trained with the se
ond version of the 
ostfun
tion algorithm whi
h is denoted as EkP-2. Fifty simplex points have been used totrain the EkP system. The statisti
al degradation of the results with respe
t to thereferen
e ones (i.e. these of IB1) is marked with a bold font.



10 Karol Grudzi«skiTable 4. A 
omparison of the generalization results attained with the LVQ-1 system(with the linear de
ay learning and the training data proportional initialization set-tings) with 2, 4 and 6 
odebooks set vs. the generalization results obtained with theIB1 
lassi�er. The statisti
al degradation of the results with respe
t to the referen
eones (i.e. these of IB1) is marked by using a bold font.

the 'random training data proportional' initialization.As it 
an be seen from Table 4, the LVQ system performed rather poorlyand on seventeen problems with two 
odebooks set twelve times statisti
allysigni�
ant degradation of the results with respe
t to these attained with theIB1 
lassi�er has been noted. In
reasing the number of 
odebooks to four hasled to a minor improvement of the generalization of the LVQ system and on tendomains the results have been still worse than these obtained with IB1. Sele
tionof six 
odebooks has led to statisti
ally signi�
ant degradation of the results withrespe
t to the referen
e ones on nine problems out of seventeen studied. In thisexperiment also no improvement over IB1's generalization ability 
ould havebeen observed.In the se
ond experiment in this se
tion the test estimating generalizationability of LVQ against EkP has been performed. This test is made only ontwo-
lass problems to assure that the number of LVQ 
odebooks as well as theprototypes sele
ted by the EkP system is the same. Re
all that EkP takes thenumber of prototypes per 
lass as its adaptive parameter whilst the LVQ systemrequires a total number of 
odebooks to be spe
i�ed. Sin
e all the 
al
ulationshave been performed in a bat
h mode with the same settings for all 
lassi�
ationdomains, the list of datasets had to be restri
ted to two 
lass problems. What
an be noted by taking a 
loser look at Table 5 is, that the results of LVQ morestrongly depend on the number of 
odebooks sele
ted than it is in 
ase of EkP�1. The average 
lassi�
ation a

ura
y of EkP�1 taken over all twelve domainsos
illates around 79% whilst in the 
ase of LVQ, for two 
odebooks, it equals
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Table 5. A 
omparison of the generalization results attained with the LVQ-1 systemwith two, four and six 
odebooks vs. the generalization obtained with the EkP 
lassi-�er. EkP has been trained with the �rst version of the 
ost fun
tion algorithm whi
h isdenoted as EkP-1. Fifty simplex points have been used to train the EkP system. Thestatisti
al degradation of the results of the LVQ system with respe
t to the referen
eones is marked with a bold font.

Table 6. A 
omparison of the generalization results attained with the LVQ-1 systemwith two, four and six 
odebooks vs. the generalization obtained with the EkP 
las-si�er. EkP has been trained with the se
ond version of the 
ost fun
tion algorithmwhi
h is denoted as EkP-2. Fifty simplex points have been used to train the EkPsystem. The statisti
al degradation of the results of the LVQ system with respe
t tothe referen
e ones is marked with a bold font.



12 Karol Grudzi«skionly 64%. Going with the number of 
odebooks to four and six, in
reases theaverage LVQ's generalization ability to about 70% and 72% respe
tively. Similartrends 
an be observed when LVQ is put against the EkP�2 (see Table 6).4.3. Experiment 3: Time RequirementsThe training times of the EkP system, whi
h are however all statisti
ally worsethan these of IB1 (it is not a surprise), are quite short and in average are equalto about 1s (EkP�1) and 0.2s (EkP-2) for learning on a single partition of atypi
al UCI dataset of a size of a 
ouple of hundred 
ases (see Table 7 and 8).2The training times of LVQ are even shorter than these obtained with our system.As 
an be seen from Table 9, LVQ has beaten up 
ompletely both variants ofthe EkP method on all seventeen 
lassi�
ation problems. It turned out that theLVQ system 
an be trained in time whi
h is of three orders of magnitude shorterthan the one obtained by measuring the EkP's learning time. Fortunately theEkP testing times are shorter than these of IB1 by three orders of magnitude.Table 10 
ontains the summary of the results of the measurements of the testingtime. It is not hard to see that it takes mu
h less than a minute for the entire10-fold 
ross-validation test that is 
ondu
ted with our system to 
omplete onmost 
ommon UCI datasets. This is a

eptable result. It should be noted thattraining the EkP method with lower-fold 
ross-validation than leave�one�outleads to a signi�
ant redu
tion of the time requirements for this algorithm.5. Con
lusionsWe are lu
ky that we have managed to 
reate quite a fast prototype sele
tionsystem despite of employing the simplex minimization routine whi
h is usuallyexpensive. The initial experiments indi
ate that the method may turn out tobe 
ompetitive to other data pruning systems. In the preliminary 
al
ulationsthe method dis
ussed in this paper have shown statisti
al insigni�
an
e of thegeneralization ability with respe
t to IB1 almost on all 
lassi�
ation problemsand sometimes turned out to be superior to the LVQ system ver. 1. Howeverthe EkP training times are longer that these of IB1 and of LVQ but the testingtimes are shorter than the ones obtained by timing IB1. After all, one shouldremember about the general idea laying behind the sele
tion of prototypes:on
e the instan
es are initially found (training sets are pruned), the tests onunseen samples whi
h are usually frequently performed 
an be 
ondu
ted mu
hfaster. Before the EkP system is not 
onfronted with many other prototypesele
tion algorithms and before further experiments with our method are notperformed it will be hard to estimate a real value of our 
ontribution to thepattern re
ognition �eld.2The 
al
ulations have been performed on a laptop equipped with a 2.4GHz Intel Core 2Duo pro
essor running 64�bit Ubuntu Linux Operating System under 64�bit OpenJVM Java1.6.



Sele
tion of Prototypes with the EkP System 13Table 7. The training times of the EkP method attained on one 
ross�validation foldin se
onds. EkP has been trained with the �rst version of the 
ost fun
tion algorithmwhi
h is denoted as EkP-1. Fifty simplex points have been used to train the EkPsystem. The statisti
al degradation of the results of the EkP system with two andthree prototypes per 
lass sele
ted with respe
t to the referen
e ones (i.e. these ofEkP�1 with one referen
e instan
e per 
lass 
hosen) is marked with a bold font.

Table 8. The training times of the EkP method attained on one 
ross�validationfold in se
onds. EkP has been trained with the se
ond version of the 
ost fun
tionalgorithm whi
h is denoted as EkP-2. Fifty simplex points have been used to train theEkP system. The statisti
al degradation of the results of the EkP system with twoand three prototypes per 
lass sele
ted with respe
t to the referen
e ones (i.e. theseof EkP�2 with one referen
e instan
e per 
lass 
hosen) is marked with a bold font.



14 Karol Grudzi«skiTable 9. The training times of the EkP method attained on one 
ross�validation foldin se
onds. EkP has been trained with the �rst and the se
ond version of the 
ostfun
tion algorithm whi
h is denoted as EkP�1 and EkP-2 respe
tively. Two 
odebooks/prototypes have been 
hosen. Fifty simplex points have been used to train the EkPsystem. The statisti
al degradation of the results of the EkP system with respe
t tothe referen
e ones (i.e. these of LVQ) is marked with a bold font.

Table 10. The testing times of the EkP method attained on one 
ross�validation testfold in se
onds. EkP has been trained with the se
ond version of the 
ost fun
tionalgorithm whi
h is denoted as EkP-2. Fifty simplex points have been used to trainthe EkP system. The statisti
al improvement of the results of the EkP system withrespe
t to the referen
e ones (i.e. these of IB1) is marked with a bold, itali
 font.
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