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Abstract

We explore some new types of committees in search of
hybrid models successful in many different classification
benchmarks. To provide a reliable comparison of the en-
sembles we restrict the task to some constant configuration
of committee members for each benchmark. We were look-
ing for new types of committees which, in such configura-
tion, would be as much accurate and stable as possible. The
paper focuses on some ideas of heterogenous committees
with different ways of their members competence estima-
tion. Heterogenous committee members adapt in different
ways are able to solve different problems. Measuring the
competence of committee members helps in making compe-
tent and accurate decisions.

1. Introduction

In general, adaptive models are combined into ensem-
bles (committees) to overcome some disadvantages of the
base algorithms. For example we can not solve a multiclass
problem with a single model of binary linear discrimination
(or other binary classifiers). In such cases committees of
linear models are usually constructed to solve the problem
(for example, such committee may contain one linear model
per class or one linear model per class pair—see [8, 10]
for more). Research presented in this paper aims at build-
ing such committees for supervised learning problems that
maximize classification accuracy and stability.

Let the training data set for a classification task be de-
fined as

S = {〈xi, c(xi)〉 : i = 1, . . . , n}. (1)

Each pair 〈xi, c(xi)〉 represents a single data vector (in-
stance) xi and its corresponding class label c(xi). Without
loss of generality we may assume that the class labels are in-
tegers from 1 to m.

The simplest committee used for classification is the vot-
ing committee. The decision module of a voting committee

simply counts the votes for each class according to the rule
that each member has a single unit vote. The voting com-
mittee winner class for given vector x is computed as

V (x) = arg max
c=1,...,m

N∑

j=1

�Fj(x)=c, (2)

where N is the committee members count, Fj(x) is the
class label predicted for instance x by j-th member, and � t

is the truth value of expression t (1 for true and 0 for false).
The most commonly used alternative to plain voting is

the weighting of probabilities scheme, where the probabil-
ity that given vector x belongs to the i-th class

pw(i|x) =
1
N

N∑

j=1

p(i|x, Fj). (3)

Here p(i|x, Fj) defines the probability that vector x is
classified to i-th class by j-th committee member. If for
given model type of the committee member the probability
p(i|x, Fj) is not defined directly, it may be approximated in
several ways (for example by softmax [1] of submodel out-
puts or in the worst case by binary decision—if all members
approximate probabilities by binary decisions the weight-
ing scheme is equivalent to the voting scheme). The winner
class is simply defined as the most probable class:

W (x) = arg max
i=1,...,m

pw(i|x). (4)

The committees consisting of models of different types
are called heterogenous committees. Committee members
may also (or instead) differ in instances distribution used for
learning. Some examples of such committees are bootstrap
aggregation [4] or boosting algorithms [9, 20]. Typically
such committees were constructed from popular decision
trees like C 4.5 [19] or CART [5]. Training data presented
to the committee members may be (re-)constructed by the
committee in several other ways. For example committee
members may learn on (different) subsets of attributes (us-
ing several feature selection algorithms).



Other types of committees—stacking and grading—
were presented in [24, 22, 3, 25] and [21]. In the place of
voting or weighting schemes these committees combine
models via stacking. After submodels’ learning the deci-
sion module uses a meta-level learning to determine where
the submodels perform well and where they make mis-
takes using validation parts of data. Such knowledge is
used to make the final decision of the committee. To ap-
proximate model certainty a linear regression [24, 22]
or meta-decision trees [25] may be used. Other combin-
ing schemes were proposed in [14, 16].

Some preliminary results using another type of commit-
tees with competence (computed in different way than those
presented in this paper) have already been investigated in
our group [7].

2. Heterogenous committees with competence

Homo- or Heterogenous committees? Some kinds of com-
mittees are dedicated to homogenous environments, for ex-
ample boosting committees. Many others use heterogenous
base models (the majority of voting committees and weight-
ing committees). The advantage of heterogenous models is
that such committees may be more resistant to some data-
derived traps, while using homogenous system it may be
very difficult to obtain an interesting result even using very
many submodels. This is caused by better or worse ability
of the chosen classification algorithm to adapt to the partic-
ular problem (see section 3). If a committee is able to check
which models are adequate (competent) to given dataset and
to use this information in the decision module, then such
committee may take more suitable decisions. In the case of
homogenous committees, when the base model is not ad-
equate for given dataset, it may be very hard or even im-
possible to obtain results similar to a single model but more
eligible for the task. Selection of the types of base mod-
els for heterogenous committees should not be accidental.
Such models should cover possibly huge spectrum of dif-
ferent kinds of models, and as a consequence a huge spec-
trum of datasets (section 3 confirms the advantages of such
diversity).

Decisions reflecting competence. If we are able to estimate
the competence C(F,x) of a decision taken by given model
F for given data vector x as a real number (usually in the
[0, 1] interval) then we may reflect it in the final decision of
the committee in a number of ways.

One of the possibilities is the winner take all strategy,
which given a vector x makes the classification decision

WTAC(x) = Fi(x), i = arg max
j=1,...,N

C(Fj ,x). (5)

Another way is a generalization of the weighting com-

mittee (3):

pw
C(i|x) =

∑N
j=1 C(Fj ,x)p(i|x, Fj)

∑m
c=1

∑N
j=1 C(Fj ,x)p(c|x, Fj)

. (6)

Assuming equal competence of each model regardless the
value of x, we get the special case of (3). The committee
decision for data vector x is

WC(x) = arg max
i=1,...,m

pw
C(i|x). (7)

Similarly, we may introduce a competence factor to the
voting committees (2):

VC(x) = arg max
c=1,...,m

N∑

j=1

C(Fj ,x)�Fj(x)=c. (8)

For most algorithms, it is difficult (or even impossible)
to define their competence on the basis of the information
from the dataset and the learning process (because of the
bias-variance dilemma [1, 8]). Even if it is possible for some
algorithms then it may be difficult to compare different mea-
sures obtained in different ways.

CV-committees and competence estimation. It seems that
a reasonable solution to this problem is the cross-validation
committee approach. The CV-committees were successfully
used by us in [13].

The idea is to estimate the competence of given learning
algorithm by running a CV test (computing the average per-
formance on the validation parts of the data). At the same
time the models trained in the CV process may be used as a
voting or weighting committee composing a new classifica-
tion model. Another advantage of using CV-committee oc-
curs when a given model parameters values may lead to dif-
ferent results when training on datasets of different size—
in such case it is much safer to used the CV models trained
on a subset of the whole data, but already validated than to
train a model on the whole dataset (larger sample) but with
no validation.

Please notice that in our approach to the committees with
competence analysis of the members, the single adaptive
models are replaced by CV-committees yielding commit-
tees of CV-committees.

Global competence. The validation obtained directly from
a CV-committee is a good measure of the overall compe-
tence of such models. It means that we get a competence
factor independent of the data vector being classified. The
competence measures which reflect general suitability of
the submodels for given task and are called global.

In the case of using CV-committees as a committee
members, denoting by V (Fj) the average classification ac-
curacy of the j-th CV-committee Fj on the validation parts



of the data, we get a simple definition of the global compe-
tence:

CG(Fj ,x) = V (Fj). (9)

Local competence. An alternative approach to measuring
the competence of committee members is to pay much at-
tention to the reliability of base models’ decisions in a vicin-
ity of the classified object. This way we get some local mea-
sures of model competence.

The simplest way to define a local competence is to
check the classification accuracy in the neighborhood of
vector x. Because usually we have a finite set of training
vectors, we need to estimate such accuracy on the basis of
the training data—we can just check how precisely the pre-
dicted class labels correspond to the original class labels
c(v) (Fj(v) = c(v)) for a set of nearest neighbors of x. So,
the local competence of j-th model in a committee may be
defined by:

CL(Fj ,x) =
1

|Nx|
∑

v∈Nx

�Fj(v)=c(v), (10)

where Nx is a set of neighbors of x and |Nx| is the num-
ber of its elements. Nx may be determined as the set of
k vectors nearest to the instance x or may contain all the
vectors inside a small hypersphere around x: Nx = {w :
||x− w|| < r}.

Local weighted competence. A modification of the local
competence (10) to adjust it to the distances between the
analyzed vector x and its neighbors yields a measure of lo-
cal weighted competence:

CLW (Fj ,x) =
1

|Nx|
∑

v∈Nx

�Fj(v)=c(v)

1 + ||x − v|| . (11)

It is important that using the two indices of local com-
petence in committees does not require any learning in ad-
dition to that of the committee members (just like in the
case of voting or weighting committees). However, some
additional computations are required to determine the set of
neighbors of given vector when it is to be classified by the
committee.

Local competence with CV-committee. The local compe-
tence measures (10) and (11) may be overoptimistic, be-
cause they rely on the decisions of the trained models on
the data they used for training. As a consequence, the mod-
els which overfit the data (like 1 Nearest Neighbor, which
is always maximally accurate on the training data, but usu-
ally not too good in tests on unseen data) are regarded as
most competent.

When CV-committees are used as a committee neigh-
bors, one can think of another way to calculate local com-
petence too avoid the overestimation.

The classification accuracy of the j-th base model of the
committee in the neighborhood of a point x may be calcu-
lated by checking the answers of the appropriate members
of the CV-committee. For a given neighboring vector v, the
appropriate member is meant as the one which did not see
v in its learning process. This leads to the definition of

CCV
L (Fj ,x) =

1
|Nx|

∑

v∈Nx

�F k
j (v)=c(v). (12)

where k is the index of the sumbodel of CV-committee F j ,
which did not train on v (the submodel is denoted by F k

j .
In this way the competence is validated and should be

more trustful, although the fact that for a given neighbor we
estimate the accuracy on the basis of just one submodel of
the CV-committee while classification is performed by vot-
ing of all the members, may bring a suspicion that this es-
timation is overpessimistic. Taking to the account, that the
competence should correspond to the accuracy on unseen
data, rejects the suspicion.

Note that as the previous measures, CCV
L (Fj ,x) can be

computed on the basis of the correctness of classification
of a few points from the original training data (dataset used
to train j-th CV-committee). This means that computation-
ally is not more expensive than learning of CV-committee
because the validated accuracies for all the training vectors
may be easily determined just after the learning phase of
the CV-committee. The only additional effort is, again, the
search for nearest neighbors of the vector to be classified.

Local weighted competence with CV-committee. In a sim-
ilar way to the above local competence which uses CV-
committee the distance-weighted version of the competence
can be defined:

CCV
LW (Fj ,x) =

1
|Nx|

∑

v∈Nx

�F k
j (v)=c(v)

1 + ||x − v|| . (13)

Global and local competence in one system. Global and lo-
cal competence are not mutually exclusive—they may be
used together in a single committee. It is enough to see, that
any product of different competence measures may be used
as a new competence measure in all three voting schemes,
we analyze here: the winner takes all (5), weighting with
competence (7) and voting with competence (8).

This way we may create for example the following com-
petence combinations:

• local and global competence:

CG+L(F,x) = CG(F,x) CL(F,x), (14)

• local weighted and global competence:

CG+LW (F,x) = CG(F,x) CLW (F,x), (15)
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Figure 1. Scheme of possible committee configurations.

• local and global competence for CV-committees:

CCV
G+L(F,x) = CG(F,x) CCV

L (F,x), (16)

• local weighted and global competence for CV-
committees:

CCV
G+LW (F,x) = CG(F,x) CCV

LW (F,x). (17)

3. Results

Using the concepts presented above we could test quite
large number of different committee configurations. The
scheme of all the combinations is presented in figure 1.
Please notice that using single models as committee mem-
bers excludes using CCV

L and CCV
LW local competence mea-

sures, however using CV-committees allows each of the 5
possibilities regarding local competence. Thus we could
build 48 different committees according to this scheme,
however some of them would not make much sense (al-
though technically feasible), for example the winner takes
all technique with no competence measure.

To make this discussion readable (also because of the
space limit) we analyze 15 different committees configura-
tions (most interesting from the point of view of this work).
Each committee was composed of heterogenous members.
As the base models we have chosen algorithms character-
ized by different inner structure, different learning strate-
gies and as a consequence different properties of usabil-
ity. The parameters of each algorithm were the same for
all the benchmarks. The committee members were: the k
nearest neighbors (kNN) algorithm [6] with k = 5, Sepa-
rability of Split Value decision tree [11, 12], Naive Bayes
classifier [18] and two kinds of Support Vector Machines
[23, 2, 15]: with Gaussian kernels (dispersion = 0.1 and C
= 10) and with linear kernels (C = 1). Each committee was
composed of the five base models mentioned above or of
five CV-committees (each using one of the five base algo-
rithms as the type of its members). The CV-committees used
10-fold cross-validation (had 10 members). The neighbor-
hood of a vector (for the purpose of competence evaluation)
was defined as 5 nearest neighbors.

The 15 committees are organized in three groups (see ta-
ble 1). The first group of committees consists of five com-
mittees of single base models—the results of the single
models are presented in the first five-column block of the

table. The other two groups use CV-committees of the base
models instead of single models. The rightmost group con-
tains five committees which take advantage of the global
competence measure (9).

Benchmark tests were performed on datasets from the
UCI machine learning repository [17]. Tests were com-
puted on 17 datasets (australian credit, balance scale,
german numeric, glass, cleveland «heart» disease, im-
age, ionosphere, chess «kr-vs-kp», Ljubljana breast cancer,
liver disorders, pima indian diabetes, sonar, tic-tac-toe, vot-
ing records, vowel, waveform and wine) which differ sig-
nificantly in number of features and instances. Each model
was tested using 10 repetitions of 10-fold cross-validation,
and averaged accuracies are presented in table 1. For
each benchmark, the best result is labelled with an aster-
isk, and other results which do not significantly differ from
the best one are typeset in bold font. Significantly worse re-
sults are not typed in bold. To compute statistical signifi-
cance the paired t-test was used with confidence level of
95%.

The row labeled “#best” in table 1 shows how many
times given model was the best or statistically insignifi-
cantly different. The row “#g-best” presents the sums of
“#best” for the groups of models.

It can be seen that the inner diversity heterogeneous
committees results in the ability to deal with differ-
ent benchmarks—nearly always at least one of base mod-
els perform as good as the best model, composing a good
base for the committees which take competence into ac-
count.

An important observation is that introducing local and
global competence increases the numbers of the best or in-
significantly different models—see the rows “#g-best” and
“#best”. The “#best” counter of the voting committees is 9
while the best committees were 14 times at the top. Whereas
the best base model were at the top only 5 times, and
Naive Bayes was the winner just one time. Committees us-
ing CCV

G+L and CCV
G+LW are nearly never significantly worse

than the best model for given test dataset. The most unsuc-
cessful committees were defined by WTA scheme, so we
suggest using weighting instead.

As opposed to stacking models the committees with
competence do not use additional (meta level) learning
while the performance is not decreased—the best commit-
tees with competence are nearly always the best (up to
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Table 1. Results comparison of heterogenous committees with local and global competence



statistical significance), similar behavior was observed by
Zenko et. al. [25].

The results of [25] show that if the accuracy of C4.5 is
significantly worse than for example kNN or Naive Bayes
then boosting or bagging with C4.5 does not help to in-
crease the accuracy sufficiently and such models do not
win with some single models like kNN or Naive Bayes.
This can be seen as a trap of homogenous committees
while heterogenous ensembles may be successful in a huge
spectrum of benchmarks, thanks to the different and self–
complementary nature of the base models.

4. Conclusions

The heterogenous committees augmented by compe-
tence analysis in local and global versions become more ac-
curate and stable. Such ensembles perform successfully for
a wide range of different problems.

It was shown that single models, even the best ones,
were not so accurate as presented committees and that the
best committees significantly outperform the plain voting or
weighting committees.

Comparing to stacking or grading committees, the com-
petence based committees presented here do not need addi-
tional meta-level learning and are characterized by similar
ability to classify unseen data.
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