Controlling the Structure of

Neural Networks that
Grow and Shrink

Norbert Jankowski

Department of Computer Methods
Nicholas Copernicus University

ul. Grudzigdzka 5, 87-100 Torun, Poland
phone: +48 56 6113307 fax: +48 56 621543
e-mail: Norbert.Jankowski@phys.uni.torun.pl
http://www.phys.uni.torun.pl/ norbert

The Goal I

The main goal is to build a network /system which would be able
to preserve information in as complex net as the incoming data.

Methods of complexity control I

Merging: Checking an overlap integral it is possible to answer
whether or not (two) neurons can be replaced (merged) by
another neuron.

Flexible Transfer Functions: It is important to use flexible transfer
functions which can estimate more complex density of data
using small number of parameters.

Growing: If the novelty criterion is satisfied then a new neuron is
added to the hidden layer.

Pruning: Algorithm checks whether or not a neuron should be
removed. If yes, then the neuron with the smallest saliency is
removed.

Learning: Using an efficient learning algorithm.

Neurons Merging for RBF-like networks I

Many pruning methods were described in the last decade. Put
pruning leads to the removal of the network connections and
unnecessary neurons. Frequently many neurons contribute to
decision borders that could be represented by smaller network
without decreasing of accuracy. Therefore one should merge two
(or even more — it may be more complicated computationally)
neurons keeping the current shape of the decision surface
unchanged as much as possible.

Two neurons can be replaced by another one if the ratio:

Jacpn 6i(%) + 65(x) = Pnew(®)| dx
Jacon 19i(x) + ¢;(x)| dx

is smaller than some confidence parameter «. Here d is the
subspace in which localized neuron transfer functions (scaled by
the networks weights) ¢;(x) and ¢;(x) have values greater than a
small threshold and ¢, (x) is the new neuron whose transfer
function replaces the combination of neurons ¢ and j.

<« (1)

The equation ?? is hard to compute in general case, but if the
transfer functions used in hidden layer are dimensionally
separable (for example gaussian or bi-radial function) then we can
check another inequality

fng” (¢Z (X) + ¢j (X) — Pnew (X))2 dx

2 Qo (2)
Jacon (0:(x) + 6;(x))> dx <

which can be computed analitycally or numerically.

In other cases the above criterion can be simplified through
sampling the space around neurons ¢ and j (using adequate
distribution function for the density of neurons i and j) and
computing weighted mean squared error for a given number of
points:
> aea ($1(%) + 6;(%) = dnew (%))’
S aea (0i(%) + 6;(x))”

For the bi-radial transfer function parameters of new neuron can
be calculated as below

<« (3)

Wnew = (Wz : ¢(t17 tz) : 157, + W - ¢(tj7 tj)) pj)/¢(tnew7tnew) (lt)
1
tnew,k: = M Tk (¢(X7 tz) + ¢(X7 tj)) dx (5)
deD

thew = t;- PZ + tj . pj (6)
Snew = S;- Pz + Sj; - Pj (7)
bpew = b if neuron j in 4 (8)
= by if neuron 7 in j (9)

where

1}/'[— fdeD <¢(X7tz) + ¢(X_7 t])) dX’

P, = Pz/(Pz + PJ) and Pj = PJ/(PZ + Pj),
P; and P; can be defined as

Pi = ¢(X, tl) dX j = ¢(X,tj) dX
deD deD

or

Pi=o(x,t;) - wi- [[be Pj=o(xt;) - w;-[[br
k k

Bi-radial Transfer Functions I

N
Bi(x;t,b,s) = [[o(e® - (x; —ti+e")) (1 —o(e® - (x; —t; — ™)) 111]
1=1
where o(z) =1/(1+e7%).
15 T T T T
- - Bi-RBF(x,0,0,1)
- — Bi-RBF(x,0,4,16)
Bi-RBF(x,0,4,1)
1k 1.27.*Bi-RBF(x,0,0.7,3) _ _ _ _ _ i
—— Bi-RBF(x,0,0.7,16), A
|
|
:
I
0.5F i i
-
|
|
|
o _ T - —
_05 Il Il Il Il Il Il Il Il Il
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 1: A few shapes of the bi-radial functions in two dimensions.

Rotation of Densities in Transfer Functions I

Next step towards even greater flexibility requires individual
rotation of densities provided by each unit. Of course one can
introduce a rotation matrix operating on the inputs Rx, but in
practice it is very hard to parametrize this N x N matrix with

N — 1 independent angles (for example, Euler’s angles) and
calculate the derivatives necessary for the backpropagation
procedure. We have found two ways to obtain rotated densities in
all dimensions using transfer functions with just N additional
parameters per neuron. In the first approach product form of the
combination of sigmoids is used

Crxit,t\R) = [] (O‘(Rix 1) — o(Rix + t;)> 12)

7

SCp(x;t,t',p,r,R) = H (pz- co(Ryx+t;) +r; - o(Ryx + t;))

where R, is the i-th row of the rotation matrix R with the following

structure:

s1 a1 O 0

SN—-1 OQN-1

If p, =1 and r;, = —1 then SCp function is localized and gives
similar densities as the biradial functions (except for rotation).
Choosing other values for the p; and r; parameters non-local
transfer functions are created.

In the second approach the density is created by the sum of a
“window-type” combinations of sigmoids

L(xz;t,t') =0(x+t) —o(x+t') in N — 1 dimensions and a
combination rotated by a vector K:

N—-1
Cr(x;t,t', W, K) = > WiL(x;,1;,1;) + WyL(Kx,t,t') (14)
1=1

The last density is perpendicular to the K vector. Treating Ck(-) as
the activation function and using sigmoidal output function with a
proper threshold leaves only the densities in the direction
perpendicular to K. An alternative is to use the product form:

N-1
CPK(X;t,t/,K) = L(KX,t,t/) H L(xi,ti,t;) (15)
1=1

as the transfer function — the output sigmoid is not needed in this
case. Rotation adds only NV — 1 parameters for Cp(-) function and
N parameters for Ck(-) function.

There is an obvious tradeoff between the flexibility of the
processing units increasing with the number of adjustable
parameters and the complexity of the training process of the whole
network. Biradial and rotated transfer functions (Cp(-), Cs(-)] are
flexible but still rather simple, therefore we intend to use them also
in the FSM and other networks.

The typical goal of ANN used for

approximation or classification

the mapping between the input and output® space for given data
sets S = {(x1,y1),---, (Xn,Yn)}, Where (x;,y;) is input-output pair
(x; € RY, y; € R). The underlying mapping F(-) we can write as
below

F(x;) =y +n, i=1,...,n (16)

n is a zero mean white noise with variance o2,

Radial Basis Function Networks I

e designed as a solution to a curve—fitting (approximation)
problem over a multi-dimensional space — the surface
reconstruction

e typical form of the RBF network can be written as

f(x;w,p) sz (x,pi)- (17)

40nly supervised networks are considered.

w1

[[x — t]]

—
co

—
©

(b + [Jx — t[[*) 7,

(% + |1x — t][%)7,
o Ilx—tl12 /b7

N
-

0<p<1

N DN
—_

_— - = = =

(bl1x = t]1)* In(blx — t]])

Resource-Allocating Network I

e is able to grow (to add new neurons to the hidden layer)

e if the growth criterion given below is satisfied then a new
neuron is added.

Yn — f(Xn) =€n > Emin (23)
Ixn —tell > €min (24)

e newly added k-th neuron has weight w;, (see Eq. ??) equal to
en = ¥yn — f(x5,), the center of basis function is positioned at x,,.
Thus, now the network can be described by

f(n X p sz X pz + ensz X pk: sz X pz (25)

where p; consists of the center — x,, — and others parameters
which are set up with some initial values.

e smoothness constraint must be imposed on function G,,(-)
which has the following property: Gi(x,) = 1 and
Gr(x, +a) =0 for any ||a|| #0

10

Extended Kalman Filter I

y(t)——>| State estimator F————p(t|t)

y(t)——>| Measurement filter F——y(t|t)

y(t)——{ Whitening filter |———-e(t|t)

The EKF equations can be written as below:

en = Yn— f(XniPn-1)
4, - e

R, = R,+dlIP, id,
k, = P,_1d,/R,

Pn = Pn-1tenky

P, = [I-k,dIlP, 1+ Qo(n)

11

(26)

Fast EKF I

we can simplify the matrix P,, using f’n which consists of a chain
of matrices P¥ on diagonal

Pl
~ 0
P, =
0
P, | m-Mxm-M | OM?)
P, m2M O(M)

m is constant in P

12

27]

Novelty Criterion I

e the variance of network output — a measure of uncertainty:
o, (x) = Var[f(x; p)]

e null hyphotesis for the statistical inference of model sufficiency
is stated as follows:

e? e?

HO . = < X,,z%e (28)

Var[f(x;p) +n] 07(x) + ong

where x? , is #% confidence on x? distribution for n degree of
fredom. e is error given by y — f(x;p) (see Eq. ??|.

e As we use the EKF algorithm R, estimates the total uncertainty
in the expected output:

R, = Var[f(x;p) + 7], (29)

e and the null hypothesis can be written as follows:
2

€n
Ho : R_y < X721,9 (30)

e new neuron (M + 1)-th. Example for Gaussian function
Gra(0):

WA 41 = €n, tyg1 =X, bygr:=by, Pp:= ,

13

Pruning I

Let’s sort the vector p,, as follows

Pn = [wl,...,wM,...]T
then the covariance matrix P,, look like:
P'w P'LU’U
b= 31)
Pl, P,

It is possible to define pruning method for the IncNet network by
checking for each neuron:

We have to prune a neuron : corresponding to L.

By checking the inequality below we can decide whether to prune

or not to prune:

Ly
R, < Xiv 33)

where x? , is ¥% confidence on x* distribution for 1 degree of
fredom.

14

Results I

(Hermite function approximation.)

fher(m) = 11(1 —x+ 2x2) eXp(—1/25Ij‘2)

The training data consists of 40 random points in [—4, 4] interval, and
testing data consists of 100 uniformly distributed points from the same

interval. All nets was running over 800 iterations (not epoch).

RMSE errors

IncNet Pro

IncNet S.G.

RAN-EKF

RAN

0.015

0.054

0.09

0.15

By IncNet S.G. we mean IncNet with Gaussian nodes (the center
and bias is adapted) RAN-EKF is a RAN net with EKF as learning

algorithm.

15

0 100 200 300 400 500 600 700 800

Growth/Pruning

T T T T

N
o w

number of neurons
=
[ol N
| T T
1
o -
1 1

©

(&)
T
i

1 1 1 1 1 1 1

0
0 100 200 300 400 500 600 700 800
number of iterations

Figure 2: Comparison of IncNet with Gaussian (dashdot line) and
Bi-radial (solid line) nodes on 2D approximation problem of Hermite
function. In all methods pruning is on.

16

(Sugeno function approximation.)

fsug(may, Z) = (1 + x0'5 + y_l + 2—1.5)2 (55)

216 training points was randomly choose from [1, 6] interval for all
variable, and 125 testing points from [1.5,5.5] interval.

Average percentage error (APE):

APE = - i 1) = vl 1009 (36)
N3 Yi
Model APFErrs | APErgs
GMDS model Kongo 47 9.7
Fuzzy model 1 Sugeno | 1.5 2.1
Fuzzy model 2 Sugeno | 0.59 5.4
ENN Type 1 Horikawa | 0.84 1.22
ENN Type 2 Horikawa | 0.73 1.28
ENN Type 3 Horikawa | 0.63 1.25
M - Delta model 0.72 0.74
Fuzzy INET 0.18 0.24
Fuzzy VINET 0.076 0.18
IncNet Pro 0.1564 0.1565

Final networks had 9 neurons in hidden layer, and the time of
learning was about 5600 second?® (40000 iterations). The learning
process was presented in Fig. ??.

4The computations were made on Pentium 150MHz.

17

107 ‘
1010']
10°]
10° |]
10'5: | | | | | |
0 0.5 1.5 2 25 3 3.5 4
X 104
Growth/Pruning
T
10 -
8 -
6 -
4 -
2 .
0 | | | | | |
0 0.5 1.5 2 25 3 35 4
X 104

APE

Figure 3: Approximation of Sugeno function.

18

(Gabor and Girosi functions.]

foan(z,y) = eIl cos(.75m(z + y)) (37)
foir(m,y) = sin(2mz) + 4(y — 0.5)?) (38)
For learning only 20 points were used from uniformly distributed interval

[—1,1] x [—1, 1] for Gabor function (Eq. ??) and from [0, 1] x [0, 1] interval for
additive function (Eq. ??). 10,000 points were used in testing phase.

_((m—mi>2+(y—yi)2) _((m—mi>2+(y—yi>2)
20 91 g2 g2 91
Modell Z 1C'L[€ + e] 01 =09 =0.5
1=
_((w—xi>2+<y—yi>2) _((w—xi>2+<y—yi>2)
20 91 g2 g2 a1
Model2 Z 1c7;[e + e] o1 = 10,09 = 0.5
1=
20 (—2)? _ (y—yy)
Model3 Z 1 c;le o + e o] o =20.5
1=
. (@—tH)? . (y—th)2
Model4 Zazl bae o —+ 2,321 cge o o =20.5
Model5 Zn 1cae_(w‘1'x_ta)z
o=
20
Model6 Zi:l ci[o(m — mz) + o(y — yz)}
7 7
Model7 Za:l boo(x — t%) + 2,3:1 c/go‘(y — t’g)
Model8 Z" L cac(Wa - X — ta)
fo—

Additive function — MSE train/test

IncNet Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

0013 000036 000067 .000001 .000001 000170 .000001 000003 000743
0079 011717 001598 000007 000009 001422 000015 000020 026699

Gabor function — MSE train/test

000000 .000000 .000000 000000 345423 000001 .000000 456822 000044
0.0298 003818 5344881 67.9523 1.22211 033964 98.4198 1.39739 191055

e IncNet model is not always the best one

e but it is good on average by adapting more flexibly

Note that for Gabor function IncNet used 5 neurons and for additive Girosi
function used only 3 neurons.

On Fig. ?? we can see that in the first phase pruning is used quite often —
unnecessary neurons are killed as soon as possible.

19

MSE

10

1 1 1 1 1 1 1 | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Growth/Pruning
5 T T T

1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 4: Hopeful pruning.

20

Conclusions I

Self growth and pruning — discovering of the complexity of
underlying system

Nearly all parameters are controlled automaticaly — EKF
controls learning speed, some others parameters are (very|
similar for different tasks

In spite of incremental feature of algorithm, the pruning time
is determined by theoretical criterion — not in random time
moment or by checking the error on whole training data set

Direct pruning saves the time of computations — in contrast to
many other methods pruning AFTER learning

good generalization, often Frrs ~ Ergps and not rarely
Errs > ETEs!

21

Classification using IncNet Pro I

(—> (x,y=1) IncNet C;

(%x,y) : : :
k—y (x,y =k) IncNet C,

k independed IncNet network are used for k-class problem. Each of
them receives input vector x and 1 if index of i-th IncNet is equal to
desired number of class, otherwise 0. The output of i-th IncNet Pro
network is equal to probability that the vector belongs to -th class.
See figure on the right.

22

Breast Cancer, Hepatitis, Pima Indians Diabetes, Heart Disease

Classification of medical data I

— UCI Machine Learning Repository

Data set ATTR EX | E-TRS | E-TES | #N | Iter Time [s)
B. Cancer | 9-D 699 | 97.7 971 49 3000 | 5150
Hepatitis 19 -D+C | 155 | 98.6 82.3 97 500 3100
Diabetes 8§ -C+D 768 | T7.2 77.6 100 | 5000 | 11200
Heart D. 13 -D+C | 303 | 92.6 90.0 117 | 100 7400

method | Breast | Hepat. | Diab. | Heart

IncNet | 97.1 82.5 77.6 | 90.0

BP 96.7 821 76.4 81.3

LVQ 96.6 83.2 75.8 82.9

CART 94.2 82.7 72.8 80.8

Fisher 96.8 84.5 76.5 84.2

LDA 96.0 86.4 T7.2 84.5

QDA 54.5 85.8 99.5 75.4

KNN 96.6 85.5 719 81.5

LEC 94.4 81.9 75.8 75.1

ASI 95.6 82.0 76.6 T4k

Correctness

23

231

