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Abstract: Incremental Net Pro (IncNet Pro) with local learning feature and statistically controlled
growing and pruning of the network is introduced. The architecture of the net is basedon RBF networks.
Extended Kalman Filter algorithm and its new fast version is proposed and used as learning algorithm.
IncNet Pro is similar to theResource Allocation Network described by Platt in the main idea of the
growing. The statisticalnovel criterion is used to determine the growing point. IncNet Pro use pruning
method similar toOptimal Brain Surgeon by Hassibi, but based on Extended Kalman Filter algorithm.
The Bi-radial functions are used instead of radial basis functions to obtain more flexible network.

1 Introduction
The Radial Basis Function (RBF) networks [21, 20, 18, 1] were designed as a solution to an
approximation problem in multi–dimensional spaces. The typical form of the RBF network can
be written as

f(x;w, p) =
M∑
i=1

wiGi(||x||i ,pi) (1)

whereM is the number of the neurons in hidden layer,G i(||x||i ,pi) is thei-th Radial Basis Func-
tion, pi are adjustable parameters such as centers, biases, etc., depending onG i(||x||i,pi) function

which is usually choosed as a Gaussian (e−||x−t||2/b2 ), multi-quadratics or thin-plate spline func-
tion3. In contrastopposition to manyartificial neural networks (ANNs) including well known
multi-leyered perceptrons (MLPs) networks the RBF networks have well mathematicalproperties.
Girosi and Poggio [9, 20] proved the existence and uniqueness of best approximation for regu-
larization and RBF networks. In the 1991 Paltt published the article on theResource–Allocating
Network [19]. The RAN network is an RBF-like network that grows when criteria are satisfied:

yn − f(xn) = en > emin; ||xn − tc|| > εmin (2)

en is equal the current error,tc is the nearest center of a basis function to the vectorxn and
emin, εmin are some experimentally choosen constants. The growing network can be described
by

f
(n)
(x,p) =

k−1∑
i=1

wiGi(x,pi) + enGk(x,pk) =
k∑
i=1

wiGi(x,pi) (3)

wherepk includes centersxn and others adaptive parameters which are set up with some initial
values. If the growth criteria are not satisfied the RAN network uses the LMS algorithm to estimate
free parameters. Although LMS algorithm is faster thanExtended Kalman Filter (EKF) algorithm
[2] we decided to used EKF algorithm because it exhibits fast convergence, use lower number of
neurons in hidden layer [13, 14] and gives sometools which would be useful in control of the
growth and pruning process.

3For a interesting review of many other transfer function see [4].



The Goal of IncNet Pro The main goal of our researche was to build a network which would
be able to preserve information in as complex net as the data shown to the network during the
learning time. The IncNet Pro tries to solve the above task in 4 ways:� ESTIMATION: The typical
learning process by EKF algorithm.� GROWING: If the novelty criterion is satisfied then a new
neuron is added to the hidden layer.� DIRECT PRUNING: IncNet algorithm checks whether or
not a neuron should be pruned. If yes, then the neuron with the smallest saliency is removed.�

BI-RADIAL FUNCTIONS: The Bi-radial transfer function estimate more complex density of input
data through using the separate biases and separate slopes in each dimension and for each neuron.

Similar work has been done taken in recent years by several authors, but it was quite rare to
combine growing and pruning in one network, which is quite important for optimal generalization
of the network. Weigend, Rumelhart & Huberman [24] described weight-decay, pruning neurons
with smallest magnitude of weights. LeCun et al. [17] described more effective pruning method,
Optimal Brain Damage. Hassibi in 1993 [10] published theOptimal Brain Surgeon algorith,
which works without assumption used by LeCun that the Hessian matrix is near diagonal.

RAN network using EKF learning algorithm (RAN-EKF) was proposed by [14]. The M-
RAN net [25] is based on RAN-EKF with pruning based on removing neurons with smallest
normalized output from hidden layer. The previous version of the IncNet [12] is a RAN-EKF
network with statistically controlled growth criterion. Another very good example, derived from
MLP network, is theCascade–Correlation algorithm[5, 6].Feature Space Mapping (FSM) system
is the system which joins two strategies: growing and pruning, see [3] for more information. For
more exhaustive description of ontogenic neural network see [7].

2 The IncNet Pro Framework
EKF: We decided to use the EKF algorithm [2] because it can estimate not only the parameters
(weights, biases, etc.), but also some others values such as the output of the network for a given
input vector, uncertainty in the expected output (R y), matrixP which represents the uncertainty in
the estimated parameterspn. All of this estimates carry useful information. The EKF equations
can be written as follows:

en = yn − f(xn; pn−1) dn =
∂f(xn;pn−1)

∂pn−1

Ry = Rn + dTnPn−1dn kn = Pn−1dn/Ry
pn = pn−1 + enkn Pn = [I− kndTn]Pn−1 +Q0(n)I

(4)

the suffixesn− 1 andn denotes the priors and posteriors.pn consists of all adaptive parameters:
weights, centers, biases, etc. To prevent too quick convergence of the EKF, which leads to data
overfitting, theQ0I adds arandom change, whereQ0 is scalar (sometimes decreasing to small
values around 0.00001) andI is the identity matrix.

Fast EKF: Covariance matrixPn can be quite large for real data because its size is the square
of the total number of adaptive parameters. Assuming that correlations between parameters of
different neurons are not very important we can simplify the matrixPn assuming block-diagonal
structure:

ePn =
2
6664
eP1n 0 � � � 0

0 eP2n � � � 0
... � � �

...
...

0 0 � � � ePMn

3
7775 (5)



whereePin consists of correlations of adaptive paramiters ofi-th neuron.
Let m be the number of adaptive parameters per neuron andM the number of neurons. The

size of matrixPn is m �M�m �M, but matrixePn hasm2M elements not equal to zero. For a
given problemP the complexity of matrixPn isO(M2), and matrixePn justO(M) (m is constant
in P)! Using this approximation the fast version of the EKF is:

en = yn − f(xn; pn−1)

din =
∂f(xn;pn−1)

∂pi
n−1

Ry = Rn + d1n
TeP1n−1d1n + � � �+ dMn

T ePMn−1dMn
kin = ePin−1din/Ry

pin = pin−1 + enkinePin = [I − kindin
T
]ePin−1 +Q0(n)I

i = 1, . . . ,M (6)

In all investigation in the next sections we can use either the EKF or the Fast EKF.

Novelty Criterion: Using methods which estimate during learning covariance of uncertainty
of each parameter, the network output uncertainty can be determined and use the same criterion as
in previous version of IncNet [12] may be used. Then the hypothesis for the statistical inference
of model sufficiency is stated as follows:

H0 :
e2

Var[f(x;p) + η]
=

e2

σ2y(x) + σ2ns
< χ

2
n,θ (7)

whereχ2n,θ is θ% confidence onχ2 distribution forn degree of freedom.e = y − f(x;p) is the
error (see Eq. 4). If this hypothesis is not satisfied the current model is not enough and should
change.Ry = Var[f(x;p) + η] (part of EKF) estimates the total uncertainty in the expected output
and the null hypothesis can be written as:

H0 : e
2
n/Ry < χ

2
n,θ (8)

If hypothesisH0 is satisfied then IncNet continues learning using the EKF (or Fast EKF)
algorithm. Otherwise, a new neuron(M+1)-th should be added with some initial parameters. For
Gaussian functionsGM+1(�) these parameters are:wM+1 := en, tM+1 := xn, bM+1 :=

b0, Pn :=
h

Pn 0
0 P0I

i
, whereen is the error for given input vectorxn, b0 andP0 are some

initial values for bias (depending on given problem) and covariance matrix elements (usually 1).

Pruning: As a result of the learning process a neuron can becomecompletelyuseless and should
be pruned. Assume the structure of vectorpn and the covariance matrix as:

pn = [w1, . . . ,wM, . . .]
T P =

�
Pw Pwv
PTwv Pv

�
(9)

wherePw is a matrix of correlations between weights,Pwv between weights and other parameters,
Pv only between others parameters (excluding all weights).



Then by checking the inequalityP (Eq.10) we can decide whether to prune or not and also we
know that the neuron for which valueL was obtained has smallest saliency and should be pruned.

P : L/Ry < χ
2
1,ϑ L = min

i
w
2
i /[Pw]ii (10)

whereχ2n,ϑ is ϑ% confidence onχ2 distribution for one degree of freedom.
Neurons are pruned if the saliencyL is too small and/or the uncertainty of the network output

Ry is too big.

Bi-radial Transfer Functions: To obtain greater flexibility the bi-radial transfer functiona [4]
źre used instead of Gaussians. These functiona are build from products of pairs of sigmoidal
functions for each variable and produce decision regions for classification of almost arbitrary
shapes.

Bi(x; t,b, s) =
N∏
i=1

σ(e
si
� (xi − ti + e

bi ))(1− σ(e
si
� (xi − ti − e

bi))) (11)

whereσ(x) = 1/(1+ e−x). The first sigmoidal
factor in the product is growing for increasing
input xi while the second is decreasing, local-
izing the function aroundti. Shape adaptation
of the densityBi(x; t,b, s) is possible by shift-
ing centerst, rescalingb ands, see Fig. 1. The
number of adjustable parameters per process-
ing unit is in this case (excluding weightswi)
3N. Dimensionality reduction is possible as in
the gaussian bar case [4], but we can obtain
more flexible density shapes, thus reducing the
number of adaptive units in the network. Ex-
ponentialsesi andebi are used instead ofsi
andbi to prevent oscillations during learning
procedure (learning becomes more stable).

Bi−RBF(x,0,0,1)        

Bi−RBF(x,0,4,16)       

Bi−RBF(x,0,4,1)        

1.27.*Bi−RBF(x,0,0.7,3)

Bi−RBF(x,0,0.7,16)     
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Figure 1: A few shapes of the bi-radial functions in
two dimensions.

3 Results
We have applied th IncNet network to a few well known approximation and classification bench-
marks.

Hermite function approximation. The first problem is to approximate the Hermite function:

fher(x) = 1.1(1− x+ 2x
2
)exp(−1/2x2) (12)

The training data consists of 40 random points in[−4, 4] interval, and test data consists of 100
uniformly distributed points from the same interval.

In two dimensionalcase for simple problems (such as Hermite function) we may obtain similar
results using IncNet with either Gaussian or Bi-radial nodes. Adding pruning also makes rathe
small difference (see fig. 2). To solve this problem the network has used just two neurons, with



RMSE4at the end of learning process equal
to 0.009. Comparition of IncNet Pro with
other versions is presented in the table on
the right. By IncNet S.G. we mean IncNet

RMSE errors
IncNet Pro IncNet S.G. RAN-EKF RAN

0.009 0.054 0.09 0.15

with Gaussian nodes and one adaptive parameter, weight (see [12]); RAN-EKF is a RAN net with
EKF as learning algorithm (see [12, 14]); RAN is a net described in [19]. All nets were running
for 800 iterations (not epochs).
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Figure 2: Comparison of IncNet with Gaussian

(dashdot line) and Bi-radial (solid line) nodes on

2D approximation problem of Hermite function.
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Figure 3: Approximation of Sugeno function.

Sugeno function approximation. Now is commonly used in benchmarks tests [23, 16]:

fsug(x, y, z) = (1+ x
0.5
+ y

−1
+ z
−1.5
)
2 (13)

216 training points were randomly chosen from[1, 6] interval for all variables, and 125 testing
points from[1.5, 5.5] interval. For this function good generalization of IncNet algorithm is found
(see the table on the right – for reference of presented methods see[15, 23, 11, 16]).APE TRS and
APETES are the average percentage error on
training and test data respectively, defined by:

APE = 1
N

∑N
i=1

��� f(xi)−yiyi

��� � 100%. Final

network had 7 neurons in hidden layer, and
the time of learning was about 1000 seconds.
Calculations were made on Sun Sparc Station
10.

The convergence of the learning process
was presented in Fig. 3. For fast version of In-
cNet Pro theAPETRS is 0.51 andAPETES is
0.51, and the time has been reduced to about
500 seconds. Learning with Gaussian trans-
fer functions was much more difficult and less

Model APETRS APETES

GMDS model Kongo 4.7 5.7
Fuzzy model 1 Sugeno 1.5 2.1
Fuzzy model 2 Sugeno 0.59 3.4
FNN Type 1 Horikawa 0.84 1.22
FNN Type 2 Horikawa 0.73 1.28
FNN Type 3 Horikawa 0.63 1.25

M - Delta model 0.72 0.74
IncNet Pro 0.45 0.39
Fuzzy INET 0.18 0.24

Fuzzy VINET 0.076 0.18

stable.

4To compare some results we will use theroot mean square error (RMSE) (root of MSE)) defined as follows:

RMSE =
p

1
N

∑N
i=1(f(xi) − yi)

2



Gabor and Girosi functions are another approximation benchmark considered here [8]:

fgab(x, y) = e
−||x||2 cos(.75π(x+ y)) (14)

fgir(x, y) = sin(2πx) + 4(y− 0.5)
2 (15)

For learning only 20 points were used from uniformly distributed interval[−1, 1] � [−1, 1]

for Gabor function (Eq. 14) and from[0, 1]� [0, 1] interval for additive function (Eq. 15). 10,000
points were used in testing phase. The tables5 describe the MSE errors of different data models.

Model1
∑20
i=1 ci[e

−

�
(x−xi)

2

σ1
+
(y−yi)

2

σ2

�
+ e

−

�
(x−xi)

2

σ2
+
(y−yi)

2

σ1

�
] σ1 = σ2 = 0.5

Model2
∑20
i=1 ci[e

−

�
(x−xi)

2

σ1
+
(y−yi)

2

σ2

�
+ e

−

�
(x−xi)

2

σ2
+
(y−yi)

2

σ1

�
] σ1 = 10, σ2 = 0.5

Model3
∑20
i=1 ci[e

(x−xi)
2

σ + e−
(y−yi)

2

σ ] σ = 0.5

Model4
∑7
α=1 bαe

−
(x−tαx )

2

σ +
∑7
β=1 cβe

−
(y−t

β
y)
2

σ σ = 0.5

Model5
∑n
α=1 cαe

−(Wα�X−tα)2

Model6
∑20
i=1 ci[σ(x − xi) + σ(y − yi)]

Model7
∑7
α=1 bασ(x − t

α
x ) +

∑7
β=1 cβσ(y− t

β
y)

Model8
∑n
α=1 cασ(Wα � X − tα)

Additive function — MSE train/test
IncNet Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

.0013 .000036 .000067 .000001 .000001 .000170 .000001 .000003 .000743

.0079 .011717 .001598 .000007 .000009 .001422 .000015 .000020 .026699

Gabor function — MSE train/test
.000000 .000000 .000000 .000000 .345423 .000001 .000000 .456822 .000044
0.0298 .003818 .344881 67.9523 1.22211 .033964 98.4198 1.39739 .191055

Although the IncNet model is not always
the best one it is quite good on average, adapt-
ing more flexibly. For Gabor function IncNet
used 5 neurons and for additive Girosi function
used only 3 neurons.

In Fig. 4 we can see that in the first phase
of learning pruning was used quite often. This
example shows the power of online pruning
method – unnecessary neurons are killed as
soon as possible. In this way the learning time
reduces sometimes significiently.
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Figure 4: Hopeful pruning.

5Models 1 to 8 originally published by Girosi, Jones and Poggio in [8].



The two-spiral problem. 6

is quite hard problem for many neural networks, especially when the network should discover
not only thespiral, but also discover the architecture of the net. The data consists of two sets
(training and testing) with 194 patterns each for two spirals (see figure 5).

After 10,000 iterations (it took about 1 hour on Sun 10/41) we got result which fits 192 points
of 194 (99%) for training set and 191 (98.5%) for the test set. Final net has 79 neurons and
it was build using Fast-EKF algorithm with IncNet – for this benchmark Fast-EKF accelerates
computation 50 times!

RBF net with Bi-radial transfer function is able to get lower classification error but using more
neurons in the hidden layer (about 100). There are other nets which are able to solve the two-
spiral problem too, for example one of the best is an MLP using a global optimization algorithm
by Shang and Wah [22]. Their network is able to get 100% correct results for hte training set but
never more than 95.4% for the test set. Although it used only 6 neurons, it takes about 200 minutes
to train.
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Figure 5: Two-spiral problem.

4 Conclusions
The IncNet network is able to control the complexity of its structure by growing and pruning. It
is also important that it is direct control. In spite of incremental feature of algorithm, thepruning
time is determined by theoretical criterion — not in random time moment or by checking the error
on the whole training/test data set. Other advantage of the direct pruning is saving of the time of
computation. Nearly all parameters of the network are controlled automaticallyby EKF algorithm,
the rest is very similar for different benchmark problems (excluding the biases and slopes, which
define theresolution of data).

Another positive feature of IncNet Pro is the capacity of uniform generalization. In many
benchmarks (see section 3) the errors on testing and training sets are much more similar than for
other networks.

In some of classification problems it would be usehul to add the possibility of merging two
neurons which can be replaced by another neuron without loss of information, for example using

6Benchmark data can be found at: http://www.cs.cmu.edu/afs/cs/project/connect/bench/.



the criterion: ∫
d�D

�
Gi(x) +Gj(x) − Gnew(x)

�
< α

whereGi andGj are neurons-candidates to be replaced byGnew with α confidence.
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