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Abstract. Incremental Net Pro (IncNet Pro) with local learning feature
and statistically controlled growing and pruning of the network is intro-
duced. The architecture of the net is based on RBF networks. Fztended
Kalman Filter algorithm and its new fast version is proposed and used
as learning algorithm. IncNet Pro is similar to the Resource Allocation
Network described by Platt in the main idea of the expanding the net-
work. The statistical novel criterion is used to determine the growing
point. The Bi-radial functions are used instead of radial basis functions
to obtain more flexible network.

1 Introduction

The Radial Basis Function (RBF) networks [13,12] were designed as a solution
to an approximation problem in multi—dimensional spaces. The typical form of
the RBF network can be written as
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where M is the number of the neurons in hidden layer, G;(]|x||;, ps) is the ¢-
th Radial Basis Function, p; are adjustable parameters such as centers, biases,
ete., depending on G;(||x]||;, pi) function which is usually choosed as a Gaus-
sian (e_”x_t||2/b2), multi-quadratics or thin-plate spline function®. In contrast
to many artificial neural networks (ANNs) including well known multi-leyered
perceptrons (MLPs) networks the RBF networks have well mathematical prop-
erties. Girosi and Poggio [6,12] proved the existence and uniqueness of best ap-
proximation for regularization and RBF networks. In the 1991 Platt published
the article on the Resource-Allocating Network [11]. The RAN network is an
RBF-like network that grows when two criteria are satisfied:

yn_f(xn):en > €mins ||Xn_tc||>€min (2)
en 18 equal the current error, t. is the nearest center of a basis function to the
vector X, and emip, €min are some experimentally choosen constants. The grow-

ing network can be described by f(")(x,p) = Zfz_ll w; G (x,pi)+en G (X, pi) =

! For a interesting review of many other transfer function see [3].



Zle w;G;(x, p;), where py includes centers x,, and others adaptive parameters
which are set up with some initial values. If the growth criteria are not satisfied
the RAN network uses the LMS algorithm to estimate free parameters. Although
LMS algorithm is faster than Fiztended Kalman Filter (EKF) algorithm [1] we
decided to used EKF algorithm because it exhibits fast convergence, use lower
number of neurons in hidden layer [9] and gives some tools which would be useful
in control of the growth and pruning process.

The Goal of IncNet Pro The main goal of our researche was to build a network
which would be able to adjust the complexity of the network to complexity of
the data shown to the network during the learning time.

The IncNet Pro tries to solve the above task in 4 ways: ¢ ESTIMATION: The
typical learning process is based on fast EKF algorithm. ¢ GROWING: If the
novelty criterion is satisfied then a new neuron is added to the hidden layer.
e DIRECT PRUNING: IncNet algorithm checks whether or not a neuron should
be pruned. If yes, then the neuron with the smallest saliency is removed. ¢ Bi-
RaDIAL FuncTiONS: The Bi-radial transfer function estimate more complex
density of input data through using the separate biases and separate slopes in
each dimension and for each neuron.

Similar work has been done in recent years by several authors, but it is quite rare
to combine growing and pruning in one network, which is quite important for optimal
generalization of the network. Weigend, Rumelhart & Huberman [16] described weight-
decay, pruning neurons with smallest magnitude of weights. LeCun et al. [10] described
more effective pruning method, Optimal Brain Damage. Hassibi in 1993 [7] published
the Optimal Brain Surgeon algorith, which works without assumption used by LeCun
that the Hessian matrix is near diagonal.

RAN network using EKF learning algorithm (RAN-EKF) was proposed by [9]. The
M-RAN net [17] is based on RAN-EKF with pruning based on removing neurons with
smallest normalized output from hidden layer. The previous version of the IncNet [8] is
a RAN-EKF network with statistically controlled growth criterion. Another very good
example, derived from MLP network, is the Cascade—Correlation algorithm [4]. Feature
Space Mapping (FSM) system is the system which joins two strategies: growing and
pruning, see [2] for more information. For more exhaustive description of ontogenic

neural network see [5].

2 The IncNet Pro Framework

Fast FKF: We introduce new fast version of the EKF learning algorithm, de-
scribed in [1]. The EKF was chosen because it can estimate not only adaptive
parameters, but also some others values which will be used in novelty criterion
and 1n pruning.

Covariance matrix P, can be quite large for real data because its size is the
square of the total number of adaptive parameters. Assuming that correlations
between parameters of different neurons are not very important we can simplify
the matrix P,, assuming block-diagonal structure of P,, with P? ¢ =1...M.
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Diagonal elements represents correlations of adaptive parameters of the i-th
neuron.

Let m be the number of adaptive parameters per neuron and M the number
of neurons. The size of matrix P,, is m - M x m - M, but matrix P,, has only
m?M elements not equal to zero. For a given problem P the complexity of
matrix P, is O(M?), and matrix P, just O(M) (m is constant in P)! Using this
approximation the fast version of the EKF algorithm is:
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the suffixes n — 1 and n denote the priors and posteriors. p, consists of all adap-
tive parameters: weights, centers, biases, etc. To prevent too quick convergence
of the EKF, which leads to data overfitting, the oI adds a random change,
where Qg is scalar (sometimes decreasing to small values around 107%) and I is
the identity matrix.

Nowvelty Criterion: Using methods which estimate during learning covariance of
uncertainty of each parameter, the network output uncertainty can be deter-
mined and the same criterion as in the previous version of IncNet [8] may be
used. Then the hypothesis for the statistical inference of model sufficiency is
stated as follows:
e? e? 9
T Ve + R, = e ®
where x2 , is 8% confidence on x? distribution for n degree of freedom, e =
Yy — f(x,[;) is the error and R, = Var[f(x;p) + 5] (part of EKF) — see Eq. 3.
If this hypothesis 1s satisfied the current model is sufficient and the IncNet
network continues learning using the fast EKF algorithm. Otherwise, a new
neuron (M + 1)-th should be added with some initial parameters. For Gaussian
functions Giar41(-) these parameters are: warp1 == €, tar41 := Xpn, barg1 =
P, O
are some initial values for bias (depending on a given problem) and covariance
matrix elements (usually 1).

where e, 18 the error for given input vector x,,, by and Py

Pruning: As a result of the learning process a neuron can become completely
useless and should be pruned. Assume the structure of vector p, and the covari-
ance matrix as:

Py, Puy
pn:[w1a~~~awMa"']T P:|:PT P :|
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where P, is a matrix of correlations between weights, P,,, between weights and
other parameters, P, only between others parameters (excluding all weights).

Then by checking the inequality P presented below we can decide whether
to prune or not and find the neuron for which value L has smallest saliency and
should be pruned.

P: L/R, < Xilg L = minw? /[Pyl (6)

where szl,ﬂ is 9% confidence on y? distribution for one degree of freedom.
Neurons are pruned if the saliency L is too small and/or the uncertainty of
the network output R, is too big.

Bi-radial Transfer Functions: To obtain greater flexibility the bi-radial trans-
fer functiona [3] are used instead of Gaussians. These functions are build from
products of pairs of sigmoidal functions for each variable and produce decision
regions for classification of almost arbitrary shapes.

Bi(x;t,b,s) = Ha(es’ g =t + 6b’))(1 —o(e™ - (z —t; — 6bl))) (7)

where o(z) = 1/(1 + e™"). The first sigmoidal sp———

factor in the product is growing for increasing |- zf:zzzngfl

input x; while the second is decreasing, local- '7;3;‘;:'5;5;‘;“’? ******** 3
izing the function around ¢;. Shape adaptation !
of the density Bi(x;t,b,s) is possible by shift- ff

ing centers t, rescaling b and s, see Fig. 1. The ’/ e
number of adjustable parameters per processing —e
unit is in this case (excluding weights w;) 3N.
Dimensionality reduction is possible as in the %= == :
gaussian bar case [3], but we can obtain more Fig.1: A few shapes of the bi-
flexible density shapes, thus reducing the num- radial functions in two dimensions.
ber of adaptive units in the network. Exponentials e®* and €% are used instead
of s; and b; to prevent oscillations during learning procedure (learning becomes
more stable).
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k-class problem. Each of them receives ) N e
otherwise 0. The output of i-th IncNet

input vector x and 1 if index of ¢-th In-
Pro network is equal to probability that .9 = F) J=>[TucNet_c. l_,
the vector belongs to ¢-th class. See fig-

Classification using IncNet Pro: k independed IncNet network are used for
cNet is equal to desired number of class,
ure on the right.

3 Results

The two-spiral problem. The data consists of two sets (training and testing)
with 194 patterns each for two spirals. After 10,000 iterations (it took about 35



minutes on PC Pentium 150MHz) we got result which fit 192 points out of 194
(99%) for training set and 191 (98.5%) for the test set. Final net has 79 neu-
rons. The fast version of EKF accelerates computation 50 times in comparision
with standard EKF learning. There are other nets which are able to solve the
two-spiral problem too, for example one of the best is an MLP using a global
optimization algorithm by Shang and Wah [14]. Their network is able to get
100% correct results for the training set but never more than 95.4% for the test
set. Although 1t used only 6 neurons, it takes about 200 minutes to train.

Breast Cancer, Hepatitis, Pima Indi- [cthod|Broast Hepat.|Diab. [Heart
ans Diabetes, Heart Disease are medical T, Net 197.1 182.3 |77.6 190.0

diagnosis benchmarks considered in [15]. gp 967 1821 1764 1813
Short summary of the data: Br.east Can- IVQ 966 [83.2 758 [82.9
cer — 2 (?lasses, 9 attributes, .699 1nstanc§s; CART 1922 1827 1728 1808
Hepatitis - 2 classes, 19 attributes, 155 - e 1968 1845 1765 [84.2
68 metances, Heart 5. elaoss, 13 . [2DA_|900 861|772 (815
tributes, 303 instances. ng\? 322 Sgg ??g ;?g
Breast Cancer problem used 49 neu- - - - -

rons and 3000 iterations, the accuracies LFC 944 |81.9 758 |75.1
on training and test sets was very similar: ASI 9.6 820 |76.6 [74.4
97.7%, 97.1%, computation time: 5150 sec. Lable 1: Accuracies (%) for medical
Hepatitis data used 97 neurons and 500 it- benchmarks

erations, the accuracies on training and test sets was: 98.6%), 82.3%, computa-
tion time: 3100 sec. Diabetes data used 100 neurons and 5000 iterations, the
test accuracy was better on test set (77.6%) than on the training set (77.2%),
computation time: 11200 sec. Heart data used 117 neurons and 1000 iterations,
the training accuracy was 92.6% and test was 90.0%, computation time: 7400
sec.

4 Conclusions

The IncNet network is able to control the complexity of its structure by growing
and pruning the network. In spite of incremental character of the algorithm,
the pruning time is determined by theoretical criterion — not in random time
moment or by checking the error on the whole training/test data set. Another
advantage of the direct pruning is reduction of the time of computation. Nearly
all parameters of the network are controlled automatically by EKF algorithm, the
other parameters are very similar for different benchmark problems (excluding
the biases and slopes, which are defined by the resolution of data). Another
positive feature of IncNet Pro is the capacity of uniform generalization. In many
benchmarks (see section 3) the errors on testing and training sets are much more
similar than for other networks.

In some classification problems it would be useful to add the possibility of
merging two neurons G; and G; which can be replaced by another neuron Gp,cq



with a confidence «, for example using the criterion:

/d 160+ G530 = G ()] < 0

Acknowledgments I'm grateful to prof. W. Duch for many valuable comments
and to the Polish Committe for Scientific Research, grant 8T11F00308 for partial
support.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

J. V. Candy. Signal processing: The model based approach. McGraw-Hill, New
York, 1986.

W. Duch and G. H. F. Diercksen. Feature space mapping as a universal adaptive
system. Computer Physics Communications, 87:341-371, 1994.

W. Duch and N. Jankowski. New neural transfer functions. Jour. of Applied Math.
and Computer Science. submitted.

S. E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In
D. S. Touretzky, editor, NIPS. Morgan Kaufmann, 1990.

E. Fiesler. Comparative bibliography of ontogenic neural networks. In Proceedings
of the International Conference on Artificial Neural Networks, 1994.

. F. Girosi and T. Poggio. Networks and the best approximation property. Al

Lab. Memo, MIT, 1989.

B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal
brain surgeon. In NIPS, 1993.

V. Kadirkamanathan. A statistical inference based growth criterion for the RBF
network. In Proc. IEFE. Workshop on Neural Networks for Signal Processing,
1994.

. V. Kadirkamanathan and M. Niranjan. A function estimation approach to sequen-

tial learning with neural networks. Neural Computation, 5(6):954-975, 1993.

Y. LeCun, J. Denker, S. Solla, R. E. Howard, and L. D. Jackel. Optimal brain
damage. In D. S. Touretzky, editor, Advances in Neural Information Processing
Systems II. Morgan Kauffman, 1990.

J. Platt. A resource-allocating network for function interpolation. Newural Compu-
tation, 3:213-225, 1991.

T. Poggio and F. Girosi. Network for approximation and learning. Proc. IEFE,
78:1481-1497, 1990.

M. J. D. Powell. Radial basis functions for multivariable interpolation: A review.
In J. C. Mason and M. G. Cox, editors, Algorithms for Approximation of Functions
and Data, pages 143-167. Oxford University Press, 1987.

Y. Shang and W. Wah. Global optimization for neural network training. /EFFE
Computer, 29, 1996.

B. Ster and A. Dobnikar. Neural networks in medical diagnosis: Comparison with
other methods. In A. B. B. et al., editor, Proceedings of the International Confer-
ence FANN °96, pages 427-430, 1996.

A. S. Weigend, D. E. Rumelhart, and B. A. Huberman. Back—propagation, weight
elimination and time series prediction. In Proceedings of the 1990 Connectionist
Models Summer School, pages 65—-80. Morgan Kaufmann, 1990.

L. Yingwei, N. Sundararajan, and P. Saratchandran. A sequential learning scheme
for function approximation using minimal radial basis function neural networks.
Neural Computations, 9:461-478, 1997.



