
1. Introduction

In this paper a model of a universal adaptive system based on multidimensional localized functions is pre-
sented. This model facilitates the classification-approximation and employs a new way of knowledge represen-
tation by storing complex and fuzzy facts directly in the feature space. At present most popular classificators
and approximators are based on models of adaptive systems of the Artificial Neural Network (ANN) [1-7] type,
on statistical decision approaches such as Learning Vector Quantization (LVQ) and on self-organizing map-
pings (SOM) [8-10]. The popularity of these approaches, especially of neural networks, has been so great in
the past decade that almost every parallel algorithm is called “neural”. Most of these models have no resem-
blance to real neural models and therefore in this paper the term “adaptive systems” will be used more often
than the term “neural models”.

An adaptive system AW is a system with internal adjustable parameters W performing vector mappings
from the input space X to the output space Y = AW (X). Neural networks are the most popular but not the only
adaptive systems known. Some of the most successful adaptive systems (like LVQ), strictly speaking, are not of

Computer Physics
Communications

Computer Physics Communications 87 (1995) 341-371

North-Holland

Feature Space Mapping as a Universal Adaptive System

:áRG]LVáDZ Duch

Department of Computer Methods, Nicholas Copernicus University, Grudzi�dzka 5, 87-100 Toru�, Poland

and

Geerd H.F. Diercksen

Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Strasse 1, 85 740 Garching b. München, Germany

The most popular realizations of adaptive systems are based on the neural network type of algorithms, in
particular feedforward multilayered perceptrons trained by backpropagation of error procedures. In this paper
an alternative approach based on multidimensional separable localized functions centered at the data clusters
is proposed. In comparison with the neural networks that use delocalized transfer functions this approach al-
lows for full control of the basins of attractors of all stationary points. Slow learning procedures are replaced
by the explicit construction of the landscape function followed by the optimization of adjustable parameters
using gradient techniques or genetic algorithms. Retrieving information does not require searches in multidi-
mensional subspaces but it is factorized into a series of one-dimensional searches. Feature Space Mapping is
applicable to learning not only from facts but also from general laws and may be treated as a fuzzy expert
system (neurofuzzy system). The number of nodes (fuzzy rules) is growing as the network creates new nodes
for novel data but the search time is sublinear in the number of rules or data clusters stored. Such a system
may work as a universal classificator, approximator and reasoning system. Examples of applications for the
identification of spectra (classification), intelligent databases (association) and for the analysis of simple elec-
trical circuits (expert system type) are given.

__

1 duch@phys.uni.torun.pl
2 ghd@mpa-garching.mpg.de

the neural network type, although they are usually classified as such. On the other hand expert systems based
on the production rules are usually perceived as systems for reasoning with knowledge stored in the variables
bound to some linguistic labels. They rarely learn from examples requiring instead an introduction of new
rules for each new fact. These two technologies are not as distinct as one may think. Neurofuzzy systems are
combining features of adaptive systems such as learning from examples and meaningful generalization with
the rule based fuzzy logic reasoning. Feature Space Mapping belongs to this family of the new generation hy-
brid systems.

Several factors have contributed to the popularity of artificial neural networks. First, there were hopes for
commercial applications: neural networks should help to solve problems in artificial intelligence, pattern rec-
ognition, in vision and speech, challenges for which techniques based on logical analysis are not suitable.
These hopes were at least partially justified as it is evident from the special issue of the “Communications of
the ACM” devoted to artificial intelligence [11]. Second, the development of computer hardware and the avail-
ability of general programs for neural network simulations encouraged many scientists to try these new tech-
niques for solving various problems in their particular fields. The majority of papers on neural networks belong
to applications of well developed artificial neural network models and are not always written with a real under-
standing of what these adaptive systems are really capable of [12].

The design of artificial neural networks was motivated by the parallel processing capabilities of the real
brain but the processing elements and the architectures used in artificial neural networks frequently have noth-
ing to do with biological structures. Artificial neural networks are composed of simple processing elements
(usually called “neurons”) operating on their local data and communicating with other elements via links with
adjustable strength called “weights”. In most artificial neural networks these strength of connections between
the elements are the only adjustable parameters W of the adaptive system and allow the network to realize a
variety of functions. Some models introduce also adjustable internal parameters for each node. In fact, also
“weightless” networks with fixed connections and adjustable internal parameters may be constructed. Feature
Space Mapping may work in such a way for tasks requiring association or autoassociation. One of the main ap-
plications of artificial neural networks is to simulate associative memory [9]. In the typical case a set of input
and output patterns is presented to the network and the weights are adjusted (this is called “learning” or “adap-
tation”) until the outputs given by the network are identical to the required output.

The most common architecture of the artificial neural networks used at present is of the multilayered feed-
forward type, a simplification of the network composed from many perceptrons. In this architecture, called also
the multilayered perceptron (MLP) network, nodes (neurons, processing elements) are arranged in layers.
There are no connections within a layer and only elements belonging to adjacent layers are connected. Input
signals are propagated in one direction (feedforward), from the input to the output layer, with each processing
element being responsible for the integration of signals coming from the lower layer and affecting all process-
ing elements of the next layer to which it is connected. The network is called “fully connected” if all possible
connections between the consecutive layers are allowed. In some cases it is preferable to use an Artificial Neu-
ral Network that is not fully connected. The reduction of the number of adjustable weights (network complex-
ity) may improve not only the timing of computation for training the network but also the accuracy of learning.
Selection of the best architecture (number of layers, network parameters) is still more an art rather than
science.

Perhaps the most important contribution that has made models of neural networks so popular was the back-
propagation of errors training algorithm, described already in 1971 and rediscovered several times until it fi-
nally became widely known in 1986 [13]. Backpropagation of errors (BP) is still the most commonly used
algorithm for supervised training of artificial neural networks (in a supervised training the answers for some
training data set are known, in an unsupervised training the system tries to form some internal descriptions of
classes in a self-organizing way). Backpropagation of errors is a universal learning rule that can be applied to
a number of different architectures of adaptive systems. The term “backpropagation net” is commonly used to
designate those networks that are trained using backpropagation of errors algorithm and the term is almost
synonymous with the multilayered perceptron network. The backpropagation learning rule compares the sam-
ple output with the achieved output and the error signals (differences between desired and achieved outputs)
are propagated layer by layer back to the input layer. The weights are changed, using some form of minimiza-
tion (originally gradient descent) method, in such a way that the global error is reduced after the next presenta-
tion of the same inputs/outputs. Although the backpropagation algorithm is rather slow and requires many
iterations it enables learning of arbitrary associations and therefore is widely used. Over 40 other learning rules
for different network architectures exist and new rules are still proposed. In particular many learning algo-
rithms are based on using least squares minimization (via simulated annealing, genetic algorithms or standard

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 2

minimization methods) of an error function. The correction of errors is performed in small steps, for each pair
of input/output data, although provided all data are available, methods using a matrix formulation based on nu-
merical procedures such as pseudoinverse matrices or singular value decomposition converge faster.

Artificial neural networks are especially suitable for applications where a high error rate is acceptable, the
conditions are ill-defined and the problem is mathematically ill posed. The brain was developed in course of
evolution to process the data from the senses and works much better at solving problems requiring perception
and pattern recognition than problems involving logical steps and data manipulation. Most artificial neural
network architectures share this quality with the real brains - it may be called the “intuitive approach”. Such
architectures are not suited for tasks that sequential computer programs can do well, such as manipulation of
symbols, logical analysis or solving numerical problems (although many parallel algorithms for solving matrix
equations are easily presented in the form of a network, making the hardware implementation feasible). The
solution to many problems depends on the ability to use both intuitive and logical approaches and requires
adaptive systems that are integrated with logical and numerical computer programs. Neurofuzzy systems offer
an attractive solution in such cases.

Artificial neural networks are adaptive systems with the power of a universal computer, i.e. they can realize
arbitrary mappings (associations) of one vector space (inputs) to another vector space (outputs). Many applica-
tions in physics and chemistry require finding the global mappings from a set of known data points (training
examples). Given a statistical sample of data points adaptive systems construct such global mappings. It is of
great importance to understand what the neural networks can do and when their application may lead to new
results hard to obtain with standard methods. Unfortunately, rarely relevant mathematical theories such as the
theory of statistical decisions or approximation theory are invoked. As we have recently shown [12] in most
physical and chemical problems direct fitting techniques should be more accurate than predictions of trained
neural networks. Universal approximators, such as artificial neural networks, should be used only in cases
when no approximate physical models exist and even then the accuracy of their results should always be com-
pared with statistical methods for data modeling.

Artificial neural networks are of interest to physicists as an example of complex systems, more general than
the Ising or the spin glass models [14]. From this point of view, as interesting dynamical systems, their evolu-
tion is investigated and methods of statistical physics applied to such problems as network capacity, chaotic be-
havior or network learning rules [15]. Artificial neural networks are also of interest as models of various
sensory subsystems and as simplified models of the nervous system. As an example of the enthusiasm with
which artificial neural networks are received by the scientific community it is noted that the number of papers
in the section “neural networks” in Physics Abstracts has approximately doubled comparing the 1992 to the
1991 entries. Since a number of reviews appeared recently (including some in Computer Physics Communica-
tions [6]) we refer the reader to these reviews for general information on neural networks.

In the second section a short description of the most common adaptive systems, the feedforward and feed-
back artificial neural networks is given. The two main applications of adaptive systems, i.e. classification and
approximation, are presented. The development of Feature Space Mapping is motivated by the analysis of the
global mapping (the landscape of solutions) changes during training of such networks and the desire to con-
struct this mapping explicitly. The solution is inspired by quantum chemistry where floating gaussian func-
tions are used since many years as one-electron basis sets for molecular calculations, although the present
model is a generalized version of the older model [16] that was based on floating gaussian functions. In the
third section Feature Space Mapping is introduced and various aspects of the model are presented in detail.
Various forms of local transfer functions of processing elements are considered, biological motivation for local-
ized functions is briefly described, connection with other approaches is outlined, algorithms for growing the
network (increasing the number of processing elements) are described and local learning algorithms applicable
to the Feature Space Mapping model are given. The last three subsections deal with the information retrieval,
with Feature Space Mapping as fuzzy inference (expert) system and with the complexity and scaling of the net-
work for large problems.

In the fourth section several examples of Feature Space Mapping applications are given. The associative ca-
pabilities of Feature Space Mapping are illustrated using some simple examples taken from the neural network
literature. Classification capabilities are presented using an example of recognition of molecular spectra. In the
next subsection Feature Space Mapping is used as a fuzzy inference system, deducing the qualitative behavior
of electric circuits from the knowledge obtained from general laws, acquired directly or inferred from a number
of specific examples used for training the system. Unsupervised learning for a large number of data items is
discussed and time series forecasting is briefly mentioned. In the last section some properties of the Feature
Space Mapping neurofuzzy system are briefly summarized.

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 3

2. Neural networks and other adaptive systems

Fully connected networks are the most general type of architecture and include all other architectures as spe-
cial cases when appropriate restrictions for the connections are imposed. Hopfield [17] has analyzed such fully
connected feedback networks with symmetric weights from the statistical mechanics point of view and proved
that the dynamics of such networks has stationary points. In the original Hopfield model activations of neurons
were binary but the extension to continuous activations was straightforward. An energy function E(W,a) may
be defined as a weighted sum of activations a of neurons and the minima of this function are identified with
the stored pattern Xi. Given a set of patterns X, weights W of the network can be set up in such a way that the
energy minima will correspond to these patterns.

The Hopfield network is capable of autoassociation. Given a pattern or a part of it as the initial activation
values of neurons the network will evolve to a stable state by activating other neurons corresponding to the
missing parts of the pattern. Autoassociation is more general than association of input X with output Y because
it allows to recover the whole pattern from any part of the (X,Y) vector. Storing many patterns in the Hopfield
networks may lead to the appearance of spurious states and to the destabilization of the desired states. This
happens because the energy landscape E(W,a) is to a large degree arbitrary and there is no control over the ba-
sins of attractors of the stationary states, their size, depth and relative placement. These problems are present
as well in the more complex models of feedback networks, such as Boltzman machines [2,18].

In practice simpler solutions may work better. One way to reduce the number of connections and to simplify
the network computation is to arrange processing elements in layers and to allow connections only between the
layers, but not within a layer. The input signals are than propagated to the output layer in an unidirectional
feedforward way. In particular, one or more hidden layers are present in the network except for the input and
the output layer. The lack of feedback implies also the lack of dynamics. Feedforward networks are adaptive
systems directly mapping the input to the output vectors. Such networks are trained to guess the mapping hy-
persurfaces from the sample points presented to the network (examples, training data). This amounts to using
sigmoidal functions to fit the data. It is questionable whether this form of function realized by the network and
by the adaptation procedure employed to determine it is indeed the most optimal. Often it is not the best solu-
tion to the problem of reconstructing hypersurfaces from sample data since some hypersurfaces are not well
represented by sigmoidal functions:

(2.1)σ(x)=(1+e−x/T)−1

The explicit form of the mapping realized by typical feedforward neural networks is:

(2.2)FW(X)=σ(Σ i 1
W i1

(1) σ(Σ i 2
Wi 2

(2) σ(...(Σ ik
Wi k

(k)
x ik

)...)))

A geometrical interpretation, similarly as for recurrent feedback networks, is also possible for feedforward
networks. There is no energy function and the training procedure is based on a gradient descent on the error
surface. The error is defined as the sum of squares of the differences of the sample outputs Y and the achieved
outputs O=FW (X):

(2.3)E(W) = 1
2 Σ

p
Σ
i


Yi

p − FW

Xi

(p) 





2

where the sum runs over all training patterns p and vector components i. The error depends on the weights
W that are adjusted until minimal error (in some cases zero) is reached. Backpropagation of errors, the most
frequently used learning algorithm, is based on the gradient minimization of this error function. In the error
formula given above the explicit form of the network function (2.2) should be inserted and the gradient over all
weights computed. The formula for gradients differs depending on the layer to which the weights are con-
nected, leading to the standard backpropagation of errors equations. Most of the improvements in the multilay-
ered perceptron learning algorithms arises from the application of various minimization methods to the error
function.

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 4

At the start of the training the initial mapping from the input space to the output space is almost random
(the weights are set up randomly and constraints depend on the topology of the network). During learning the
output landscape of the feedforward network as a function of all input parameters is changing to accommodate
the associations forced on the neural network by the training data. Since the starting point is random it cannot
be expected that the generalization (interpolation) for the unknown input will be in any sense optimal. A simi-
lar situation is found in recurrent feedback networks. The basins of attractors around the desired associations
are formed but the size and the depth of the attractor basins is by no means controlled and the landscape of the
whole network function is very complicated and contains many local minima corresponding to false
associations.

Since the number of weights may be rather large the problem of avoiding local minima in multidimensional
space is really severe. Although many improvements of the original algorithm have been proposed finding the
global minimum requires a rather complex searching procedure. In fact it is an NP-hard problem [19] and neu-
ral networks are giving interesting results only because some hard problems are solved in polynomial time
when randomized computations that do not guarantee the best possible solution are used. In the off-line learn-
ing case, i.e. when all data is available to the system, direct fitting in sigmoidal functions may give more accu-
rate results than the best network function that may be found after long training. In fact fitting using sigmoidal
functions is sometimes more accurate than expected. In the on-line learning case the data are continuously in-
coming and the fitting methods cannot be used.

2.1 Networks for classification

Another way of looking at adaptive systems is from the point of view of their capabilities for classification.
Pattern classification is a branch of statistics developed especially for vision-related problems [20-23]. Many
of the algorithms used in pattern analysis, such as the nearest neighbor algorithms, are strong competitors of
neural network algorithms. The simplest classifier is based on linear units and computes hyperplanes as deci-
sion surfaces. More flexible decision surfaces are obtained if the input is first transformed by using nonlinear
functions (for example by taking polynomial terms) and then presented to the linear classifier. This results in
decision regions with arbitrary shapes and linear combination coefficients. Even more flexible are potential
function classifiers, starting with the simplest gaussian model of Sebestyen [21] and the electrical charges in

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 5

Name Decision surface Discriminant function g(X)

Linear, threshold logic,
minimum distance

hyperplanes Σ
i

Wixi + WN+1

Piecewise linear hyperplane fragments maximum over a set of linear
discriminant functions

Nearest Neighbor Classifier (NNC),
k-Nearest Neighbor Classifier
(k-NNC)

hyperplane fragments most common class within the
distance k from X

Quadratic second-order functions Σ
i≥j

Wijxixj + Σ
j

Wjxj + WN+1

Gaussian, with optimized centers
and dispersions

hyperellipsoids, centered at C, with
dispersions σ Σ

i
Wiexp









−Σ

j


xj − cij




2

σij










Potential function combination of 1/r factors
Σ
i

Wi / Σ
j


xj − cij




2

Compound Classifier,
Restricted Coulomb Energy (RCE)

arbitrary, constructed from
hyperspheres

constfor X − Ci ≤ λi

0 for X − Ci ≥ λi

Basis set functions (Φ functions) arbitrary Σ
i

WiΦ i(x1,x2...xN)

multidimensional space [22] model and progressing to the compound classifier of Batchelor [23] and the very
similar Restricted Coulomb Energy (RCE) classifier [24] using many hyperspheres filling the decision regions.
Fuzzy clustering [25] is equivalent to the gaussian model with optimized positions and dispersions. All these
pattern classification techniques may be presented in the form of a network. A summary of the main methods
of pattern classification is given in Table 1.

A very interesting and universal system for classification, called SONET, has been recently described by
Nigrin [26]. This system, described as an autonomous pattern classification system, is an example of the new
generation of universal classification systems. It should be able to:

1) self-organize using unsupervised learning.

2) form stable category codes.

3) operate under the presence of noise.

4) operate in real-time.

5) perform fast and slow learning.

6) scale well to large problems.

7) use feedback expectancies to bias classifications.

8) create arbitrarily coarse or tight classifications that are distortion insensitive.

9) perform context-sensitive recognition.

10) process multiple patterns simultaneously.

11) combine existing representations to create categories for novel patterns.

12) perform synonym processing.

13) unlearn or modify categories when necessary.

Feature Space Mapping is also a universal classification system. It fulfills the conditions given above as well
as many others, related to a representation of knowledge and making inferences.

2.2 Networks for approximations

Many of the tasks performed by neural networks may be looked upon from the point of view of approxima-
tion theory. Various types of adaptive systems suitable for function approximation have been proposed. It has
been proven that neural networks using sigmoidal functions are universal approximators [27]. General radial
basis functions are also suitable as the basis for universal approximation [28], and even more general kernel
basis functions can be used for uniform approximation by neural networks [29]. In fact, many other types of
functions may be used, for example rational functions [30] lead for some approximation problems to networks
of lower complexity (smaller number of parameters) than the multilayered perceptrons or the Radial Basis
Functions (RBF) [31] type of networks.

Approximation theory is a very large field and only a few of the approaches most relevant in the context of
neural networks will be mentioned here. The biggest drawback of multilayered perceptrons based on sigmoidal
or step functions is the speed of learning: a difficult global minimization problem has to be solved in this case
and finding a solution to such problems is NP-hard [19]. The speed of learning of localized approaches is
much higher since only local optimization problems are solved, similarly as in the well known “divide and
conquer” strategy. Approximating noisy data using radial basis function networks gives good results [32] with-
out deterioration of the speed of training. Ripley has compared standard multilayered perceptron neural net-
works with nonlinear regressive methods used in statistics such as MARS, CART or BRUNO [32] and has
concluded that multilayered perceptron networks only rarely have advantages over nonlinear regression. Other
methods that are presented in network form, having their origin in statistics, are probabilistic (Bayesian) neu-
ral networks (cf. Wasserman [4]) developed recently by Specht from probabilistic classification systems [33] in
a “General Regression Neural Networks” [34].

Approximation of time series is of particular importance because of the industrial and financial applications,
where “advanced technology” applications are not restricted to neural networks, but include also genetic algo-
rithms, fuzzy logic, statistical methods (nonlinear, time-series, optimization, etc.), complexity theory, artificial
life (a-life) theories (cellular automata simulations), nonlinear dynamical theory and chaos theory. The first

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 6

bimonthly journal on the subject, called NEUROVE$T JOURNAL, was recently started, books are being writ-
ten [35] and a number of interesting articles in physics journals have appeared [36].

Extrapolation of the results is performed by training the networks in an autoregressive way. Many networks
designed for approximation are therefore tested on such problems as the prediction of the Mackey-Glass cha-
otic differential delay equation. A comparison of different methods applied to this equation is described by
Sanger [37].

3. Feature Space Mapping Model

Problems with multiple minima and the slow speed of learning of backpropagation multilayered perceptrons
(MLPs) may be avoided by constructing the network function in an explicit way. The simplest functions with
suitable properties are of gaussian type. Although some other functions, like a product of the two sigmoidal
functions σ(x)(1-σ(x)), or the sigmoidal functions σ(-||X-D||2) are very similar to the gaussian functions, the
great advantage of the gaussian functions is their factorability:

(3.1)G(X,D,σ) = exp


−Σ

i=1

N
(Xi − Di)2/σi




= Π
i=1

N
exp

−(Xi − Di)2/σ i
2

 = Π
i=1

N
g(Xi ,Di ,σi)

Although the Feature Space Mapping model developed below may work with other functions the factoriza-
tion property is very useful for the reduction of multidimensional searches to a series of one-dimensional
searches. The gaussian functions should be centered on the data vectors D=(D1, D2, ... DN) with dispersions
proportional to the error or uncertainty of the variables Di. Each variable defines a new dimension. The data
vector defines a point and the data vector together with the associated uncertainties defines an ellipsoid in N-
dimensional space (i.e. the contours of the constant value of this function are ellipsoids), described by the den-
sity of the G(X,D,σ) function. From another point of view gaussian functions are a fuzzy representation of the
data points. Generalization to asymmetric gaussian functions is straightforward:

(3.2)G(X,D,σ) = Π
i=1

N
g(Xi ,Di ,σi+,σi−) =

 Π
i=1

N
(1 − θ(Xi − Di))e−(Xi−Di)2/σ i−

2
+ θ(Xi − Di)e−(Xi−Di)2/σ i+

2 

where θ(x) is a step-function (0 for x<0 and 1 for x>0). These asymmetric gaussian functions give greater
flexibility in modeling various density distributions but the fact that their derivatives are discontinuous may be-
come a problem in some error minimization procedures.

The term “fact” will be used for a collection of input and output values that are to be stored in the Feature
Space Mapping adaptive system. Facts belong to the feature (conceptual) space which has many dimensions
but is finite. In case of human knowledge the number of concepts, or elements of reality that are distinguished
by humans, is perhaps of the order of 105 -106 (including sensory qualities, words and abstract concepts). Com-
binations of these elements of reality, including sensory elements, create facts. The FSM function for a collec-
tion of facts D={ Dp} has the following general form:

(3.3)FSM(X, D,σ) = Σ
p

WpG(X,Dp,σp) = Σ
p

WpΠ
i

e−(Xi −Di
p)2/σ i

p

It is different from zero only in the neighborhood of the data vectors D that are parameters of this function.
The weights W and the dispersions σ are the adaptive parameters defining Feature Space Mapping for a given
set of D input values. In some applications when the number of facts is large and data compression is required
or when data values are noisy also the gaussian centers D and their widths should be treated as adaptive
parameters.

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 7

The values of the FSM(X,D,σ) function may be very small in most points X of the feature space, depending
on the separation of the data points and the dispersions of the gaussians. This means that no data similar to X
is known to the Feature Space Mapping system. For large dispersions the values of the FSM function at most
points of the feature space will be non-zero and gradients of the function will help to find the closest matching
facts.

The model allows for many choices and extensions. For example, more internal parameters may be defined,
like rotation axis of the gaussians (this will destroy the separability of functions). However, even in its simplest
version the Feature Space Mapping model is interesting: the incoming signals are not weighted, the parameters
Wp may be taken as binary (though for some classification purposes their values may be useful) and true facts
are equivalent to nonzero FSM(X,D,σ) values. No problem arises with storing negative knowledge, i.e.of facts
that must not be true because one of the axis may be labeled as true/false and gaussians position on this axis
will correspond to the true/false facts. Binary signals lead to simplifications in the network realization, but in
this paper such special cases will not be discussed.

3.1 Network representation and the neuron output functions

It is possible, although not necessary, to present Feature Space Mapping in form of a network (Fig. 1) in
which the number of processing elements is growing with the number of remembered facts. The processing
elements of such networks are not of the threshold type but rather define a “window” for the incoming data. It
is important to notice the difference between processing elements used in the Feature Space Mapping and in
neural networks of the multilayered perceptron type. In the latter case these elements have only two internal
parameters (controlling nonlinearity and threshold), usually fixed for all network elements. Such neurons use
external parameters (incoming weights) to determine the angle of rotation of the sigmoidal hypersurface and
their output is determined by a single variable, the total activation. In Feature Space Mapping each processing
element is multidimensional and the output may also be multidimensional, or there may be no output at all (cf.
Fig. 1 and Fig. 9). The information processing capability of these elements is contained in the internal parame-
ters rather than in the external weights.

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 8

Fig. 1. Example of a network realizing the Feature Space Mapping (FSM) model.

x
1

x
2

x
3

x
4

Σ

1

2

3

5

F(x)

W

W

W

W

2

3

4

5

W

2222

1

g(X)

g

g

g

g

F(x)

Feedback to inputs

4

∇
∇

It may be argued that biological neurons are closer to such processing elements rather than to threshold de-
vices. It is not of interest here to model neural systems at the lowest level of single neurons, but rather at the
functional level of groups of neurons specializing in feature detection. Real neurons react and send series of
impulses (spikes) rather than a single impulse. The spatial and temporal summation of signals in real neurons
depends on the phases and frequencies of incoming signals, giving a total input of the form:

(3.4)I(t) = Σ
k

aksin(ωkt + θk) e−t/σk

This signal is integrated over time and is very sensitive to the changes in relative phases and frequencies.
When fixing several frequencies in the 10-100 Hz range (typical spiking frequencies for biological neurons)
and varying the frequency of only one incoming signal, a resonance behavior is observed, indicating that a spe-
cific input is necessary rather than just a strong one. Thus in frequency dependent networks sigmoidal func-
tions help to recognize certain pattern in the incoming signals (Fig. 2).

Frequency dependent processes are hard to model in networks composed of many processing elements and
almost always amplitudes are used rather than frequencies. In such a case sigmoidal transfer functions should
not be used because they are not able to recognize patterns in signals. Therefore the processing elements in
time-independent models of neural networks should filter the data rather than act as simple threshold devices.
Only in more biologically oriented networks, where synchronization of spikes and pulse modulation is impor-
tant, sigmoidal functions should be used. For most cognitive tasks a time averaged formulation may be suffi-
cient. The locality of the neuron response may be due either to the network architecture itself or to the
biophysical properties of neurons. A large percentage of the neurocortex neurons are involved in local circuits
(cell assemblies) working as feature detectors. For example, neurons in the visual cortex may respond selec-
tively to the position and the angle of an object as a consequence of the structure of the connections in the
brain. Other neural cells, like cochlear stereocilia cells, also react in a localized way to sensory input data. For
more evidence on the biological plausibility of product units see [38].

The transfer function of the processing elements of the network should allow for the representation of com-
plex shapes using a small number of parameters. Such neuron functions may be approximated in the N-
dimensional case by the following functions:

1. Gaussian functions with different dispersions for different dimensions. These functions have 2N parame-
ters (centers and dispersions) defining ellipsoidal densities in the feature space. Angles of rotation may be in-
troduced for maximum flexibility, leading to a total of 3N-1 parameters. Except for the simple gaussian of Eq.
(3.1) the following function may also be used:

(3.5)Gs(X; D,σ) = 1

1 + exp
Σ i=1

N (Xi − Di)2/σ i
2



= 1
1 + exp(Gg(X; D,σ))

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 9

Fig. 2. Sigmoidal neurons work as filtering devices, transmitting signals selectively

ωω

II

 In practice simpler functions derived from this function, like

 (3.6)h(X,D,σ) = 1/1 + (X − D)2/σ2
 ; H(X,D, σ) = Π

i=1

N
h(Xi ,Di ,σ i)

or

(3.7)h1(X,D,σ) =







1 − (X − D)2/σ2
2

if (X − D) < σ
0 otherwise

are faster to compute, give a good approximation to the gaussian functions and offer the same adaptive pa-
rameters as well as separability.

2. Combinations of N one-dimensional gaussian functions (called “gaussian bar functions” [39]) instead of
the products of one-dimensional gaussians:

(3.8)Gb(X; D,σ,W) = Σ
i=1

N
Wiexp

−(Xi − Di)2/σ i
2



These functions have 3N adjustable parameters. Such an approach makes the elimination of irrelevant input
variables, i.e. dimensionality reduction, easier than in the case of multidimensional gaussians (although, if dis-
persions are adjustable and rotations are allowed, some dimensions should reduce to zero). These functions
have the same disadvantages as the sigmoidal bar functions described below.

3. Products of pairs of sigmoidal functions rather than a single sigmoidal function. This is the most flexible
approximation providing decision regions of arbitrary shape for classification. The product of 2N sigmoidal
functions has the following general form:

(3.9)s(X; D,∆) = Π
i=1

N
σ(Xi − Di)(1 − σ(Xi − ∆ i))

For increasing input Xi the value of the first sigmoidal function in the product grows while the value of the
second function decreases to zero, resulting in a localized function. Shape adaptation of the density s(X;D,∆) is
possible by shifting D and ∆ around some central value and by rotating the input variables X by the incoming
weight vector W. The number of parameters in this case (not counting the weights W) is again 2N but addi-
tional parameters controlling nonlinearities of each sigmoidal function may be added for maximum flexibility.
This increases the number of parameters to a total of 4N. Classification regions may have sharply defined
boundaries or may be smooth and similar to hyperellipsoids. Dimensionality reduction is possible as in the
case of “gaussian bar” functions. These functions are again separable and are well suited for use in the Feature
Space Mapping system. Since they have two centers they may be called “biradial”.

4. Weighted combinations of one-dimensional sigmoidal functions:

(3.10)sb(X; D,∆) = Σ
i=1

N
Wi σ(Xi − Di)(1 − σ(Xi − ∆ i))

called “sigmoidal bar functions”. The description of a single fact (data point) represented by a high density
around a point D in N dimensions requires just one gaussian function. To create a high density area in a one-
dimensional case two sigmoidal functions have to be combined together, . In the case of N di-σ(X) − σ(X − D)
mensions a combination of 2N sigmoidal functions is required. Although the representation of data clustered
around a few points using bar functions may seem rather inefficient for large number of data points, gaussian
bar or sigmoidal bar representations may have some advantage because a smaller number of adaptive parame-
ters compared to gaussian or sigmoidal product functions is necessary to represent the data. If the data points
are placed regularly every k units in a square mesh then the number of gaussians necessary to model such data

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 10

is proportional to the number of clusters k2 while the number of bar functions needed is only 2×2k=4k. In addi-
tion to the desired density, bar functions create N waves (bars) in N-1 dimensional subspaces. This is a minor
disadvantage since with some care the unwanted topographical features can be filtered out with the help of a
threshold output function.

There are, of course, other options for the output functions. Separable localized transfer functions are prefer-
able for high efficiency of Feature Space Mapping networks. On massively parallel computers localized inter-
actions among processing elements of neural networks can make a big difference (for example for achieving
extremely high speeds of computation in Cellular Neural Networks [40]).

3.2 Connection with other approaches

Feature Space Mapping using gaussian functions may be considered as a special case of regularization net-
works, more precisely of the radial basis function networks [40] that have been employed recently for classifi-
cation problems as alternative to the multilayered perceptron neural networks. The idea of using radial basis
functions originates from the theory of function approximation and regularization. Given a set of (Xi,Yi) pairs,
an approximating function of the form

, (3.11)FW(X) = Σ
i=1

K
Wi h(X − D(i))

is defined, where Wi and D(i) are parameters and the functions h, called “the radial basis functions”, depend
only on the distance between the X and D vectors. The approximating function should minimize the error
function

(3.12)E[FW] = Σ
i=1

N
(Yi − FW(Xi))2 + λ PFW

2

which, except for the usual least squares error measure, contains a stabilizer (regularization) operator P,
whose relative importance is scaled by the λ parameter. This allows to take into account additional conditions,
such as the smoothness of the approximating function. In particular, for noisy data this parameter together
with an appropriate stabilizer (squares of the second derivatives for example) may filter the noise quite effec-
tively. The minimization problem for the error function may be solved in an elegant way [42]. Many types of
radial functions have been considered like surface splines, multiquadratics, shifted surface splines and other
functions [41].

Gaussian functions belong also to the radial basis function family. Feature Space Mapping with gaussians
should be considered as a special case of the radial basis function approach, although there are many differ-
ences in comparison to the radial basis function networks designed for approximation, as described by Poggio
and Girosi [41]. The general radial basis function theory and the more general regularization network theory
are not described in this paper since it is not necessary for the type of problems considered here. Moreover,
gaussian bars, asymmetric gaussians and products of sigmoidal functions are not radial functions. However, it
should be remembered that gaussian functions, as well as sigmoidal functions, may be used as a basis for the
construction of approximating functions for an arbitrary mapping and are therefore sufficient, although they
are not always the most convenient, functions [28,29].

In contrast to the original radial basis function theory and similar approaches [41] Feature Space Mapping
is build by growing the network using examples, presented in the teaching or network training phase, with lo-
cal learning algorithms for adaptation of parameters. For new facts new nodes G(X,D) centered around distinct
data clusters are added. A fact X which is similar to existing facts is accommodated by modifying the existing
facts closest to it in the feature space. This algorithm allows to avoid a rapid growth of the number of network
nodes with increasing number of data facts.

There are several possibilities to develop the Feature Space Mapping network, for example: adding new
node centers, removing isolated node centers, changing internal parameters of the nodes in order to move posi-
tions and change the width of gaussian functions computed by these nodes. For example, the resolution of the
gaussian function G(X,D) in the direction k may be defined as roughly the distance 0.83σ(Dk) ≈ ln 2 σ(Dk)
from its center. If a new data point is not further than this distance from the existing fact D in the feature space
there are two choices. The origin D of the existing gaussian function may be shifted to account for the new fact

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 11

in a better way, or asymmetric dispersions may be defined to assign this region of the feature space to the exist-
ing fact D:

(3.13)σ(Dk) ← σ(Dk) + Dk − Xk / ln 2

where σ is σ+ or σ− , depending on the position of the new data point Xk in relation to the center of the gaus-
sian Dk, leading to an asymmetric gaussian function. These functions represent distorted ellipsoids and allow
for great flexibility in the modeling of facts in feature space. Combinations of products of sigmoidal functions
are even more flexible and allow for the modeling of densities of arbitrary shapes. In the Adaptive Resonance
Theory (ART) of Carpenter and Grossberg [1] only one parameter (called “vigilance”) controls the importance
of all new facts in relation to what the system already knows while in the Feature Space Mapping model selec-
tive attention to individual facts is possible.

3.3 Growing the Feature Space Mapping network

Among the many types of adaptive systems those that are capable of growing are the most interesting ones.
Learning based on modifying the network structure gives greater capabilities than learning based on the modi-
fication of parameters. The idea of incremental learning by a network that grows with new facts, while trying
to minimize the network complexity at the same time, is not new. These “constructive models” allocate new
computational resources whenever new or unusual data appears, learn rapidly and form compact representation
of the data. Among the models based on the local representation of data the Restricted Coulomb Energy
[22,24] and Grow And Learn (GAL) model [43] should be mentioned. A Resource Allocating Network (RAN)
introduced by Platt [44] is among the most popular networks of such type. It is essentially a growing radial ba-
sis function network, with output obtained as a linear combination of values from a single hidden layer of lo-
cally tuned units. The Function Estimation Approach [45] introduced recently is similar to the RAN and aims
at finding criteria to limit the growth of the number of radial basis functions used by the network. The chal-
lenge of finding the best approximation (or classification) function may be regarded from the point of view of
the input data space (feature space), the parameter space or the infinite space of functions (Hilbert space). Re-
cently, Fritzke developed a very interesting “growing cell structures” model based on radial basis functions
[46].

Some models also try to optimize the network structure by computing the importance of the processing
nodes. Many constructive network models are based on distributed representations. The “cascade-correlation”
algorithm [47] is another well-known model of such kind and uses sigmoidal units in a multilayered percep-
tron model. Several other models of this sort, as well as models that start from large network structures and re-
move unimportant nodes and connections or modify the error function to generate simpler network structures,
are discussed by Alpaydin [43].

Learning on-line, with new data patterns constantly presented to the system, may be stated in the following
form: given the approximating function F(n-1)

 realized by the adaptive system and the new data (Xn,Yn), find the
best new estimate F(n) . In the context of the Feature Space Mapping system this may require an addition of a
new unit:

 (3.14)FW
(n)(X; D,σ) = Σ

k=1

K−1
WkG(X; Dk,σk) + 

Yn − FW
(n−1)(Xn; D,σ)

 G(X; Xn,σn) = Σ
k=1

K
WkG(X; D,σ)

The dispersion of this new unit should be optimized to minimize the local error in the neighborhood of Xn.
The weight of this unit is equal to the error of the existing network with K-1 units at the new data point Xn . If
this weight is smaller than a given threshold the unit is not added. It is also useful to require as a second crite-
rion that the new unit should not be too close to the existing units, i.e.

(3.15)min
k

Xn − Dk > dmin ; Yn − FW
(n−1)(Xn; D, σ) > ε

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 12

Here dmin is the resolution of the data in the input space. The value for the dispersion σk is frequently based
on the nearest neighbor heuristic. When the new data does not satisfy both criteria given above, gradient adap-
tation of the weights and gaussian centers is performed. Only the local gradient estimation is used here for the
(Xn,Yn) data (as it is also the case in RAN and in the function estimation approach [44,45]):

(3.16)W ← W + η
Yn − FW

(n−1)(Xn; D, σ)
 ∇W,DFW

(n−1)(Xn; D,σ)

where η is the adaptation step size. The dispersions of the node functions should be rather large to obtain a
smooth approximating function and to avoid overfitting of noisy data. An improvement over the gradient pro-
cedure is obtained by using the extended Kalman filter algorithm [45], although it is not clear how much the
speed and the accuracy of learning is improved due to this more complex algorithm and how much it is im-
proved because dispersions are added to the list of adapted parameters.

Critique of artificial intelligence is frequently based on the theory of formal automata and the incomplete-
ness theorems for formal systems, following from the Gödel theorem (see for example the books of Penrose
[48]). Although such critique was not taken seriously already by Alan Turing (cf. his article “Computing ma-
chinery and intelligence” [49]) it is interesting to note that the computing power of networks that can modify
their structure should be greater than those of formal computing devices, such as Turing machines. Although
we do not know about any precise mathematical analysis of this interesting situation there are indications that
problems which are NP-complete and cannot be solved using conventional algorithms can be solved in polyno-
mial time by networks modifying their structure [19].

Another idea which is worth exploring is based on the following observation: a system trying to form an ac-
curate approximation to the incoming data in form of (X,Y) pairs should not only focus on the regions of fea-
ture space where the density of the incoming points X is high but also pay attention to the areas where the
values Y change most rapidly. This may be done by initially creating more nodes than is needed and trying to
merge some of these nodes later, selecting for merging those nodes that lead to the smallest increase of the er-
ror. Initial data distribution is approximated using some simple tessellation scheme (for example balltree tes-
sellation). In the “melting octree network” [50] an interesting method of moving the centers towards the Bayes
class boundary is given. The positions of the node processing functions in the feature space may be regarded as
the position of pseudoparticles that are moving, using gradient descent, towards local minima placed on the
Bayes (or rather estimated Bayes) class decision borders. The a priori probability required by the probabilistic
approaches of the data being in class k in the volume of the feature space covered by the G(X,Di,σi) function is
estimated as:

(3.17)Pk(Di ,σ i) = Classk(Di ,σ i)/Nd(Di ,σ i)

i.e. in the volume assigned to the function G(X,Di,σi) the number of data points belonging to the class k is
counted and divided by the total number Nd of all data points in this area. This is an example of the local learn-
ing algorithm which is very useful in the supervised learning case.

3.4 Local learning algorithms

Training algorithms of a typical artificial neural network require the presentation of all data for many times.
Each series of complete data presentation is called an epoch and in some cases tens of thousands of epochs are
required to adjust learning parameters (weights) of a feedforward multilayered perceptron network using the
backpropagation of errors training procedure. What is the reason for it? Suppose that a high accuracy solution
to a numerical problem is sought by using the finite element method. To assure the required accuracy the den-
sity of integration points should be sufficiently high in the regions where the change of the potential is rapid.
In the other, “flat potential” regions less points are sufficient to achieve the same accuracy. In neural learning
an equivalent to the adaptive, multiscale integration methods should similarly focus on the regions of the input
space where the density of data is large and increase the capacity of the learning systems in these regions. Ex-
cellent results obtained recently using local learning algorithms for character recognition [51] support this

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 13

reasoning. The theory of local risk minimization [52] gives solid mathematical foundation to the development
of local learning algorithms.

Adaptive systems that use local training algorithms are trained on a few input patterns that are close to the
pattern selected. One of the best known methods in pattern recognition, the k-Nearest-Neighbor or k-NN
method, works in this way. However, the selection of neighbors is a slow process (later in this paper the con-
cept of a bumptree will be described, which is used to speed up this selection in Feature Space Mapping net-
works). Although it is possible to reformulate the learning procedure of the artificial neural networks based on
nonlocal functions (such as sigmoidal functions) by introducing modular networks in the form of “adaptive
mixtures of local experts” [53] the learning procedure is more natural if locally-tuned processing units are
used.

From a formal point of view a neighborhood function K (for example a gaussian or a square function) cen-
tered around the N test data points Ci is introduced and the error function becomes:

(3.18)E[FW] = Σ
i=1

N

Σ
j∈O(Ci)

Ki

Xj − Ci


 (Yj − FW(Xj))2

This allows for separate minimization in each neighborhood of the training data. The kNN algorithm is ob-
tained if the neighborhood function K is adjusted in such a way that it contains k nearest patterns and the pa-
rameters W are constrained to select the most frequent class among these patterns. The Parzen window method
[20] is obtained by taking a gaussian as the neighborhood function. Networks based on Parzen estimators have
been proposed recently [34]. They are related to probabilistic neural networks [33] and in practice (although
the theoretical justification is quite different) lead to the same learning algorithm as the radial basis function
networks [41] and the algorithm of Moody and Darken [42]. In practice simplest solutions for unsupervised
data clustering work quite well. One solution, if a large amount of data is presented to the system, is to move
the nearest node functions centered at D towards the incoming data item X by a small amount:

(3.19)D ← D + η(X − D)

This solution leads to self-organization of data clusters reflecting the probability distribution of the incom-
ing data [9]. Another solution to the minimization of complexity of the network is to add to the error function a
term that penalizes the number of non-zero weights in a fixed structure network. Quite sophisticated methods
of this kind have been proposed [54] aiming at the dynamical reduction of the number of clusters necessary for
a description of the incoming data to a given level of accuracy. These new formulations are based on the maxi-
mum entropy principle and on statistical physics analogies and should be also very useful in the optimization
of the Feature Space Mapping model.

A new formulation of a local learning is based on a tree-structured algorithm [37] and is particularly rele-
vant in the context of the Feature Space Mapping model since it requires separable basis functions, such as
gaussian functions. The basic idea of this method, related to such statistical approaches as the k-d trees [55]
and the CART [56] and MARS [57] methods is to train the network separately in each dimension of the input
data to avoid “the curse of dimensionality”, i.e. the problem of combinatorial growth. With the growing dimen-
sionality of the input data the number of data points necessary for the reliable approximation of this data grows
exponentially. Another way to avoid this problem is based on gaussian bar functions [39].

A very interesting approach to clustering based on information theory and statistical mechanics has been de-
scribed recently [58]. By heating the system the dynamics of the melting of clusters may be followed from each
data point treated as a separate cluster at low temperature to all data treated as one cluster at high temperature.
This “melting” process is a reversal of the annealing procedure. The melting algorithm finds the optimal num-
ber of clusters by an exponentially fast iterative procedure.

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 14

3.5 Information retrieval in Feature Space Mapping

Perhaps the most distinct characteristic of Feature Space Mapping, in comparison to a typical neural net-
work systems, is its combination of feedforward and reccurent techniques. The input data are propagated
through the network and the value of function and its gradient computed. The input data is then changed along
the direction of gradient and propagated through the network again until the local maximum is found. Since
both inputs and outputs are stored in feature space in function approximation type of problems instead of a
unique function, as in the feedforward networks, a fuzzy function is obtained, with the most probable value
computed from:

 (3.20)Y= F(X); for Y that maximizes max
y

FSM(X; y)

For associative memory type of problems inferences from partial input data are made. If there are many un-
known factors and a few known ones humans tend to make temporarily the assumption that only one addi-
tional factor is important, fix the value of this selected factor and then try to determine the next factor. This
type of reasoning by making a series of one-dimensional searches is equivalent to the steepest ascent linear
search. An expensive alternative, used in some neural networks models, is trying to determine all missing fac-
tors at once by searching in many dimensions.

The linear searching strategy used in Feature Space Mapping has the following steps:

1. Fix the value of the known factors (X1, .. Xk)

2. Search for the value of Xk+1

2.1 Examine all nodes assuming that (Xk+2, .. XN) are irrelevant

2.2 Note the values of Xk+1 for which FSM(X1, .. Xk+1) > ε where ε is a small threshold. Separability of
 the FSM functions allows to drop temporarily all terms that depend on (Xk+2, .. XN)

2.3 Fix Xk+1 at one of the possible values and repeat the search for Xk+2.

3. If the searches for all m=k+1,.. N give positive results than the new fact has been found;

if for some m no Xm values leads to a positive result move back to the m-1 level and

try the next Xm-1 value for which a positive result was obtained (step 2.3)

This algorithm will find all facts consistent with the fixed values of the known factors. The linear searching
algorithm will find all facts stored in the Feature Space Mapping function if no factors are fixed. The depth of
the search is equal to the number of unknown factors, which is usually not large. The number of facts checked

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 15

Fig. 3. A 3-level bumptree hierarchy. The highest, the input level, covers all feature space, the lowest level
correspond to fuzzy facts and the volume of the feature space covered by the children nodes is totally contained
in the volume covered by the parent node.

is at most equal to the number of relevant facts, since not all nodes are connected to all inputs. Some facts may
be totally irrelevant since their input space is completely orthogonal to the input space of the question at hand.
Searches are one-dimensional, therefore at a given stage the value of only a single factor in the separable node
function is computed. Although the total dimensionality of this function may be quite high some factors are
fixed and others are dropped from the product, resulting in effect in a truly one-dimensional function
evaluation.

Another way to simplify searching in order to find quickly all possible areas where the FSM function does
not vanish is to use a multi-scale approach. Before the steepest ascent search is started the dispersions are tem-
porarily set to large values, making it easy to identify broad regions of the feature space where a detailed
search should be performed with the original values of the dispersion parameters. Connection of this idea with
the hierarchical bumptree structures of Feature Space Mapping network nodes will be discussed below in the
subsection on complexity.

A more specific meaning may be assigned to the value of the FSM function. For example, the FSM values
may be used to estimate the certainty of facts for facilitation of the ordering of the final results of searches ac-
cording to the confidence assigned to the facts used. In the simplest case the FSM is used as a logical function,
with the positive values FSM(X) > ε as confirmation of the true facts, the negative values FSM(X) < −ε for
false facts and with the −ε< FSM(X) < ε values for the “don't know” answer.

An easy way to estimate the importance of various factors in finding a solution is to look at dispersions. Fac-
tors with small dispersion are probably most relevant. The value and the gradient of the FSM function are used
to find all facts close to a given fact (associations with this fact) or to a given input value X. If the FSM gradi-
ent at the point X is too small to define the search direction then the dispersions of all nodes are temporarily
increased by a fixed factor in order to make all facts more fuzzy and to help to find the closest fact in the fea-
ture space. If more associations are required then the facts found so far are temporarily “switched off” and a
new gradient is computed. In this way all facts that are close to X are quickly identified even in feature spaces
of high dimensions.

3.6 Fuzzy inference systems

Another approach relevant to Feature Space Mapping is based on abductive reasoning networks [59]. Ab-
duction is a reasoning process, or deductive process, under uncertainty. It may be described as the process of
inferring causes from effects, or the process of inductive deduction, since deduction and hypothesis forming is
based on induction (examples). In this approach numeric functions and measures are used in the reasoning and
in the description of relationships among the data items. A network of functional nodes performing numerical
operations on data items is called an abductive network. In practice [59] a hierarchical, feedforward layered
network structure is used, with linear, quadratic and cubic functions of the spline type used by its nodes. To
avoid too many adjustable parameters in the networks of this type the data items are grouped together and the
relationships in each data group are summarized in one node that makes these values available to the next
layer. This subdivision of problems is an approximation that sometimes breaks down and therefore it is
avoided in the Feature Space Mapping model.

The Abductory Induction Mechanism (AIM) is the machine learning procedure that attempts to determine
automatically the best network structure, type of nodes, connectivity and adaptive parameters minimizing the
combined error measure and network complexity. The complexity measure contains terms proportional to the
ratio of the number of network parameters and the number of training data. Abductive networks are a particu-
lar type of fuzzy expert systems (FES) based on network realizations. The rules of fuzzy expert systems are of
the following type:

(3.21)IF (x1 ∈ X1 ∧ x2 ∈ X2 ∧ ...xN ∈ XN) THEN (y1 ∈ Y1 ∧ y2 ∈ Y2 ∧ ...yM ∈ YN)

The rules in fuzzy expert systems are unique, i.e. one IF part can have only one THEN part. These rules may
be directly programmed in the Feature Space Mapping network if many outputs from a given node are allowed.
Frequently a simplification of the form:

(3.22)IF (x1 ∈ X1 ∧ x2 ∈ X2 ∧ ...xN ∈ XN ∧ y1 ∈ Y1...∧ yM ∈ YM) THEN true

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 16

is sufficient. More general rules of the type

IF 



x1 ∈ X1

(1) ∧ ...xN ∈ XN
(1) 

 ∨ 
x1 ∈ X1

(2) ∧ ...xN ∈ XN
(2) 

 ∨ (...)
 THEN(y1 ∈ Y1...∧ yM ∈ YM)

(3.23)

may also be used in the Feature Space Mapping model. More than one conclusion Y, given conditions X,
may be found using the retrieval mechanism discussed in the previous section, with the value of the FSM func-
tion ranking the importance or confidence of these conclusions. The functional equivalence between fuzzy ex-
pert systems and radial basis function networks has been established recently [60] and holds also in the case of
the Feature Space Mapping model. Therefore Feature Space Mapping belongs to the category of neurofuzzy
systems.

A neural model CONSYDER for commonsense reasoning based on similar localized representations as used
in Feature Space Mapping has been described recently in the literature [61]. This model uses fuzzy evidential
logic covering all traditional rule based reasoning and is capable of commonsense reasoning. Distributed repre-
sentation was used to capture similarities among facts stored in localized nodes. In the Feature Space Mapping
model the hierarchical structure of nodes described below facilitates the rapid finding of associations and the
unreliable distributed representations are not needed. In addition recursive connections of inputs to outputs that
leads to a second and higher order associations during iterations (see the Section 4.3 for an example) are
allowed.

3.7 Complexity issues

A number of geometrical hierarchical data structures have been introduced in the last few years for support-
ing the fast construction and access to data. Bumptrees are an example of such data structures. They are trees
with leafs that correspond to facts stored in the form of localized functions. Each lower level of the hierarchy
(Fig. 3) is contained in the higher level, allowing for multiscale resolution of the modeled data. Bumptrees are
a generalization of many other hierarchical data structures, such as oct-trees, kd-trees, boxtrees and balltrees
[62]. Bumptrees are used for cluster analysis, for building clusters from data (bottom up) or for melting clusters
(top down). In this paper bumptrees are used only to speed up queries and to organize the data represented by
the FSM function. Higher nodes in the bumptrees may represent metaconcepts or general facts while lower
nodes represent specific facts. One of the simplest applications of bumptrees is to use them in pruning search
trees looking for functions which have a non-zero value at a specified point in the feature space. One technique
that is used in the Feature Space Mapping model is to set a hierarchy of gaussian dispersion values, starting
from very diffuse functions (high-level bumptree nodes) and decreasing the dispersions in a few steps to their
normal values, simulating in this way a hierarchical bumptree structure (Fig. 3).

Basic operation in recognizing or retrieving facts is checking if in a given point in the feature space the
value of the FSM function is non-zero. To speed up the retrieval a hierarchical bumptree structure of nodes is
introduced. The top layer of the network contains nodes that are very fuzzy and the functions realized by these
nodes have nonzero values in a large volume of the feature space. The bottom layer is composed of nodes that
are most focused. Nodes at each layer are connected to the nodes in the next layer by a single control link and
are directly connected to all inputs. If the control signal is zero then the whole search branch is deleted. For N
final nodes sublinear retrieval times are obtained, proportional to the number of points in which the FSM
function is checked at each level, times the number of levels which is of the other of log N. If the volume of the
feature space covered by a node is equal to half of the volume covered by the node belonging to the upper layer
there are log2N levels. The Feature Space Mapping model should therefore be quite efficient even for a large
number of facts. In practice this explicit bumptree structure is replaced by the dynamical hierarchy of
bumptrees created on demand by changing the dispersion values of the processing nodes.

The network form of the Feature Space Mapping model, the localized transfer functions of its nodes and the
sparse connectivity in a large network make hardware implementation of this model relatively simple. Imple-
mentation on massively parallel computers is also straightforward. The Feature Space Mapping system ana-
lyzes data and makes an internal representation of the data and of the relations among the data items. How this
network scales with the size of the problem, or more precisely, how many network nodes are needed to

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 17

represent with high accuracy the complexity of the data? The answer obviously depends on a problem. If linear
relationship is approximated with nonlinear system, such as neural network (which is quite frequently the case
[12]) many data points for training and a complex network is needed! The constructive algorithm (Section 3.3)
used by the Feature Space Mapping system guarantees that complexity of the generated network is minimal.

A program designed as a universal approximator should not only optimize the parameters of each new node
added to the system but also use optimal type of functions for the nodes. To some degree this is realized in the
functional link approximation networks [63]. The separable functions (Section 3.1) used in Feature Space
Mapping allow for the approximation of an arbitrary complex function but not necessarily in the most eco-
nomical way (in the sense of the number of parameters used versus the accuracy obtained). In the networks of
fixed size large errors may arise if the number of data items available for training is not large enough because
many parameters have to be set. There are two independent sources of errors. First, an intrinsic error of adap-
tive system which is not always capable of representing all relations among the training data. This is due to the
finite number of adaptive parameters and to the convergence properties of the functions performed by the net-
work nodes. Second, an estimation error due to the finite number of examples presented to the system. The in-
trinsic error, the estimation error and the total error (called sometimes “the generalization error”) are related in
a non-obvious way. If the number of parameters and the number of data items increase to infinity the generali-
zation error in a well-constructed network should decrease to zero. In a network of fixed size a small number
of parameters leads to a large intrinsic error. On the other hand a large number of parameters for a fixed num-
ber of data samples will increase the estimation error. If the number of data samples is arbitrarily large than
the estimation error for a network with a large number of parameters may be very small. The precise quantifi-
cation of these statements follows below.

The rate of convergence of the Feature Space Mapping model with gaussian node functions should be simi-
lar to that of Radial Basis Function networks. For fixed dispersions this convergence rate has been determined
very recently [64]. Since the true function is unknown an error may only be measured in respect to the best
possible (Bayes) estimate of this function, called the regression function f0(X). The distance between the re-
gression function and the function realized by the radial basis functions network with n nodes, each of d di-
mensions, given l examples, estimated with the confidence (probability) 1-δ, is

(3.24)E
(f0(X) − Fn,l(X))

2
 = ∫X dXP(X)(f0(X) − Fn,l(X))

2 ≤ O


1
n


 + O


ndln (nl)−ln δ

l



Approximation theory determines the first factor, O(1/n), while statistics the second factor. The error van-
ishes only if the network complexity, expressed by the number of its nodes n, tends to infinity slower than the
number of data samples l. For any fixed number of data points there is an optimal number of network nodes
that minimizes the generalization error. Since a constructive algorithm that adds new nodes only for novel data
is used here the optimal complexity is guaranteed from the beginning.

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 18

Fig. 4. Solution to the XOR problem in the Feature Space Mapping
 model

A few examples of Feature Space Mapping applications will be given below. Tasks involving learning asso-
ciations, generalization, inference and logical relations are solvable by simple, nonrecursive versions of the
Feature Space Mapping model.

4. Applications

4.1 Learning arbitrary associations

The simplest nontrivial problem for neural networks is the XOR (exclusive OR) problem [2], since it defines
mapping that is not linearly separable:

(0, 0) → 0, (1, 1) → 0, (1, 0) → 1, (0, 1) → 1
In Feature Space Mapping the linear separability is never an issue since all data points are defined in the

space of inputs and outputs; in the XOR problem they are at the corners of a cube as shown in Fig. 4.

Many examples of association and retrieval of information from partial inputs are given in the literature (cf.
PDP books [2]) in order to illustrate the association and generalization capabilities of neural networks. Learn-
ing of schemata, like schemata in “rooms” or in the “Jets and Sharks” examples, are solved by the Interactive
Activation Model and by the constraint satisfaction and competitive learning models of neural networks. The
same examples are solved in a trivial way by the Feature Space Mapping model. Although the association of
properties of atoms or molecules with their structure would be of a more direct interest to physicists to illus-
trate certain characteristics of the Feature Space Mapping approach an example taken from the literature (PDP
book [2]) will be analyzed in some details.

In the “room schemata” (cf. Vol. II, p. 22, [2]) 40 descriptors are used for five different kinds of rooms: liv-
ing room, kitchen, office, bathroom and bedroom. A feature space is easily created from descriptions of the
room furniture and other descriptors for these schematic rooms and prototype room descriptions are retrieved
from partial descriptions. Most of these descriptors, like table, chair, bed, oven are of binary type: present - not
present, while others have a few values (for example, the room size may be very large, large, medium, small,
very small). Treating all descriptors as binary a discrete feature space is constructed, represented by the
40-dimensional hypercube with 240 corners (possible states). The 5 schemata for rooms correspond to more
than 5 corners of this hypercube since such descriptors as walls or ceiling are always present and other descrip-
tors, like television set, may be present or not present in several types of rooms. In this 40-dimensional space
there are only 5 areas which are overlapping in some dimensions but well resolved in other dimensions, defin-
ing “the schemata for rooms”.The probability that each of these descriptors is present in the schemata for a
given kind of room has been estimated by Rumellhart et.al. [2]. These probabilities may be used to set disper-
sions for room descriptors (they are fuzzy linguistic variables in the sense of the fuzzy set theory [65]) of the 5
network nodes that correspond to the 5 schemata. One extra dimension for the room type is kept with the 40
other descriptors forming a complete fact in the feature space. After forming facts the irrelevant factors may be
dropped and the network simplified. For example, there are no nodes whose output is affected by the values of
such descriptors as ceiling or walls, therefore the connections of the input nodes corresponding to these de-
scriptors to the internal nodes may be removed.

This example is interesting because it illustrates rather well how the Feature Space Mapping searches are
performed and how in this model schemata are described. Considering only one of the 40 descriptors the depth
of the search space is 40 and one may be afraid of combinatorial explosion. However, this is not the case be-
cause there are just 5 different search paths. This “intelligent database” can answer different kind of questions.
First, it may recreate all facts, or schemata for a given room type. For a fixed room type all descriptors forming
a room schemata are easily recovered in 40 search steps, where each step is a binary check for the presence of
the appropriate descriptor. Second, a given type of room is recreated starting from a partial description. By fix-
ing one descriptor that is unique to some room schemata, like an oven, the whole schemata for kitchen is im-
mediately recreated since already at the highest level of searching only one type of the room returns positive
reply. By fixing descriptors that apply to many rooms, like telephone, several searching paths (at most 5) are
activated and for each path again a simple search involving just 40 steps is made. The question whether a
kitchen can have a telephone requires fixing the type of room variable at the kitchen - that leaves only one ac-
tive fact - and checking the telephone variable. The dispersion of the telephone variable at this node estimates
the probability of a positive answer to the question.

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 19

The Feature Space Mapping representation of the room schemata may be regarded as an example of an in-
telligent database, returning the results of queries with probabilistic interpretation. In physics and chemistry
there is a need for many databases of such kind. Consider for example computational molecular physics or
quantum chemistry where thousands of papers are published every year presenting calculations of properties
for many atomic and molecular systems using different computational models, different basis sets, and achiev-
ing results of different levels of accuracy. In view oof the complexity of such calculations it would be very use-
ful to have a knowledge base that, given a molecule, nuclear coordinates, desired property and accuracy, could
suggest a method of computation and select the basis set and other parameters [65]. Such knowledge base may
be constructed from data collected from the literature. It should not contain explicit references to the results of
calculations, but rather a fuzzy knowledge of what is possible. A single fact may correspond to many different
results of calculations giving similar results.

Many variables must be used in specification of this knowledge base. First, a general definition of a system
must be given requiring several variables, such as the chemical formula, charge and the nuclear coordinates.
Second, a description of the state of the system requiring specifications of space and spin symmetry, electronic
configuration, single or multireference character of this configuration etc. Third, known properties of the sys-
tem should be included, such as the ground state energy, excitation energies, various moments, potential en-
ergy surfaces, etc. This data is still independent of computational methods. In the next step knowledge related
to basis sets, computational methods and the estimated accuracy of calculations has to be specified. Such
knowledge base could inform the user about possible applications of state-of-the-art computational techniques.
A more modest version could be associated with a particular quantum chemistry package, allowing the user to
estimate reliability of a given set of programs. Such knowledge base may be automatically created by the Fea-
ture Space Mapping system if reference data concerning results of computations are available to create facts in
the feature space. Once created the system may be continuously improved by additional training with new re-
sults. To enable predictions of new facts not only learning but also self-organization (see below) of the facts is
necessary.

Many interesting problems in science and technology are so complex that fundamental theories are not very
helpful in predicting or elucidating solutions based on first principles. Whenever a theory is not helpful experts
are called for making “educated guesses” on the basis of their experience. However, cognitive psychologists
have found that experience is always connected with a specific domain [66] and that the “transfer of experi-
ence” from one broad domain to another is a myth. Learning by making associations is a quite effective way of
creating an expert system that may replace human experts in selected domains. Human brain, having no direct
“numerical sense”, is not well suited for analyzing multidimensional data and making associations of numeri-
cal data. Computer programs are more powerful in processing large amounts of data than humans are and sys-
tems like the Feature Space Mapping may be more powerful in problems requiring associations.

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 20

Fig. 5. Histogram of a spectrum with error bars corresponding to a gaussian function in

 22 dimensions.

4.2 Classification

As an example of a nontrivial classification that Feature Space Mapping is capable of consider a spectrum
stored in the form of a histogram. It is convenient to perform first a Fourier or Hadamard analysis and to store
the computed coefficients instead of the original spectra. In such a case 128 to 256 numbers allow to recreate
the original spectrum with high precision. The feature space has therefore 128 or 256 dimensions to store the
histogram components and extra dimensions to store additional information like the system identification la-
bels (for example, names of molecules). Facts, or objects in this feature space are gaussian functions represent-
ing a set of spectra (a fuzzy spectrum) connected with the same molecular system. Since a precise form of a
spectrum corresponding to a given chemical system depends on many experimental conditions each value of
the histogram is supplemented with an error bar (Fig. 5) represented by the dispersion of a gaussian factor in
the multidimensional node function. Once created the system can learn new spectra added to its database and
gain experience in recognizing spectra by modifying the stored representations of spectra that are already
known to it. Such database of spectra allows for the identification of many different systems from distorted or
partially known spectra.

Searching for k free parameters, each with N values, is a search in k dimensions requiring in a random pro-
cedure about Nk calculations. In this example both k and N may be quite large. Fortunately in Feature Space
Mapping it is possible to factorize global searches into one-dimensional searches. An alternative way of
searching, if many facts are closely overlapping, is to use gradient search techniques to find the local maxima
of the FSM function. In multidimensional searches many problems arise with avoiding false maxima. Thanks
to the separable form of the Feature Space Mapping node processing functions factorized searches do not lead
to combinatorial explosion and guarantee that all facts consistent with a given information will be found. Spe-
cific constraints and restrictions, like restrictions in the range of values that a variable can take, are also easily
taken into account.

The quality of the classification obviously depends on the accuracy of the representation of the spectra. In
the Feature Space Mapping probability of classification errors decreases in a space with increasing number of
dimensions. A simple argument shows the unintuitive properties of multidimensional spaces. Suppose that the
input vectors are discreet, i.e. the real values are converted to the binary representation with a specified preci-
sion, taking for example 8 bits for each number. The dimension of the space for storing the histograms grows
in such a case from 128 to more than one thousand. Suppose that a given spectrum is described by N bits. The
probability of each of the bit strings is 1/2N and the probability of finding a string at the Hamming distance (i.e.
distance measured by the number of different bits in two strings) d from this spectrum is:

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 21

VV
++

00

−− ++00

++00

Fig 6. Representation of Ohm's law V =I ×R in the Feature Space Mapping model. This feature space
 shows only changes (+ for increase, – for decrease and 0 for no change) of (V,I,R) variables.

(4.1)p(d) =



N
d




/2N

This probability distribution has a maximum for d=N/2 and a dispersion equal to N/4. It means that on aver-
age other spectra are very far (in our example 500 bits apart) from any given spectrum, although effects of data
clustering may in practice change this conclusion. The more precisely the spectrum is specified the easier it is
distinguished from other spectra prototypes. Feature Space Mapping takes into account the effects of data clus-
tering by using different scales in different parts of the feature space. The dispersions of the gaussian hyperel-
lipsoids used in this case are smaller around the points where many training data are present while in the
regions of space where the data points are well resolved only a few gaussian functions with large dispersions
are sufficient. For some classification problems (for example in the case of molecular spectra) dispersions are
given by the experimental data and should not be arbitrarily manipulated. In such cases to improve the classifi-
cation accuracy increased precision of the data is needed. The identification is made easier if not only the spec-
tra but also other information is added to the Feature Space Mapping system. This information may be given in
the form of spectra of different type, information about specific properties of the substance or in any other
form. It is easy to extend the feature space to combine many sources of information together in the classifica-
tion process.

4.3 Learning from general laws: fuzzy inference system

Frequently the knowledge that human experts use is not only derived from a set of examples but, especially
in physics and chemistry, also from general laws that may be applied to a given situation. These laws may be
either deduced from examples or stored as a priori knowledge. Neural networks are usually trained on exam-
ples while expert systems are based on rules.

People use the knowledge derived from equations in an intuitive, qualitative way during problem solving.
Consider a specific example: Ohm's law V=I×R. It involves 3 parameters, voltage V, current I and resistance R.
The geometrical interpretation of this law involves a hyperboloid or a set of hyperbolas on a plain for different
values of V. This interpretation does not help in using Ohm's law in practical cases. A set of training facts
should be derived and internalized as “intuition” from this law. What happens to the voltage when the current
grows and the resistance is constant ? If the changes of V, I and R are designated as + for increase, 0 for no
change and − for decrease than the number of all possible combinations of the 3 values for the 3 variables is 33

= 27. According to the Ohm's law only 13 of them are true, for example if V is constant than I and R may not
decrease or increase simultaneously. The confidence in a given fact is proportional to the number of training
examples presented to the system. Therefore the fact that when V and R both decrease than I may also de-
crease is more probable than the fact that I may also increase (if R is decreasing faster than I is increasing).

A convenient way of expressing the intuitions related to Ohm's law or any other law of the form A=B×C or
A=B+C is to list the 13 true facts, describing changes of the variables:

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 22

Fig. 7. Simple electrical circuit. What will happen to V1 if R2 grows while R1 and Vt

are kept fixed? Feature Space Mapping solves this problem in an “intuitive” way.

(A,B,C) = (+,+,+), (+,+,0), (+,0,+), (+,+,−), (+,−,+)

(0, 0, 0), (0,+,−), (0,−,+),

(−,−,−), (−,−,0), (−,0,−), (−,+,−), (−,−,+)

These facts are shown in the three-dimensional feature space in Fig. 6. The dispersions of the gaussian func-
tions representing the facts are proportional to the confidence in a given fact, where the confidence is based on
the number of examples presented. The representation in Fig. 6 uses 13 gaussians localized in three-
dimensional space. Other representations are also possible, for example by 6 gaussians in two-dimensional
space (extended along the axes) and one spherical gaussian in the three-dimensional space (in the middle). On
the basis of such feature space it is easy to address questions like “what will happen with the current when the
voltage grows and the resistance is constant?”

It may seem that feature space representation with half of the facts that are true and half that are false will
not be very useful in a reasoning process but that is not the case. A more sophisticated example of Feature
Space Mapping for the representation of qualitative knowledge necessary to understand simple electrical cir-
cuits will be presented now. Although the circuit shown in Fig.7 is very simple untrained people need some
time to answer questions related to the behavior of this circuit. Instead of using their intuition they may try to
use Kirhoff's and Ohm's laws. There are 5 equations applicable in this case:

(4.2)

Vt = V1 + V2

Rt = R1 + R2

V1 = I ⋅ R1; V2 = I ⋅ R2; Vt = I ⋅ Rt

The Feature Space Mapping system is trained on single elements of the electrical circuits by creating for
each of the five laws internal representations such as shown in Fig. 6. The full problem is defined in the
7-dimensional (Vt,V1,V2,Rt,R1,R2,I) space. The questions posed to the Feature Space Mapping system are of the
type (Smolensky, 1984, in: [2]): what happens with I, V1, and V2 if R2 increases and Vt and R1 are constant?
This example was originally formulated for the Boltzman machine and the harmony model type of neural net-
works and is not so trivial to answer by these models. To solve such problems with the help of neural networks
of this type requires multidimensional minimization usually performed via the simulated annealing method.
Results from many runs have to averaged to avoid wrong answers and the process is computationally very in-
tense. In Feature Space Mapping the answer requires searching for a few non-zero values of the function
FSM(Vt=0,V1,V2,Rt,R1 =0,R2 =+,I) along the four (V1,V2,Rt,I) directions. A conventional computer program ca-
pable of answering arbitrary questions related to the change of the values of variables either has to enumerate
all possible cases or it has to use a complicated algorithm based on IF-THEN rules to apply all five laws
Eq.(4.2). Feature Space Mapping solves the problem without referring to the rules. Intuitive knowledge is
stored in the feature space and is used in a way that is not unlike what people do when they solve this type of
problems.

Since all 5 equations have to be fulfilled simultaneously the FSM function is a product of 5 functions, each
containing 13 terms corresponding to the facts about each of the equations represented in the feature space.
The search proceeds as follows: take the first unknown variable V1 and change it from −1 to +1, while the
other 3 unknown variables (V2, Rt, I) are temporarily dropped from the FSM function (this fact is designated
by putting # in place of the dropped variable). Since node functions are separable the dropped variables are
simply not used in the product defining the FSM function:

 FSM(Vt=0, V1, # , # , R1 =0, R2 =+, #)

The FSM function with the irrelevant variables dropped has a nonzero value for V1 = – Starting from this
function a search for the second variable is initiated.

 FSM(Vt= 0, V1 = –, V2, #, R1 = 0, R2 = +, #)

The function has non-zero value only for V2= +; in the next step Rt is considered:

 FSM(Vt= 0, V1 = –, V2 = +, Rt , R1 = 0, R2 = +, #)

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 23

This function is nonzero for Rt =+, and in the final step I = – is found. A step back is now made in order to
check if there are other solutions. For V1 = 0 the FSM function does not vanish for V2= 0 and Rt = + but van-
ishes for all values of I therefore another step back is made. For V1 =+ the FSM function does not vanish if V2=
– and Rt = + but it vanishes for all values of I. Therefore the only values of (V1 , V2, Rt, I) for which the FSM
function does not vanish are (–,+,+,–).

A very tedious search in the 4-dimensional space (performed by a Boltzman machine or by harmony theory
models [2]) has been replaced by a series of searches in one-dimensional spaces. The knowledge stored in the
Feature Space Mapping is used in the search procedure in a similar way as the heuristic knowledge is used in
the expert systems to reduce blind search procedures. In the example considered here only 10 nodes have been
visited. The process has some similarity to the usual human reasoning in such cases. More experienced people
will first choose the ordering of variables: if R1 = 0 and R2 = + than it is obvious that Rt = + and since Vt= 0
therefore I has to decrease, V1 = − and V2 = +. This type of experience may also be used in Feature Space Map-
ping. If the variables in the FSM function are reordered the search becomes shorter:

FSM(R1 = 0, R2 = +, Rt , Vt= 0, I, V1, V2)

In this case the “reasoning process” is more ordered. Both graphs generated by the search procedure are il-
lustrated in Fig.8. How to select the best search strategy? This meta-knowledge about strategies of searching
for a solution can also be coded in the Feature Space Mapping nodes and may be learned from examples if a
number of similar problems is solved. The system can learn and improve its abilities to solve problems by not-
ing its successes and failures. The simplest heuristic rule for the ordering of variables is to check if more than
one choice is possible for the value of an unknown variable. The variable that is most uniquely or almost
uniquely defined should be selected as the next to be determined. In the example considered above all three
choices, growing, decreasing and no change, are possible for V1 and V2. For Rt as the first search variable only
+ value leads to possible solution, and for I only – value, giving also unique answers for the two voltages. Us-
ing this strategy only one search path is generated (Fig. 8).

Another way of solving the problem by using explicitly the knowledge about the simple subproblems con-
nected with Ohm's and Kirhoff's law is achieved by using the two-layer Feature Space Mapping network struc-
ture presented in Fig. 9. The network consist of the input-output data nodes in one layer and the internal
atoms-of-knowledge nodes in the second layer. This network works in an iterative way by trying to complete
the input patterns using the knowledge (contained in the atoms-of-knowledge nodes) about the internal rela-
tions among the data variables. At the start some inputs have definite values while the state of other inputs is
undefined. The task of the network is to find the undefined values. A full iteration consist of a parallel propa-
gation of all input signals known at the start of the iteration through the network and receiving from the
atoms-of-knowledge nodes values for the unknown variables that are consistent with all known facts. If a
unique solution exists it will be found in a few iterations. If there are many solutions stochastic elements are
introduced into the network to find them all. For the electrical circuit problem of Fig. 7 network the iterations
are displayed in the following table:

Fig. 8. Graphs generated by the search procedure with different orderings of the search variables.

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 24

Iteration Vt V1 V2 I Rt R1 R2

0 0 0 +

1 0 + 0 +

2 0 – + 0 +

3 0 – +/0/– – + 0 +

4 0 – + – + 0 +

In the first iteration only the value of Rt has been determined, in the second iteration also the value of I while
in the third iteration the values of all other variables are uniquely defined, except for V2 which requires an ad-
ditional iteration in which the node Vt=V1+V2 determines its value uniquely.

The feature space representation works as a powerful heuristics in the reasoning process. In the seven vari-
able problem considered here there are 37 = 2187 possible facts but only about 5% of them (precisely 111) are
true even though for 3 variables almost 50% of facts are true. In more complicated cases, when the number of
variables involved is larger and the number of values these variable may take is also larger, the percentage of
facts that are true is vanishingly small, making the Feature Space Mapping very effective in recognizing only
“sensible” patterns of the values of variables.

Many other search strategies may be introduced in the Feature Space Mapping systems. In a more complex
system nodes and meta-nodes that are most frequently used are visited first, simulating the easiest recall of the
most useful knowledge. Reasoning frequently starts from rather general or vague ideas and concentrates on de-
tails. The multilevel approach to learning in the Feature Space Mapping system is natural. It searches for rele-
vant facts by making all facts very fuzzy at the beginning of the search period and than focuses on a more
localized regions in feature space using precise facts stored there. This is analogous to transition from the gen-
eral intuitive to logical point-wise reasoning.

4.4 Learning large number of data and self-organization

The fuzzy character of facts stored in the Feature Space Mapping allows for the representation of many data
items by using a modest number of facts or network nodes. In fact some of the models of associative memory,
like the Cerebellar Model Arithmetic Computer (CMAC), which has been derived from data on the cerebellar
function, or the Sparse Distributed Memory (SDM) [4] consists of mappings from the input space to the “fea-
ture space” that blurs the data. In the CMAC system each data point becomes a circle and points that are close

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 25

Knowledge atomsKnowledge atoms

Inputs: elements of reality, problem featuresInputs: elements of reality, problem features

Vt=V1+V2 Vt =I Rt V1 =I R1 V2 =I R2 Rt = R1 +R2

Fig. 9. Feature Space Mapping network with the input-output nodes in the lower layer, iteratively
 determining the values of the unspecified inputs consistent with the knowledge stored in the
 atoms-of-knowledge internal nodes .

in the input space have overlapping circles, enabling generalization. The feature space nodes are connected via
links with adjustable weights to the output units. It is interesting to note that such a simple model based on the
„blurring” of the input data has found many applications in robot control, pattern and signal recognition [67]
and other fields. The Feature Space Mapping model may be regarded as generalization of such models to the
arbitrary fuzzy decision regions. The nodes of the Feature Space Mapping network compute functions that de-
fine the nonzero regions of the feature space. In the CMAC model hashing functions are used to map these
nonzero regions into the physical memory and to retrieve them. In the Feature Space Mapping one-
dimensional searching procedures and bumptree hierarchical organization of the network are used to find facts
in the feature space.

An adaptive system should not change itself into a lookup table but it should achieve good data compression
for a large amount of data. To avoid an excessive number of facts in the feature space and to preserve good
generalization the training data is represented in the Feature Space Mapping system as fuzzy facts. Learning of
large amount of data is done in the same way as in the Learning Vector Quantization (LVQ) methods [8]. In-
stead of the codebook vectors mc separable functions realized by the network nodes are used and instead of the
distance of the codebook vectors to the new input data X fast searching procedures based on the bumptree hier-
archical network organization are used to determine the nodes nearest to the point X. The Feature Space Map-
ping adaptive system tries to minimize a local error function

(4.3)E[FW] = Σ
i=1

N

Σ
j∈O(Ci)

Ki

Xj − Ci


 (Yj − FW(Xj))2

where the kernel functions Ki and the neighborhood definitions O(Ci) depend on the problem. The minimi-
zation is done by adapting the internal parameters of the node functions by trying to cover a rather large part of
the feature space. In some applications where facts are sharply defined less generalization is preferred in the
inference procedure. Then facts are well localized and the feature space is almost empty. In other applications
the feature space should be divided into decision regions that cover the whole space.

Learning large amounts of data in an unsupervised way may lead to the self-organization of facts in the fea-
ture space. To achieve this self-organization in Feature Space Mapping systems each new data point X is as-
signed to an existing fact or a new fact is created. If the new fact is assigned to the existing fact F than the fact
F is moved in the direction of X and also all facts in the feature space within a certain radius from X are
moved towards it. This algorithm finds in an unsupervised way interesting features in the data and is useful in
the cluster analysis of the data. Formation of very interesting self-organizing topological maps of patterns in a
one and two-dimensional sheets of neurons using such algorithm has been described by Kohonen. The unsu-
pervised learning in Kohonen's Self-Organized Feature Mappings (SOFM)[9] is connected with the mapping
from a high dimensional data or input space (represented in Kohonen's model by the weight vectors and in the
Feature Space Mapping model by the feature space) to a low-dimensional (usually one, two or three-
dimensional) target space in which network nodes (neurons) are placed. Topological relations in the data space
are to some degree reflected in the relations among excitations of neurons in the target space. It is well known
that much of the brain's activity is based on two-dimensional topographical maps (tonotopic, somatosensory,
visual). Information in the input space is contained not only in the facts but also in the topography of the input
space, that is in the metric relations between the facts occupying the input space. There is no reason why this
should be an Euclidean space. Those facts that tend to appear together, in the syntactic or in the semantic
sense, are placed close to each other - this is possible if the coordinate system is curved. Since it is hard to
draw or even imagine more than 3-dimensional feature space a method of visualization of high dimensional
facts and topographical relations among them could be useful. In the Feature Space Mapping system this is
achieved by the direct mapping of the feature space to some low-dimensional target space. This mapping ful-
fills conditions that minimize the measure of the topography preservation. An example of such measure is
[69]:

(4.4)D1(r) = Σ
i>j

k
(Rij − r ij)2

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 26

Here Rij are fixed numbers obtained from computing the distances between facts in the feature space and rij

are unknown distances between their images in the n-dimensional target space. This function is positively de-
fined and is equal to zero only if the distances between the objects in the target and in the input space are iden-
tical. In general this is not possible since the two spaces have different dimensions. The minimum of this
function corresponds to metric relations of k objects mapped to the n-dimensional target space resembling as
closely as possible the original relations in the input space. Should it happen that the data lies on a plane em-
bedded in the input space such mapping to two dimensions should recognize this fact and restore perfectly the
metric relations among all objects. The minimization of the D1 function leads to the same type of self-
organization in the target space as the approach of Kohonen [7]. The advantage of the direct mapping is two-
fold. First, the feature space in the Feature Space Mapping model is more flexible than in Kohonen's network
and second, the maps obtained by the direct mapping are free from random distortions that are inherent in Ko-
honen's algorithm. The direct mapping with topographical constraints allows to reduce the complexity of the
input data and to view the relations among data items in the feature space in one, two or three dimensions.

4.5 Time-series forecasting

Most accurate results in prediction of chaotic time series are obtained using a combination of expert system
(to account for discontinuous events) and universal approximators such as neural networks. For example, pre-
diction of power consumption based on such hybrid models work much better than other methods [68]. Simple
linear autoregression leads to a very poor performance, as documented in a number of papers on time-series
analysis. The trick in time-series is to analyze not the dependence of y=f(t) but rather
y(t+1)=f(y(t),y(t-1)..,y(t-k)).

Feature Space Mapping has not yet been applied to the time-series forecasting, but similar models give for
such problems quite good results, highly competitive with other advanced approaches. Moody and Darken pro-
posed an architecture using a single-layer of locally tuned processing units of the gaussian type [42]. They have
used it in the time-series prediction obtaining much better results than with the backpropagation network based
on sigmoidal functions. Resource Allocation Networks [44] and function estimation networks [45] were tested
on the Mackey-Glass chaotic time series with excellent results. Therefore Feature Space Mapping should lead
to similar accuracy.

5. Summary

The Feature Space Mapping approach has been introduced in this paper. The approach is based on tthe di-
rect modeling of the input data in the feature space. Facts and other types of data are represented by fuzzy ob-
jects in the feature space. These objects may have a symbolic interpretation but they are multidimensional and
cannot be decomposed into a symbolic label and other features. Many theoretical aspects are developed without
reference to the final realization of the system. For example, classification, approximation, association and
generalization can be discussed on purely theoretical grounds as processes in the feature space.

Different network realizations of this idea are possible and some of them have been presented. The node
processing functions of the network should localized and separable. A number of separable node functions suit-
able for modeling multidimensional densities of arbitrary shapes have been discussed. These functions model
fuzzy objects in the feature space. Nodes of the network act as filter devices around specific data points rather
than as threshold devices characteristic to multilayer perceptrons. One way of looking at these processing ele-
ments is from the point of view of the theory of fuzzy sets [65]. Each fact has a localized membership function
defined by a separable function in a multidimensional feature space. Constructive algorithms are used to create
the network of optimal complexity for the problem at hand by adding more nodes or removing existing nodes
of the network if necessary. The network scales linearly with the number of fuzzy facts stored and is ideal for
parallel processing.

The Feature Space Mapping combines characteristics specific to neural networks and to expert systems. It
may be classified as a neurofuzzy system. The neural characteristics include unsupervised learning and self-
organization of data; learning from examples (supervised learning); association, generalization, and formation

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 27

of new categories; fine tuning of internal representations of data for high accuracy of classification and ap-
proximation. Learning is very fast and is done in one pass over the training data. Gradient techniques are ap-
plicable for forming associations. The use of a multi-scale approach (focusing and defocusing) for exploring
the relevant parts of the feature space is encouraged. Because of the localized representation of the network
node functions the Feature Space Mapping system may be analyzed in detail and full control over all associa-
tions and generalizations is retained. A typical neural network based on a distributed representation creates
many problems, for example it is hard to analyze, learns slowly and from time to time exhibits an unpredict-
able behavior, including catastrophic forgetting of all associations learned. The number of adjustable parame-
ters in an adaptive system may be much smaller if the approximating functions realized by the network nodes
will include functions specific to the problem at hand. Feature Space Mapping is not restricted to gaussian
functions, although for some applications gaussians are indeed an optimal choice.

The expert system characteristics include: explicit, localized representation of knowledge by multidimen-
sional objects with symbolic and non-symbolic components; learning from general laws; representation of
fuzzy facts; straightforward implementation of the fuzzy expert system production rules; reasoning mechanism
based on searches using the knowledge contained in the feature space, with the depth of search equal to the
number of unknown features only; use of many search strategies, metaconcepts and metastrategies. The knowl-
edge is represented by objects localized in the feature space and by the metric relations among these objects
and therefore is easy to analyze. Knowledge represented in the distributed systems is delocalized and is hard to
analyze [70]. Due to separability of the network node processing functions it is easy to focus on a single un-
known variable, one after another. Expert systems, including fuzzy expert systems, are not able to use “intui-
tive” knowledge, derived from examples while in the Feature Space Mapping system such knowledge,
although hard to formalize in rules, is also used.

Among the issues not discussed here are applications of the Feature Space Mapping to model the human
conceptual space. Mathematical models of human behavior have been based on the theory of catastrophes in
the sixties but they failed due to the global character of the elementary catastrophes and the low dimensionality
of the parameter space (only 4 parameters are allowed, otherwise the number of elementary catastrophes be-
comes infinite). Semantic memory, based on the semantic feature space, has been discussed by cognitive psy-
chologists already in the 70-ties [66] and the topography of the semantic spaces found in the psychological
experiments is quite similar to the topography obtained by the self-organized semantic mapping [7]. The same
results are obtained by the direct mapping from the feature space to the two-dimensional target space [69] that
 simulates the feature detection and specialization in the cerebral cortex.

Feature Space Mapping may be derived as special case from the general concept of a mind space and a lan-
guage describing mind events [71]. Such models offer also an interesting perspective on the issues concerning
the foundations of cognitive sciences, such as the famous mind-body problem. Many networks (brains or bod-
ies) may realize the same function (mind) and many functions may be realized by the same network. The be-
havior of the system is determined by the knowledge contained in an abstract mind space (in this paper feature
space). The mind space is an approximation to the true dynamics oof the brain and the objects in this space are
nondecomposable, multidimensional mixtures of sensory, motoric, abstract and hidden, internal features. Both
aspects, mind and body, or abstract mind space and hardware network realization, are thus just two aspects of
the same system. Nevertheless the language of neuronal excitations (states of the neural network) is not useful
for description of mental events, and vice versa, psychological concepts (stored in the mind space) are useless
for description of neural events.

A number of possible applications of the Feature Space Mapping system in physics and chemistry have been
indicated, such as creating intelligent knowledge bases or the qualitative analysis of complex systems. Feature
Space Mapping already now deserves the name of a universal adaptive system. Theoretical foundations and
software implementations of such universal systems should become one of the most important research topics
in the near future. It is not yet clear what are the limitations of such systems.

Acknowledgments

W.D. gratefully acknowledges support of the Max-Planck Institut für Astrophysik during his visits in
Garching. This research has been supported by the grant from the Committee of Scientific Research (KBN). It
is a pleasure to thank Prof. 0� .áREXNRZVNL� Mr. Norbert Jankowski and Mr. Antoine Naud for interesting dis-
cussions on numerous subjects related to this paper.

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 28

5HIHUHQFHV

[1] J.A. Anderson, and E. Rosenfeld, (Eds). Neurocomputing: Foundations of Research. (The MIT Press: Cam-
bridge, MA.(1988)); J.A. Anderson, A. Pellionisz, and E. Rosenfeld, (Eds). Neurocomputing 2: Directions
for Research. (The MIT Press: Cambridge, MA. 1990)

[2] J.L. McClelland and D.E Rumelhart, Explorations in Parallel Distributed Processing: Computational Mod-
els of Cognition and Perception (The MIT Press, Cambridge, MA 1986)

[3] M. Caudill and C. Butler, Naturally Intelligent Systems. (The MIT Press: Cambridge, Massachusetts,
1990); D.S. Levine, Introduction to Neural and Cognitive Modeling. (Lawrence Erlbaum: Hillsdale, N.J
1990); M. Zeidenberg, Neural Networks in Artificial Intelligence. (Ellis Horwood, Ltd., Chichester. 1990);
R. Hecht-Nielsen, Neurocomputing. (Addison Wesley, 1990); J. Hertz, A. Krogh and R. Palmer, Introduc-
tion to the Theory of Neural Computation. (Addison-Wesley: Redwood City, California 1991)

[4] P.D. Wasserman, Advanced Methods in Neural Networks. (Van Nostrand Reinhold: New York, 1992)

[5] B. Widrow, M. A. Lehr, Proceedings of the IEEE 78 (1990) 1415-1442

[6] B. Humpert, Comput. Phys. Commun. 58-75 (1990) 223

[7] T. Kohonen, Neural Networks 1 (1988) 3-16

[8] T. Kohonen, Proceedings of the IEEE 78 (1990) 1464-1480

[9] T. Kohonen, Self-organization and Associative Memory. (Springer-Verlag, New York, 1984, 2nd Edition:
1988; 3rd edition: 1989).

[10] A. Cherubini and R. Odorico, Comput. Phys. Commun. 72 (1992) 249

[11] Communications of the ACM, March 1994

[12] W. Duch and G.H.F. Diercksen, Comp. Phys. Commun. 82 (1994) 91-103

[13] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Learning representations by backpropagating errors.
Nature, 323 (1986) 533-536; D.E. Rumelhart and J.L. McClelland, Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, (The MIT Press, Cambridge, MA 1986), Vol.1, pp 318-362; P.J.
Werbos, Proc. of IEEE 78 (1990) 1550

[14] P. Peretto, An Introduction to the Modeling of Neural Networks (Cambridge Univ. Press, UK 1992)

[15] T.L.H. Watkin, A. Rau and M. Biehl, Rev. Mod. Phys. 65 (1993) 499

[16] W. Duch, Neural Network World 4 (1994) 645-654; Towards Artificial Minds, in: Proc. of I National
Conference on neural networks and applications (Kule 1994), p. 17-28

[17] J.J. Hopfield, Proc. Nat. Acad. Sci. 79 (1982) 2554; ibid 81 (1984) 3088

[18] D.H. Ackley, G.E. Hinton and T.J. Sejnowski, Cognitive Science 9 (1985) 147

[19] E.B. Baum, Neural Comput. 1 (1989) 201-207

[20] R.O. Duda, P.E. Hart, Pattern classification and scene analysis (New York, NY, Wiley 1973)

[21] G.S. Sebestyen, Decision-making Processes in Pattern Recognition (Macmillian, New York 1962)

[22] C.M. Bachmann, L.N. Cooper, A. Dembo, O. Zeitouni, Proc. Nat. Acad. Sci. 21 (1987) 7529-7531

[23]B.G. Batchelor, Methods of pattern classification. In: “Practical Approach to Pattern Classification” (Lon-
don, Plenum 1974); A.G. Arkadev, E.M. Braverman, Teaching computers to recognize patterns (Academic
Press, London 1967)

[24] D.L. Reilly, L.N. Cooper, C. Elbaum, Biol. Cybern. 45 (1982) 35

[25] S.N. Kavuri, V. Venkatasubramanian, Comp. Chem. Engng 17 (1993) 765

[26] A. Nigrin, Neural Networks for Pattern Recognition. (Cambridge MA: The MIT Press 1993).

[27] G. Cybenko, Math Control Systems Signals 2 (1989) 303; K. Funahashi, Neural Networks 2 (1989) 183;
K. Hornik, M. Stinchcombe and H. White, Neural Networks 2 (1989) 359; K.L. Jones, Proceedings of the
IEEE 78 (1990) 1586

[28] E.J. Hartman, J.D. Keeler and J.M. Kowalski, Neural Computation 2 (1990) 210; J. Park and I.W. Sand-
berg, Neural Computations 3 (1991) 246

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 29

[29] V. K$rková, K. Hlaváþková, Proceedings of the Neuronet'93, Prague (1993)

[30] H. Leung, S. Haykin, Neural Computation 5 (1993) 928

[31] C. Bishop, Neural Comput. 3 (1991) 579-588

[32] B. Ripley, Flexible non-linear approaches to classification. In: From Statistics to neural networks. Theory
and Pattern Recognition Applications, eds. V. Cherkassky, J.H. Friedman, W. Wechsler (Springer Verlag
1994)

[33] D.F. Specht, Proc. of IEEE Intern. Conference on Neural Networks 1 (1988) 525-533

[34] D.F. Specht, IEEE Transactions on Neural Networks 2 (1991) 568; H. Schiøler, U. Hartmann, Neural
Networks 5 (1992) 903-909

[35] R. R. Trippi, E. Turban E., Neural Networks in Finance and Investing, (Chicago, Ill, Probus 1992).

[36] J. D. Farmer, J. J. Sidorowich, Phys. Rev. Letters 59 (1987) 845-848; M. Casdagli, Physical Review A, 35
(1989) 335-356; J.B. Elsner, J. Phy. A 25 (1992) 843-50

[37] T.D. Sanger, Neural Comput. 3 (1991) 67-78

[38] R. Durbin, D.E. Rumelhart, Neur. Comput. 1 (1989) 133

[39] E. Hartman and J. D. Keeler, Neural Computation 3 (1991) 566

[40] IEEE Transactions on Circuits and Systems 40 (1993), No. 3, speciall issue on cellular neural networks.

[41] T. Poggio, F. Girosi, Proc. of the IEEE 78 (1990) 1481; M.J.D. Powell, “Radial basis functions for mulit-
variable interpolation: a review”, in: J.C. Mason and M.G. Cox, eds, Algorithms for Approximation. (Clar-
endon Press, Oxford 1987); Dyn N, Interpolation and Approximation by Radial and Related Functions, in:
Approximation Theory VI, Vol. 1, C.K. Chiu, L.L Schumaker and J.D. Watts (Eds) (Academic Press
1989).

[42] J. Moody, C.J. Darken, Neural Comput. 1 (1989) 281-294 ;

[43] E.Alpaydin, GAL: networks that grow when they learn and shrink when they forget. Int. Computer Sci.
Inst., Berkley, CA Tech. Rep. 91-032 (1991)

[44] J. Platt, Neural Comput. 3 (1991) 213

[45] V. Kadirkamanathan, M. Niranjan, Neural Computation 5 (1993) 954

[46] B. Fritzke, Vector quantization with growing and splitting elastic net, in: ICANN '93: Proceedings of the
International Conference on artificial neural networks, Amsterdam 1993

[47] S.E. Fahlman, C. Lebiere, Tech. Rep. CMU-CS-90-100, Carnegi-Mellon School of Comp. Sci. (1990)

[48] R. Penrose, The Emperor's new mind (Oxford Univ. Press 1989); Shadows of the Mind (Oxford Univ.
Press 1989)

[49] A. Turing, Mind 59 (1950), reprinted in: D.R. Hofstadter, D.C. Dennett, The mind's I (Basic Books, New
York 1981)

[50] L.M. Encarnação, M.H. Gross, An adaptive classification scheme tto approximate decision boundries us-
ing local Bayes criteria - the “Melting Octree” Network. Int. Computer Sci. Inst., Berkley, CA Tech. Rep.
91-047 (1992)

[51] L. Bottou, V. Vapnik, Neural Comput. 4 (1992) 888-901

[52] V. Vapnik, L. Bottou, Neural Comput. 5 (1993) 893-909

[53] R.A. Jacobs, M.I.Jordan, S.J. Nowlan, G.E. Hinton, Neural Comput. 3 (1991) 79-87

[54] J. Buhmann, H. Kühnel, Neural Computation 5 (1993) 75-88

[55] J.H. Bentley, Commun. ACM 18 (1975) 509-517

[56] L. Breiman, J. Friedman, R. Olshen, C.J. Stone, Classification and regression trees (Wadsworth, Belmont,
CA 1984)

[57] J.H. Friedman Multivariate adaptive regression splines, Tech Rep. 102 (1988), Stanford Univ. Lab. for
Computational Statistics.

[58] Y-f. Wong, Neural Comput. 5 (1993) 89

[59] G.J. Montgomery, K. C. Drake, Neurocomputing 2 (1991) 97

[60] J-S. R. Jang, C_T. Sun, IEEE Transactions on Neural Networks 4 (1993) 156-158

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 30

[61] R. Sun, A connectionist model for commonsense reasoning incorporating rules and similarities, in:
Knowledge Acquisitions (Academi Press, Cambridge 1992).

[62] S. Omohundro, Complex Systems 1 (1987) 273-347; Physica D 42 (1990) 307-321; Bumptrees for effi-
cient function, constraint and classification learning. Im: Advances in neural information systems 3, eds.
Lippman, Moody and Touretzky (Morgan Kaufman Publishers, San Mateo, CA 1991)

[63] Y-H. Pao, Adaptive Pattern recognition and neural networks (Addison-Wesley, Readnig, MA 1989)

[64] P. Niyogi, F. Girosi, AI Memo 1467, CBCL Memo 88, MIT AI Laboratory, 1994 (available via ftp from
publications.ai.mit.edu)

[65] G.J. Klir and T.A. Folger, Fuzzy Sets, Uncertainity and Information. (Prentice Hall, NJ 1988)

[66] G.H.F. Diercksen and G.G. Hall, Computers in Physics 8 (1994)

[67] R.E. Mayer, Thinking, problem solving, cognition (WH Freeman 1992); D.E. Meyer, cognitive Psychol-
ogy 1 (1970) 242-300

[68] W.T. Miller III, F.H. Glanz and L.G. Kraft, Proc. of the IEEE 78 (1990) 1561

[69] K-H. Kim, D-Y. Park, J-K. Park, Expert System Application to Power Systems IV, Melbourne (1993), pp.
164-168

[70] W. Duch, Open Systems and Information Dynamics 2 (1995) 295-302

[71] S.I. Gallant, Neural network learning and expert systems (Bradfor Book, MIT Press 1993)

[72] W. Duch, A solution to the fundamental problems of cognitive sciences (1994, submitted to
PSYCOLOQUY)

W. Duch and G.H.F. Diercksen / Feature Space Mapping as a Universal Adaptive System 31

