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Uncertainty of data, fuzzy membership functions,
and multi-layer perceptrons.

Whiodzistaw Duch

Abstract— Probability that a crisp logical rule applied to
imprecise input data is true may be computed using fuzzy
membership function. All reasonable assumptions about in-
put uncertainty distributions lead to membership functions of
sigmoidal shape. Convolution of several inputs with uniform
uncertainty leads to bell-shaped Gaussian-like uncertainty func-
tions. Relations between input uncertainties and fuzzy rules are
systematically explored and several new types of membership
functions discovered. Multi-layered perceptron (MLP) networks
are shown to be a particular implementation of hierarchical sets
of fuzzy threshold logic rules based on sigmoidal membership
functions. They are equivalent to crisp logical networks applied
to input data with uncertainty. Leaving fuzziness on the input
side makes the networks or therule systems easier to under stand.
Practical applications of these ideas are presented for analysis of
questionnaire data and gene expression data.

Index Terms— Neural networks, multi-layer perceptrons, ex-
traction of logical rules, fuzzy systems, neural output functions.

|I. INTRODUCTION

and an Estimated-age, evaluated by visual inspection, is used.
Estimated age is a fuzzy numbér(Eqge; w), a relatively
broad bell-shaped function expressing the degree of belief
that the age is around the estimated value. The shape of the
F (Eage; ) function depends on parameters) (that include
racial features, individual experience in age evaluation, and
the age itself (getting broader for middle values of age). A
crisp rule applied to the fuzzy inp#(Eage; w) > 16 is true to

a degree described by some membership fundigs(Eage),

and therefore this rule may be replaced by a fuzzy rule,
If (Rie(Eage) >Th) then “Let the person in”. The shape of
this membership function depends on the parameters defining
F (Eage; ) uncertainty distribution function. The threshold Th

in the cinema example is shifted towards lower values to let
younger customers in.

Although the theory developed below is applicable to any
fuzzy system the focus will be on classification rules. Relations
between input uncertainty and membership functions may in
many important cases be estimated analytically. In particular

UZZY logical rules found numerous applications in clasmost assumptions about localized distribution of input uncer-
sification, approximation and control problems [1], [2]tainties lead to membership functions with sigmoidal shapes.

[3], [4], [5], [6]. Many useful algorithms to define and optimizeSuch functions are quite common in multilayer perceptron net-
fuzzy membership functions exist. Comprehensibility of thes&orks (MLPs), with two nodes forming a soft window to filter
rules unfortunately decreases quickly with the growing size #fe data. Putting fuzziness on the input, rather than on the rule
the rule set, and the sophistication of membership functiog#le, enables application of fuzzy concepts to any black box
and aggregation operators used to draw conclusions. Large satstem. Sampling from input uncertainty distribution will be
of fuzzy rules form frequently classification or control systemgquivalent to the use of specific mutidimensional membership
as opaque as any black box solution based on neural networfkgctions that may be estimated from such numerical simula-
There is a direct, although rarely explored, relation betwedions. The effects of increasing input uncertainty (or changing
uncertainty of input data and fuzziness expressed by membether assumptions about it) may be easier to understand and
ship functions. Various assumptions about the type of inpa@ntrol than the effects of changing parameters of membership
uncertainty distributions change the discontinuous mapping#ctions on sets of fuzzy rules. For large input uncertainties
provided by crisp logic systems into more smooth mapping¥edictions of class memberships may reachetpeiori rates,
that are implemented in a natural way by fuzzy rules usinghile for crisp input values predictions close to certainty may
specific types of membership functions. On the other harf¢ possible.
shifting uncertainty from fuzzy rules to the input values may This reasoning allows for an interesting interpretation of
simplify logical rules, making the whole system easier t&ILP networks in terms of fuzzy rules. Equivalence of radial
understand, and allowing for easy control of the degree 6@sis function (RBF) networks with fuzzy systems has been
fuzziness in the system. well established [5], [7]. Much less work has been devoted
Fuzziness of inputs has frequently natural interpretation at@ explore relationships between MLP networks and fuzzy
may be modeled directly, while an equivalent modification asystems. Benitez et all [8] showed that for a three-layer MLP
the membership function may not be so obvious. For exampRetwork a fuzzy additive system may be constructed that
in many countries an age limit to see a movie in cinema Ralculates exactly the same mapping. Moraga and Temme
based on a crisp decision rule, If (True-age6) then “Let [9] show functional equivalence between MLP networks and
the person in”. In practice true age is not readily availabi#izzy models. In both cases aggregation operators are defined
that lead to the replacement of nonlinear neural functions
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show why sigmoidal functions are so important, or how tdéor rule types, input uncertainty, and resulting membership
find deeper connections of rule-based crisp logic systems witmctions S, are considered below.

MLP networks. The approach proposed here is not based orx > a rule, uniform U, semi-linear S.

a specific aggregation operator, and its practical consequence¥he use of crisp logical rule with uniform input uncertainty
are quite different. is equivalent to the use of semilinear membership functions

In the next section relations between the input uncertaifer sharply defined input. The truth value of the> a rule
ties and membership functions are discussed, first for o described by the semilinear membership funct®arix —
dimensional problems (single input variable), and then fa;Ax), linear in the(a— Ax,a+ Ax) interval centered at=a
multidimensional problems. The third section shows somand constant outside of this interval. Using this membership
applications of these ideas. Section four presents relaticiosiction is equivalent to assumption thaiay be anywhere in
with multi-layer perceptrons. Significance of these results the interval(x— Ax,x+ Ax), that is it has uniform uncertainty
discussed in the last section of this paper. function U (y — x;AX) = O(y — X — AX) — O(y — X + AX). AX
is used here and below to designate the interval around the
center of the uncertainty distribution. Symmetric uncertainty
functionsU (y — x;w) for x > a rules lead to antisymmetric

In many applications crisp logic rules are sufficient. Acmembership function§(x— a; w) — 1/2 (or without the shift,
curacy of crisp rules extracted for a number of real worl@(x_ a;w) + S(—x+a,w) = 1), and forx € (a,b) rules to
datasets proved to be higher than of any other classificatigpmmetric function§(x— (a+b)/2;w). In generak should be
methods, including fuzzy-rule based systems [10]. Since thated as a parametei(y;x, w), but for functions considered
number of parameters defining crisp rules is minimal, simplgere the dependence aris taken into account by shifting
and understandable descriptions of analyzed data are obtainggx, that is usingJ (y— X w).

Therefore a good strategy is to improve crisp rule-basedThe fuzzy ruleS;(x — a;Ax) > 1/2 means that the degree
systems without loosing their advantages. of truth of the equivalent crisp rube> a with the uncertainty

There are several problems with crisp rules [10]. The yeanctionU (y — x;Ax) is 1/2. The fuzzy ruleS; (x— a;Ax) > 8
or no answers are not acceptable in many situations, leadiggequivalent to the crisp rulg > a+ (26 — 1)Ax with such
to sudden changes for small perturbations of the data samplggertainty function.
that lie near decision boundary. Classification systems should
provide an estimation of posterior probabilifg(Cy|X) of
assigning vectoX = {X1,Xp,...Xn} to classCy, or at least
membership degrees that change smoothly between adjace-
points in the feature space (assuming that some features a*
continuous). Crisp rules are difficult to optimize, requiring ..
non-gradient procedures to minimize discontinuous cost func.:
tion (usually the number of classification errors). Continuous™
values of membership functions should make the optimizatior°f
process of a set of rules easier.

Introduction of fuzziness is not only desirable, but in Mostig. 1.  Uniform input uncertainty for = 0 and the semilinear membership
cases it is also unavoidable. Values of continuous inputs takignction of the truth degree of the> 0 rule.
from tests or observations have finite accuracy. Finding fuzzy
system that is equivalent to crisp rule system applied to X< (a,b) rule, uniform U, triangular S.
uncertain feature values allows for controlled introduction of Generalization ok > arules to rules involving two interval,
fuzziness. Ran(X) true if x € (a,b) and false otherwise, is straightforward

(b > a). Using expressions fox > a all formulas forx < b
. . o may be deduced from symmetry principles and final formulas
A. One-dimensional situation. obtained by subtracting the two cases.

The simplest situation involves a single inpxt and a Consider first the uniform uncertainty functibh(y — x; Ax)
crisp logic rule premisex > 0, or x € (0,0). Suppose that with Ax= (b—a)/2, matching exactly the rule support. For
X is measured with accuracyl. Then the uncertainty of X = xm = (a+b)/2 in the middle of the interval the degree
x is described by a uniform distributiod (y—x;1) =1 for of fulfilment is 1, but for smaller or largex it decreases
y € [x—1,x+1], and zero outside (hereis a parametery in linear way, reaching zero for = xm=+ 2Ax. Thus the rule
an independent variable). This is a rectangular membershra,(X) is true to the degree described by a triangular member-
functionU (y—x; 1) = O(y—x—1) —O(y—x+1), centered on ship functionTz(X — Xm; 2AX) = S;(X — &;AX) — S;(X — b; Ax),

y = X, the average measured (or estimated) input vaB(e} centered am, the middle of the(a,b) interval. Triangular

is the step function. Ik > +1 then the rule is certainly true; if membership functions arise in the unlikely situation in which
x< —1 it is false. Otherwise it may be true to a degree equtiie uniform uncertainty of input values matches exactly the
to S1(xAx) = S1(x;1/2) = max0,min(1, (x+1)/2)). This is interval defining the rule. In practical application there is
a semi-linear membership function, zero fox —1, one for usually no reason for such assumption to be true.

x> +1, and ¥2 for x=0 (see Fig. 1). Various assumptions x &€ (a,b) rule, uniform U, trapezoidal S.

Il. INPUT UNCERTAINTIES AND MEMBERSHIP FUNCTIONS
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Trapezoidal membership functions are obtained for rule
intervals that are either broaddr-{ a > 2Ax) or more narrow

(b—a < 2Ax) than input uncertainty. The main difference ? (x—8) (2Bxx—a) X<a-hx
between the two cases is that for the narrow rule intervals A J 2T T - x€la-4xa)

i . SZ(X_ a AX) - —a) (2AX—X: (3)
the degree of fulfillment is never 1, but reaches at most %Jr% x € [a,a+Ax]
(b—a)/2Ax, so the trapezoid is not normal. The center of 1 x> at Ax
the rule intervakm = (a+b)/2 will be the symmetry point of
the trapezoid. The crisp rule with triangular uncertanty is equivalent to a

fuzzy rule with &2 membership function; by analogy to the
Ta(X = Xm; @, b, AX) = (1) semi-linear functionSy(-) this function will be called semi-

uadraticS;(+). It has sigmoidal shape, similar to the error
- / Rab(y)U (y =X Ax)dy = / Uy =xax)dy ?unction and( I)ogistic funcgt]ions (see beplow). It is much faster to
= S(x—g Ax) Si(X— b; AX) compute than the logistic or other types of continuous sigmoid-
shape functions, has very simple gradients and constant second
This function is linear forx € [a— Ax,a+ Ax], constant derivatives. It should be useful as the neuron output function
between[a+ Ax,b — Ax], and linear in[b — Ax,b+Ax], with  in MLP algorithms [21], significantly speeding up the calcu-
zero values outside of these regions. Trapezoidal memberspifions.
functions result from crisp interval-based rule applied to inputs
with uniform uncertainty. Triangular and trapezoidal functions
may also be used to model feature uncertainty. )
It is important to realize that triangular and trapezoidal”
functions appear in the dual role here: they may represer.
input uncertainty distribution (as a function wf centered on
X), or they may serve as membership functions (as a functio”
of x) for fuzzy rules that provide the same results as the cris|.
rules applied to uncertain inputs. Typical fuzzy system use:
this type of membership functions only in this second role,
with positions and width parameters fixed as a result of ekig. 2. Triangular uncertainty and the semiquadratic membership function
plicit modeling or some optimization procedures. Uncertaint§fat results from its integration.
distributions are centered on the value of the input variable
x, while membership functions are fixed at positions derived X € (a,b) rule, triangular U, semi-quadratic S
from the logical rule intervals,b. Uncertainty distributions A crisp rule Rap applied to the triangular input number
are of course also membership functions for fuzzy numbersfa(y—X;AX) is true to a degree given by a combination of two
The membership functions derived above should be norm&@ft trapezoidal function§,(x— a; Ax) — Sy(x — b; Ax), which
ized to facilitate standard interpretation. For a crisp fRilg, has very similar sigmoidal shape to the function shown in Fig.
(wherea or b may be infinite) and any functiol (y;x, w) 5. If the support 2x of T3() is larger tharb— a the truth value
representing uncertainty of variabienormalized membership IS @lways lower than one. o .
function representing the degree of fulfillmeniR) of the rule X € (& b) rule, trapezoidal U, semi-linear-quadratic S.

is given by the integral: Trapezoidal uncertainty functions are constructed from a
combination of uniform function centeredxtwith x+ Ax flat

fb U (y; x, w)dy top region, and linear slopes with non-zero values (support)
(xabw) =3 (2) between[x—Ax— 2t,x—Ax] on the left side andx+Ax,x+

JZU (% w)dy Ax+ 2t] on the right side. They may be constructed as a
Fuzzy rulet(x;a,b) > 8 is equivalent to a certain confidencedifference of two semi-linear functions:
Ignivte"ﬁtgecl)év\tll_qe crisp rulex > (a+b)/2. More examples are Ua(y — . AX 1) = Si(y— X+ AX+t:t) — Si(y — X— DX —t;1)
x> arule, triangular U, semi-quadratic S. Crisp rulesx > a with such uncertainty are equivalent to
Suppose that repeated measurements of some feature @izzy rules with semi-linear-quadratic membership function
the mearx with frequency of other valueg decreasing sym- Sj2(x;Ax;t) that is a combination of piecewise constant, lin-
metrically in a linear way with the distandg— x| until zero ear and quadratic functions resulting from integration of the
is reached foy = x+Ax. The uncertainty functiobd (y—x;w)  Ua(y—x;Ax,t) function (see Fig. 3).
has then triangular shapi(y — x; w) = T3(y— X AX), centered  The Sp»(x; Ax,t) function may also be useful for MLP train-
on x and zero ouside th& 4 Ax interval. Thusx is not a ing, because it is inexpensive to compute and the linear part
crisp, but a triangular number, with membership function equagives the MLP network a possibility to find a linear solution,
to a difference of two semi-linear functiong(y — x;Ax) = if it is sufficient. Regularization of network parameters [20]
Si(y— (x—=2x/2);Ax/2) — S1(y— (x+2Ax/2); Ax/2). Crisp rule  tends to make all weighted input values quite small; in effect
x > a with triangular uncertainty functiofiz(y — x; AX) is true only the linear part of the output function is used. For the linear
to a degree: part all second derivatives are zero, significantly simplifying
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calculations of the Hessian matrix used in the second- orde
MLP training procedures [20].

Fig. 4. Gaussian uncertainty and the erf sigmoidal membership function.

Fig. 3. Trapezoidal uncertainty and the sigmoidal quadratic-linear meme\aUSSia@(y_X; AX)' The product of logistic functiond (y_

ship function. X B) =0(B(y—x))(1—a(B(y—x))) has bell-shape that f@=
1.56 slope of the logistic function differs from a standardized
x> arule Gaussan U, erf S Gaussian function({x) = 1) by less than 3.4% at each point.

Gaussian distribution is quite commonly assumed for thaking U (y —x;3,b) = o(Bx+ b)(1—o(Bx—b)) adds a flat
uncertainty of real measurements. In this case the cxispmaximum region around = 0, changing the bell-shape into
values are replaced by a Gaussian number centeredt o soft trapezoidal shape. The difference of the two logistic
with dispersionAx. As in the case of triangular functionsfunctions,STr(x;b) = a(Bx+b) —o(Bx—b), has the same soft
membership functions corresponding to Gaussian uncertaintiegpezoidal shape. In fact these two functions are identical up
have sigmoidal shape. Crisp logical ride- a with Gaussian to a normalization factor:
numberG(y — x; AX) = G(y; XAx) as input is equivalent to a

fuzzy rule with crispx andSG(x— a; Ax) membership function: o(x+b)—a(x—b) o(x+b)(1-0(x—b)) ©)
o(b) —o(-b) o(b)(1-0o(-b))
SG(x— a;AX) _ /oo G(y — x; Ax)dy (4) The .proof is straightforward although a bit tediOL_Js. The
a denominator goes to zero for smal but this expression is
1 {1_ f<x;a)] quite stable from numerical point of view even for= 10,
2 N Such soft trapezoid functions are useful as neural output

functions [21]. It is also easy to prove that the logistic function

where erfu) = —erf(—u) is the error function extended to . . .
) (—u) of a sum of two variables is equal to a ratio of products:

negative values. Generalization f> a rules to rulesR,, =
{Xla < x < b} involving interval is straightforward. For crisp
rule Rap the difference of the twdSG(x — a;Ax) — SG(X —
b; Ax) functions has soft trapezoidal shape (compare Fig. 5),
or a bell-shape for smab — a difference,

o(x+y) = o(x)xo(y) ()
o(x)o(y)
o(x)a(y) +(1-a(x)(1—o(y))

The x operator may be regarded as a fuzzy aggregation

SGZ(;(; a,b,Ax) - ®) operator [8]. The logistic form of uncertainty distributions is
= / G(y — x;AX)dy — / G(y — x;Ax)dy bell-shaped fob = 0 and has soft-trapezoidal shape fox 1
a b or larger. Assuming crisp logic rube> a and soft trapezoidal
_1 {erf<ﬂ> _erf<ﬁ)] input uncertaintySTr (y — x; b) with x as the middle point, the
2 AXv/2 Axv/2 membership function for the fullfilment of the rule is obtained

Error function erf is not used as neural output function bfOM integration:
cause it is rather expensive to compute. Sigmoidal functions of
the logistic typeg(x) =1/(1+exp—x)), are most commonly _ 1 _
used in multilayer perceptrons. The functi®®(x — a;Ax) SLE(x—a;b) ﬁ)/ STr(y —x b)dy = ©)
is approximated very well by the logistic functidBG(x —
Zb/

a;Ax) ~ a(B(a—x)), with B = 1.7Ax. The accuracy of this = oy —x+b)—o(y—x—b))
approximation is within 1% for alk andAx =1 14 eaxth
The assumption of Gaussian input uncertainty is thus = 2b| [W}
equivalent to evaluation of the degree of truth by sigmoidal
functions of the erf type, and to a very good approximation This logarithmic-exponential function has sigmoidal shape
also by logistic functions. Thus the output of a typical MLRwith the linear part in the middle, similar to the semilinear
neuron is equal to the degree of fulfillment of the alogical function with softened edges (Fig. 5). It is continuous and has
rule for inputx that has Gaussian uncertainty. almost linear central part, making it very suitable as the output
A logistic membership function may be obtained frar»  function for MLP neurons. The linear part should prevent
a rule and input uncertainty distribution that is similar to @oo quick convergence to the local minima of the MLP error
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function, providing non-linearity only when they are necessargmall. Other T-norms may be useful in such cases, although
and linear solutions when they are sufficient. simple probabilistic interpretation may be lost. De-correlation

Gaussian functions are frequently taken as membershupinput features, used frequently in signal analysis, solves that
functions. Although approximations to Gaussians may kmoblem at the expense of introduction of linear combinations
obtained from various natural assumptions about input uncertfeatures. Selection of input variables used in rule conditions
tainties the exact form of the Gaussian functions is obtaingdrtially solves the problem of strongly correlated features.
only with an assumption o (y;x,w) O yG(y; x,Ax) type of Many rule extraction algorithms (for example, decision
uncertainty that seems to be hard to justify. Various othérees) partition the feature space into disjoint areas. For any
bell-shaped uncertainty distributions may be considered, amgut vectorX a single rule is active (although for inputs
their dual membership functions found, but perhaps thosdth uncertainties activities of different rules should be taken
mentioned above are the most important. into account). Algorithms that generate a set of conjunctive
crisp rulesR™ covering the same regions of the feature
space require special treatment. Summing and normalizing
probabilities obtained from different rules may give results
quite different from the Monte Carlo simulations. Care should
be taken to count each region only once. Given two rules
RL(X),R?(X) for the same clas€ the probabilityp(C|X; M)
is P(X € RY) +P(X € R%) —P(X € RN R?).

These probabilities are derived from classification syském
rather then directly from data. Estimation of probabilities with
Monte Carlo sampling from high-dimensional distributions
Fig. 5. Soft trapezoidal uncertainty centeredxat 0 with b=>5, and the js a slowly convergent process, therefore whenever possible
log-exp membership function. analytical formulas should be used. In the limit of very large
In this section crisp rules € (a,e) and x € (a,b) were inputu_ncertainty the_ _V\_/hole da_lta range is inclp_ded.Asymptotic
considered. Generalization of thése results to’the sums be%hawor of probabilities assigned by _classme_rs depends on

' n(‘?any factors. Fuzzy rule systems with localized (compact

intervals x € (ay,b1) v x € (ag,b) etc. is not difficult. Any port) membership functions, and radial basis function net-

u
S-norm may b.e used to gggregate.the rgsults. Such ru\%@?ks (RBF) that are equivalent to such systems, may give
have network implementation with single input and a few

; . estimations that converge to thepriori class probabilities for
nodes representing fuzzy rules or neurons in neural networ

Rules with< instead of< conditions are handled by placin thé dataset. Most classifiers, including rule-based systems that
. - . yp Yuse membership functions with non-compact support, decision
intervals between discrete values.

trees, nearest neighbor methods and multi-layer perceptron
neural networks do not have correct asymptotic behavior.
B. Multidimensional situation. Input uncertainty for featur& = X; is given by a member-
Crisp conjunctive ruleR = R1A... ARk, where eachR;, ship functiom(y; x, w), dependent o, with w parameters de-
is a condition of theX; € (a,b;) type (wherea; or b; may scribing its shape. This function represents the degree of belief
be infinite), are easy to handle if all conditions are basdgdr sometimes probability) that valugsnay still be taken as.
on independent, uncorrelated featukgs Each feature has its Membership functions (MFs) may in principle have arbitrary
own uncertainty functiotd (Y;; X;,w) and the probability that shape, estimated from observations. Because the features of
R(X) is true, is equal to the product of the probabilities otthe input vectorX = {X1,X,...Xn} are uncertain instead of
Ti(X) for i =1...k. Thus a fuzzy rule wittt; (X;) membership using a single input vectoX it would be more appropriate to
functions may replace the crisp rule plus uncertainty functionsample from the multidimensional distribution defined by all
For example, if X1 > a; A X > ap) rule premises are used withappropriate MFst;(y; X, ) (symbolic features may not be
uniform assumption about uncertaintl(Y; — X;,AX;) then as appropriate because they usually cannot be fuzzified). From
the result of integration a product of two semi-linear functionthis multi-dimensional distribution a large number of input
S1(X1 —a1;A%1)S1 (X2 — ap; AXp) is obtained. vectorsY € O;(X) may be generated in the neighborhood
Thus a natural T-norm for fuzzy rules equivalent to crisf;(X) defined by MFs around the query vecr
logic rules applied to uncertain inputs is based on sim- Any classification systemM that predicts class labels
ple product of membership functions. Products of various?l(x) = C, including sets of crisp decision rules, decision
membership functions derived in previous section replace threes, neural networks or statistical black-box classification
need to calculate the degree of fulfilment of crisp rules bgystems, may be applied to the setYofvectors. If for N
integration over input distributions. Each conjunctive rule mayectorsY () from this set clas€ has been predicted times,
be implemented as a product node, and for independent ruM§k|X;l\7l,w) =Ng/N is an estimation of the probability that
the sum of outputs from nodes that share the same conclusawector from the neighborhood.(X) will be of assigned
gives the final answer. to classCi by the classification systetd with parameterso
Some features occurring in the ruR may be mutually (including parameters of the sampling procedure). Similar esti-
dependent. If a few strongly dependent features are used imation may also be done if tHd system predicts membership
single rule, product of;(X) probabilities may become quite values or probabilities.
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This Monte Carlo sampling procedure facilitates the re- Artificial neurons, or network nodes, are the basic building
construction of multidimensional membership functions foblocks of MLP networks [20]. Motivated by functions of bio-
any classification system, not just logical rule-based systenhggical neurons artificial neurons implement sigmoidal output
Analytical results for single inputs obtained in the previoufunctions, usually of the logistic type (for a survey of neural
subsection may be approximated using such numerical sinfunctions see [21]). Other types of sigmoidal neuron output
lations, with U (y — x;w) input uncertainty distributions and functions, such as hyperbolic tangent or arctangent functions,
classifiers based on rules with a single premise (a,b). give essentially the same results. Semi-linear functions are
Generalizing these results a good guiding principle is to reometimes used as an approximation to the continuous sig-
quire that probabilities generated from Monte Carlo samplingroidal functions. All these functions estimate the truth of
should be the same as those obtained from the equivalent fuzzycrisp logical rulex > a under various input uncertainty
system. The goal here is to obtain the same results with criagsumptions, as derived in the previous section.
logic system applied to uncertain inputs as with the fuzzy Consider first the simplest example: one-dimensional case,

system applied to crisp inputs. one neuron network. A threshold functid®(x —a) imple-
menting logical rulex > a in case of uniform uncertainty
lIl. RELATION WITH MULTI -LAYER PERCEPTRONS is equivalent to a fuzzy rule with semi-linear membership

Equivalence of fuzzy logic systems with radial basis fundunction. For Gaussian uncertainties sigmoidal erf functions
tion (RBF) networks is well known and has been formallyare obtained, and they are approximated quite well with
proven for Gaussian and other localized functions [5]. Eadbgistic functions. Presenting fuzzy membership functions in
node of the RBF network corresponds to a fuzzy rule. Igraphical form as nodes of a network (Fig. 6) allows for
practice feature selection in RBF networks is rarely donémplementation of the same fuzzy logical functions.
while in fuzzy rule-based systems it is of primary importance.

RBF networks are based on similarity evaluation, while multi

layer perceptrons, the most popular neural network models, ¢ 1t
based on non-linear soft discrimination. RBF nodes frequent W>.0(V\§X-t)
use multidimensional Gaussian functions, calculating produc e S
of one-dimensional membership functions. Such nodes ci
culate the truth value of conjunctive logical rules applied t V\é oW, x-t)
uncertain inputs.

Results of the previous section showed that memberst +1 t

functions based on various trapezoidal and soft trapezoic

functions arise for interval-based premises (a,b) under

many assumptions about input uncertainty. Although produc s @ D a b
of these functions are not radial, they can still be used as outj Type 2
functions of neurons in basis function (RBF-like) networl

architectures [21]. Functions that are products of componer  types Type 4

depending on single variabl&(X) = f1(X1) f2(X2) ... fn(Xn),

are called separable. Radial basis functions are usually t.u.

separqble, with an important exception of.the multidir.nension.lgilgj 6. Neural implementation of 4 types of crisp conditiah < (a.b)

Gaussian function with diagonal covariance matrix that @ g — s — 1 ando(.) with infinite slopes: type 1 forf =Wo — 1. t —

a product of one-dimensional components. Feature Spage =b, type 2 forwy, = —1, Wo =1, t = —a,t’ = b, type 3 is obtained from

Mapping networks [14], [15] are based on separable functiorfgpe 1 withb = and type 4 is obtained from type 2 with= —co.

therefore their neurons evaluate the truth of conjunctive logical

rules. Products ofSTr(X;;wy) soft trapezoidal functions are Input weights provide scaling for feature values, and the

used in the Incremental Network (IncNet) neural networkign of weight determines the type of inequality and the

implemented in the Ghostminer package [16], [17]. threshold of the neuron determines the valua¢$ee Fig.6).
Basis function networks with product nodes implement corFhe truth value of premises is thus measured by the value of

junctive rules. Multi-layer perceptrons are based on threshattgmoidal functionS(\Wx— a) for input x. The network based

logic. Increasing input uncertainty from zero to some finiten such nodes sums the conclusions of all rules referring

value is equivalent to the transition from step-like thresholth the same class in the output layer. The output weights

functions®(W - X) to the smooth sigmoidal functions(W - estimate the relative importance of these rules in reaching the

X). This transition converts networks implementing crisp logfinal conclusion. FoWx € (a,b) rule a combination of two

ical functions using threshold logic into MLP networks. TheéS(Wix—t) — S(\Wox—t’) neurons should be used, and this can

theory of logical networks has been well developed in the earither be implemented by a single node, or by a linear neuron

days of neural models, starting with McCulloch and W. Pitti the output layer. For example, Wy = +1,W, = —1 and

[19]. This theory became important for construction of digitathresholds area,b a rule withx € (a,b) is implemented by

circuits. Relations between fuzzy logic and their networkhe network with one input, two hidden nodes and one linear

implementations have never been analyzed to comparablatput node, as in Fig. 6.

extent. More hidden neurons may be added to implement other rule
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formulas for such distributions may be derived, but they will
not be very useful, because these functions are composed from
many fragments.

X1 W, Thus although each of the original variables has uniform

_ uncertainty distribution, their linear combination has uncer-

X=WX;+W,X,>a tainty distribution of the soft trapezoidal shape. Integration of

O/ o—(x— a) this distribution leads to the logarithmic-exponential type of
X, W, sigmoidal function Eq. 8 that should serve as the membership
function. The sum of several normalized inputs with similar

Fig. 7. Two independent inputs and one hidden neuron implementi{lﬁlrt?tl)fo.rm un_ce_rtalnty has aI.Ways .be”_Shaped. un.c.ertamty dis-
threshold logic. ution, similar to Gaussian (Fig.9). This justifies the use

of logistic or similar sigmoidal functions that result from

Conjunctive ruleR = R 1 AR», where eaclR; involves an integration of such distributions. In a typical situation weights
independent variable and intervRl = X; € (a;,b;), applied of the linear combination of inputs = W - X have different
to X inputs with some uncertainty, lead to a product of twdalues (in the Bayesian approach to MLP training it is assumed
membership functions. This is what neural networks based 8t weight distribution is Gaussian) and final uncertainties
separable transfer functions, and fuzzy rule based systed$X;®) have shapes that range from triangular, through bell-
normally do: evaluate the evidence provided by inpMis shape to soft triangular. If uncertainties of input variables are
using some membership functionS, and get the Conc'usiéignificantly diﬁerent, or if the WelghtS are quite dif‘fel’ent, an
Combining the results using some T_norm, in this case @proximaﬂon to the |OgarithmiC-eXp0nentia| functions with
product. There is another option that is not so popular #ear area around the rule threshold should be used.
fuzzy logic: using threshold logic, as it is done in mulit-
layer perceptrons. Neurons in MLP networks implement fuzzy
threshold logic to evaluate the truth of crisp threshold logic” P
rules in presence of input uncertainties. :

MLP transfer functiond (X) map vectorx to scalar values
I (X) called activation, which are then processed by the threst
old output functiono(l), so thatf(X) = o(I (X)) [21]. For a
single input, activation is simply the weighted input value.” ,-~—————\
The output function has usually sigmoidal shape. For two 0= -
more inputs activation is usually taken as a linear combination
X = Z\lei = W - X. Thus N-dimensional threshold neuronsFig- 8. 3 inputs \(vith unif_orm unc_ertainty, but di_fferent centers and _wid_th,

. . . . fter convolution give semi-quadratic soft trapezoidal uncertainty distribution.
are essentially single input neurons applied to some scalar
activation values. Linear combination of inputs is sometimes
used in fuzzy logic when rules are applied to the pre-processes!
signal, time series or image data, for example after extractio
of principal components or independent components. Rule
x > a are then defined along th& direction in the feature
space.

How should the input uncertainty distributidd (y;x, w)
for x = Wi X1 +Wh X, variable be calculated? Given two in- ..
dependent random variabl&g, Y, and their corresponding
distributionsU (y; X1,w1) andU (y; X2,wp), the distribution of
random variabl& = Y1 +Y, is given by the convolution: Fig. 9. 4 inputs with uniform uncertainty and identical width, centered

at £0.25 and £0.75, after convolution giving Gaussian-like uncertainty
distribution.

ooooo APAARA WA

+o0
U(Z X1+ X, w) = U(z—y; X1, 1)U (y; Xz, w2)dy  (9)
- For triangular uncertainties or more complex types of un-
Convolution of two uniform distributions with identical certainties of input variables qualitatively similar behavior is
width gives triangular uncertainty functions, and with differenbbserved. For example, taking 4 inputs with identical Gaussian
width trapezoidal functions. This shape comes from projectiatispersions foX; = —0.75, X, = —0.25, X3 =0.25 andX4 =
of two-dimensional rectangular joint distribution of tifig and 0.75, and different weights (Fig. 10), gives after convolution
Y, variables oV Y: +WaY2 line. Adding third input requires bell-shaped Gaussian-like distribution. Thus linear combina-
convolution of traingular and rectangular function, resulting ition of many input variables with any type of uncertainties,
soft-trapezioidal function made from semiquadratic fragmentsiform, triangular, trapezoidal, or Gaussian, leads to bell
(compare Fig.8). For larger number of inputs soft-trapezoidahaped distributions that after integration give sigmoidal type
shape of uncertainty distribution is preserved, but the highesf membership functions. Thus a rule> a, with x equal
order polynomials should be used to approximate it. Analyticéd a weighted combinatioWV - X with arbitrary uncertainties,
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is always approximated by a fuzzy rufe <~ S(x—a) > ¢, hierarchical system of such rules. Adding more network layers
whereS(+) is some type of sigmoidal function. This is a softs equivalent to more levels in this hierarchy that includes rules
hyperplane used by MLP neurons. about intermediate rule conclusions (from previous hidden
layers), not only about data. Such intermediate conclusions
may have some sense, especially if the network is pruned
leaving only most important connections [10].
Hierarchical fuzzy systems are an active research topic in
A 2 fuzzy logic, aimed at reduction of the exponential number of
AV N rules arising in control and other applications. nf mem-
bership functions are defined for each of thénputs then
the number of possible fuzzy rules ii8". There are several
ways to go around this problem [23], [24], but the hierarchical
fuzzy systems approached gains recently most interest [25].
Fig. 10. 4 inputs with Gaussian uncertainty, identical dispersions, cente%HCh _SYStemS process_, mquS In Iower-dlm_ensmnal _subspaces,
at £0.25 and+0.75, with 10.2,—0.2,—1 weights, after convolution give COmbining the results in a binary-tree fashion. In this process
Gaussian-like uncertainty distribution. comprehensibility or the physical interpretation and the ability
to design such systems without much training is easily lost,
Combination of inputs creates new linguistic variables thaflithough there are some proposals to restore it [26]. MLP
may not have sense, except for providing some discriminatizgoids problems with combinatorial explosion, but the price is
hyperplanes. MLP nodes based on threshold logic divide tBemetimes high: weighted combinations of inputs may not be
feature space into two half-spaces using hyperplanes, whilasy to understand, and optimal weights cannot be designed
neural networks based on separable functions divide the fdait have to be learned. A compromise is offered by neural
ture space into areas where products of membership functieghitectures that enforce simple, skeleton networks structure,
are larger than some thresholds — for rectangular membersthat frequently can be analyzed in details and converted to a
functions, these areas are hyperrectangles, providing rulesset of logical rules [10].
classical logic. Soft threshold logic rul&Ww - X —a) > ¢ may
sometimes simplify logical interpretation, and although they IV. EXAMPLES OF APPLICATIONS
may be re-interpreted using conjunctive logic at the expenseGood estimation of input uncertainty is in many cases
of special aggregation operators [8] they will not becomgossible. For example, medical tests have known accuracy
more comprehensible. If all inputs reaching a neuron belorghd models of uncertainty distributions may be constructed.
to the same type, linear combination, equivalent to rotatigbxplicit model for uncertainty of the test may include not
and rescaling, may provide new, interesting features that haygly the actual measurement, but many other factors, such
some interpretation. as the type of treatment, physical exercise, or food and drinks
Adding more neurons in the hidden layer is equivalent toonsumed prior to the test. Specific membership functions may
more fuzzy rulesy < o(fi —a) > @, with fi =W .X. Rules then be constructed to evaluate more accurately various risks
leading to the same conclusion (same class membership) fsemeasured input values.
combined together in the output layer. MLP assigns weights Conjunctive logic rules are perhaps most frequently used,
to rule conclusions and makes final aggregation of evidenceliot in some situations M-of-N type of rules, employing
two ways. Linear output neurons combine weighted evidenagyreshold logic, are more natural. Rule conditions may be
and either a maximum is selected or final class membershipsated as constraints rather than absolute requirements. If
are calculated after some normalization. Alternatively, soffot all constraints may be fulfilled solutions that satisfy most
threshold logic is used to create conjunctive rules (for highf the constraints are searched for. For example, information
thresholds) or disjunctive rules (for low thresholds). The neagtrieval systems (including all of the internet search engines)
for soft threshold logic is motivated again by propagation adre based on such approach. If documents with all N keywords
uncertainty through the hidden layer. are not found then links to documents with N-1 keywords
In fuzzy logic various forms of sophisticated aggregatioare displayed, followed by links to documents with smaller
operators are in use, for example ordered weighted aggregatmmmber of keywords, until a minimum of M keywords is
(OWA) operators [22]. They may be more or-like or and-likefound. Thus the queries are handled by threshold-based logic
similarly as the weighted activation aggregation. Activity ofather than conjunctive logic. The uncertainty of inputs may
hidden neurons, or the degree to which rules implemented bg expressed in the alternative keywords and may be captured
hidden neurons are fulfilled, form an image of input vectorasing fuzzy rules operating on context vectors.
in the hidden space. The goal is to create separable clusterMedical personnel frequently uses logical rules based on
of images of the input vectors in the hidden space. In MLR&rious thresholds for different tests. Medical textbooks are
output neurons provide discriminating functions that separatell of rules of M-of-N type:
these clusters. From fuzzy logic perspective rule conclusiotfsat least 3 symptoms of the 5 from the sé&1, 5, 3,4, 55}
are aggregated using weights and thresholds that maximeme present, then conclusion follows.
the number of correct answers to a rule> a, wherey is Each of the symptoms may be of the fuzzy linguistic vari-
a weighted combination of rule conclusions. MLPs provide able type: high fever, high blood pressure, high cholesterol
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level etc. Network that represents such rule should contain 5This approach to extraction and optimization of rules has
pairs of nodes that filter measured inputs (Fig.6) to provideeen applied to analysis of Minnesota Multiphasic Personality
values of the membership functions, followed by the outpubventory (MMPI) psychometric data, consisting of 550 ques-
neuron that combines the evidence and compares it with tiens with 3 possible answers (yes, no, don’'t know) each [18].
thresholdx > 3. Knowing the uncertainty of measured value€omputerized versions of this test assist only in information
slope of corresponding sigmoidal functions may be set. Tleequisition, but evaluation of results is still done by an
backpropagation training algorithm will adjust the weight&xperienced clinical psychologist. The raw MMPI data is used
that in the original rule are all 1, tuning the rule to matchio compute 14 real-valued coefficients, called “psychometric
its prediction to the data. As a result the network may puwicales”. These coefficients are often displayed as a histogram
more emphasis on high blood pressure than on the cholestdigalled “a psychogram”) allowing skilled psychologists to
level. There is nothing mysterious about such networks. Thalfagnose specific problems, such as neurosis, drug addiction
recommendations are at least as comprehensible as those dhatriminal tendencies.
follow from fuzzy systems. The data was collected in the Academic Psychological
Uncertainties may have different origin (see [3]) and someElinic of Nicholaus Copernicus University, Torun, Poland
times cannot be reliably estimated. For example, evaluation @maller version of this data has been analyzed previously
guestionnaires, such as census data, medical or psychologjtal). Expert psychologists provided about 1600 cases belong-
surveys, followed by averaging of some responses, leadsimhg to 27 classes for women the same number of cases divided
numerical values of observations of unknown accuracy. Thisto 28 classes for man (about 60 cases/class). Rules were
problem may be approached via fuzzy sets of the second tyipétially generated using C4.5 classification tree [12], and SSV
[6]. On the other hand uncertainties of the values of features decision tree [13], with another set of crisp rules generated by
may be used as additional adaptive parameters that maythe Feature Space Mapping (FSM) neurofuzzy network [14],
optimized. This is done in several steps: [15] using rectangular membership functions. Both SSV and
« Prepare a training data base containing results of survéySM algorithms are implemented in the Ghostminer data min-
reduced to numerical coefficients and categorized in ing package [16] used to generate all results described below.
reliable way. Only simple rules are of interest to psychologists, because
« Extracted from this data initial crisp logic rules, usingeach set of rules for a given class has to be commented upon,
decision trees [12], [13], MLP2LN neural networks [11]providing verbal interpretation useful for support of diagnosis.
or other approaches [10]. Some rules covered only a few cases from the database,
« Assume some type of uncertainty distributions, for exantherefore pruning and re-optimization was performed.
ple triangular or Gaussian, and use small initial uncertain- C4.5 creates 2-3 rules per class involving between 2 to 9
ties g to fuzzify crisp rules using membership functionsattributes, and achieving 93.0% of correct responses. Agree-
that correspond to input uncertainties of the selected typ@ent between two human experts analyzing this type of data
« Optimize a cost functiorE (s, w) to find the best values is usually below 80%. Gaussian distribution of uncertainty in

for model parameters, including the uncertainties. inputs was assumed, and the corresponding erf membership
Soft cost function may be based on a sum of predictddnctions 5 approximated by differences of logistic functions
probabilities or normalized membership values: to simplify calculations. With dispersion arouse=1% of the

data range improves results by about 1%. FSM network was
E(s,w) = Zz (p(Gi|X;s,w) —CL; (x)))2 (10) used with rectangular membership functions to generate crisp
[ rules. These rules may overlap, therefore high membership
where w includes intervals defining linguistic variables,degrees in more than one class are possible. 3-4 per class were
weights and thresholds, are uncertainties of input€L;i(X) € created, agreeing in 95% with original diagnosis. Gaussian
[0,1] is a label for the training vectoX (several non-zero fuzzification at the level of 1.1-1.5% increases this accuracy
entries for different class may be used), ao€i|X;s,w) is by 2.5%.
calculated using the neural network or a system of fuzzy rules.Rectangular membership functions of crisp rules are con-
This error function may be optimized using backpropagatioverted to the soft trapezoidal functions corresponding to the
gradient-based techniques. optimal uncertainty of about 1.5%. This uncertainty is suffi-
If all features represent measurements of the same tygently small to make the verbal interpretation of fuzzy rules
all s may be taken as a percentage of the range of eastill quite easy. The true uncertainty of psychometric scales is
feature,s = s(max(Xi) — min(X;)), and one-dimensional min- unknown and the reliability of the training data is also hard
imization of the error function over a singke parameter is to estimate. For small input uncertainties rules predict one
performed. This minimization may either be added to ther more classes, while for large uncertainties many classes
training procedure, or done by plotting the dependence bhlve comparable probabilities (Fig. 11). With input uncertainty
E(s) and selecting the minimum. In the limit of a small set to zero crisp rules are used. The query case in Fig. 11)
sigmoidal functions are very steep, acting as step functions, found in the region where rules for two different classes
and minimization of the soft error function (10) becomesverlap. Using crisp rules such solution should be preferable
equivalent to minimization of the number of classificatiorto predictions of a single class only — the evidence available
errors. Optimak value that minimizes the error function givesin the data is not sufficient to favor any of the two classes.
an estimation of the unknown uncertainty. Assuming small uncertaintg = 1% breaks the tie between
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the two classes, and increasing the uncertainty to 2 and 4%For example, in the Leukemia gene expression data [27]
shows two more classes for which significant membership tieo classes, acute lymphoblastic leukemia (ALL) and acute
predicted. myeloid leukemia (AML) should be distinguished, given 7129
features (gene expression levels from microarray experiments).
Analysis of this data made with different methods available
in the Ghostminer packagé][ showed that using only one
l single feature all 38 training samples, and all but 3 of the 34
. — e test samples (AML mistaken for ALL cases), are classified
correctly. Using SSV decision tree a crisp logical rule based
on a single threshold for feature 4847 was found giving such
I ] I high accuracy. Can fuzzification help? It is easy to check that
o B S ~Mai lalbuoll- . no assumptions about uncertainty of input data will create
a fuzzy rule that makes less than 3 errors on the test set.
Fig. 11. Influence of input uncertainty on predictions of class membershipdcreasing the number of features (gene expression values)
o) 15 ey, s e bt s e e e e oSt promising 10 features, and using Support vecto
bgttom: ZOA(; and 4% ur):t’:ertainty assumed, leading tg several new classes %Chm? based on Gaussian kernels, a solution with no training
smaller membership values. and a single test error was found.
This one test error may result from insufficient input in-
The rule with largest membership, shown fer= 3% formation, the inability of SVM to provide correct decision
Gaussian uncertainties in Fig. 12, has 5 conditions (out pbrders, or training data that is too small and does not repre-
14 possible). Feature values of the query case are connedieglt the true data distribution. While the first two errors in the
with line segments, Gaussian distributions are attached tadst set were indeed due to the insufficient information this last
feature values that appear in the rule under consideratigtror seems to be of a different type. It may be a mislabeled
Two intervals (for Ps and Pt features) include the measurggta case, or an error in the diagnosis, a different type of
values for the evaluated case rather close to their boundariesikemia that does not fit to any of the two classes. It may also
therefore only 56.4 and 66.7% of the Gaussian is capturgé a very rare and untypical case of acute myeloid leukemia
inside the interval. As a result membership value of the actug@lat should be distinguished as a new subtype, leading perhaps
case in this rule is only 38%. to the similar medical condition. This is indicated by the
following observation. 5% input uncertainty for all of the 10
gene expression values has been taken (this is sufficiently large
to cover in two-dimensional scatterograms most of the data
from the ALL class), and 1000 vectors in the neighborhood
] of the selected test AML vector has been generated. All of
1' these vectors are assigned by SVM and other methods to the
. (wrong) ALL class. This vector is not near the decision border,

4 o 1 but placed firmly in the feature space area that all classification
methods assign to the AML class, containing many vectors
from this class and no vectors from ALL class. Generating
1000 points around the other two vectors shows that they were
close to the decision border (significant number of vectors was

"assigned to the ALL class), therefore increasing the number
Fig. 12. Psychogram with rule conditions and fuzzified input $er 3% of features from 1 _tO 10 helped FO separ_ate them cor_re_ctly.
displayed. It seems rather unlikely that new information (either training
data or adding more features) could change classification of
These estimates of membership values give an idea htis one vector, because such change in the decision boarders
strongly rules support the assignment of vectoto different would have to influence classification of other vectors in the
classesCi. The whole fuzzy rule based system may beeighborhood.
presented as an MLP network.
Instead of displaying membership values for a given uncer-
tainty it may be useful to plop(Cy|X;s;M) as a function
of uncertainty of one or more input feature values. Such Sets of crisp logic rules applied to uncertain inputs are
graph shows the stability of predictions of the systééh equivalent to fuzzy rules applied to crisp inputs. Integration of
around the inputX. Cases far from decision borders showincertainty distribution for a fixed rule threshold or interval
only slow decrease of predicted membership functions, bgives probability, or degree of fulfillment, of a crisp rule.
cases near decision border show significant decrease of Tfiee same result may be obtained directly as a value of cor-
dominant class memberships at the expense of new classesponding membership function for a given input. Different
This technique may be useful in evaluating the type of erroessumptions about input uncertainty lead in a natural way to
that the system makes. different types of membership functions, but all of them have

(L] i (5]

V. DISCUSSION
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sigmoidal shapes. Fuzzification of input values should give thiee M — of — N rules as aggregation of individual conditions
same probabilities as the Monte Carlo procedure performed &), [9]. Arguably, conjunctive rules obtained in this way do
input vectors sampled from uncertainty distributions centergwt make these rules easier to understand.
at the measured values. In many practical cases analyticalfype-2 fuzzy sets have membership functions that are
formulas for fuzzy membership functions have been derivedhemselves fuzzy [6]. Knowledge mining using surveys has
With single input and uniform uncertainty(y; x,Ax) semi- been one of the main applications of the fuzzy systems of the
linear membership functio®(x — a;Ax) should be used for second type. An alternative approach has been presented here.
estimation of the degree of truth »f> a crisp rule. In all other Leaving uncertainty on both the input and the rule side leads
cases smoother membership functions of sigmoidal shape tyesimilar effects without decreasing comprehensibility of the
needed, justifying the use of sigmoidal functions from theule-based system. An application of these ideas to the analysis
logical point of view. The use of sigmoidal functions ha®f questionnaire based surveys has been presented. Similar
also been justified using approximation theory [20], [5]. Thapplications are possible whenever a set of crisp logic rules
fact that MLPs are universal approximators is in itself nds given. For example, decision trees are very popular data
surprising (it is difficult to make a basis set expansion that doesining tools that provide crisp rules. Methods developed in
not have universal approximation property). Favorable rates tfis paper may be used to fuzzify predictions made by decision
convergence of expansions based on sigmoidal functionstiees and improve calculation of classification probabilities
highly dimensional spaces are more important [28]. These reeyond evaluation based on the purity of tree leaves.
sults tell us why the use of MLPs for approximation problems Input uncertainties provide a principled way to fuzzify sets
is a good idea, while the analysis done in this paper shows crisp rules and logical networks. Keeping fuzziness at the
why it is natural to generalize hierarchical sets of logical ruldaput side makes fuzzy systems and neural networks easier to
using MLP network implementation with sigmoidal functionsunderstand. This idea may be used to convert MLP network
Several new types of membership functions have beémo equivalent logical network, with input uncertainties pro-
introduced here, resulting from integration of uncertainty digortional to the inverse of the norm of incoming weights. MLP
tributions. Of particular practical importance is the quadratiseural networks are in many cases more comprehensible than
sigmoidal function resulting from integration of triangularhierarchical sets of fuzzy rules.
uncertainties, and log-exp sigmoidal function with extended
linear part resulting from integration of soft trapezoidal un- ACKNOWLEDGMENTS
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