
Department of Computer MethodsNicholas Copernicus UniversityGrudzi¡dzka 5, 87-100 Toru«, PolandCOMPLEX SYSTEMS, INFORMATION THEORYAND NEURAL NETWORKSAbstractWªodzisªaw Duch and Norbert Jankowski1In this paper relation between complex systems, information theory andthe simplest models of neural networks are elucidated. Two di�erent typesof complex systems are distinguished, new complexity measure based on thegraph theory de�ned, hierarchy of the correlation matrices introduced andconnection with the correlation matrix memories and other types of neuralmodels explained.1 Two Types of Complex SystemsComplex system theory is a new �eld of science that emerged at the end of the lastdecade. A working de�nition of complex systems was given at the 1989 conferencedevoted to this subject [1]:... systems that exhibit complicated behavior but for which there issome hope that the underlying structure is simple in the sense ofbeing governed by a small number of degrees of freedom.Another working de�nition is [2]A system is loosely de�ned as complex if it is composed of a large numberof elements, interacting with each other, and the emergent globaldynamics is qualitatively di�erent from the dynamics of each one ofthe parts.Examples of complex systems include fractals, snow 
akes, cellular automata,games, Ising and spin glass models, arti�cial neural nets and many dynamical sys-tems that exhibit complex behavior starting from simple dynamics. Other complexsystems and objects, such as language (structure of words and sentences), proteins,genes, visual data, market analysis data, do not �t to these de�nitions. We do noteven know if a simple dynamics responsible for their complexity exist and, in caseof many-body systems such as proteins, we are convinced that a large number ofdegrees of freedom is necessary for their description.It is useful to di�erentiate between two kinds of complex systems [3]:Complex systems of the �rst kind, with known simple dynamics but un-known complex behavior. In this case we aim at the analysis and classi�cation ofpossible behavior.Complex systems of the second kind, or essentially complex systems, withunknown dynamics and partially known complex behavior. In this case our goal isto simplify description of these systems and, if possible, to �nd the dynamics.1duch@phys.uni.torun.pl, norbert@phys.uni.torun.pl1



So far only systems of the �rst kind have been considered in the literature, inparticular the chaos theory deals with such systems. Molecular complex structures ofthe second kind are too small and irregular for statistical mechanics and too large forfundamental theories to tackle. Another example of complex system not covered bythe quoted de�nition is the structure of natural language. Words and sentences havesome regularity but it is very hard to �nd the "deep grammatical structure" thatwill allow us to parse complex sentences. Vocabularies are complex, relatively largesystems of information hard to analyze via mathematical means and apparentlywithout simple underlying mechanism that could generate them. Problem solving inarti�cial intelligence leads to the representation spaces and decision trees that showcombinatorial explosion, thus leading to complex behavior or complex structure oftheir solution spaces.Of course it may be that only trivially complex systems of the �rst kind exist innature and the essentially complex systems of the second kind are just arti�cial con-structions of the human mind. Nevertheless, at the present stage of scienti�c inquiryit seems appropriate to develop also an approach that should allow for character-ization of complex systems of the second kind, where the dynamics is completelyunknown or govern by too many degrees of freedom to handle it explicitly. The goalof such theory would be to simplify the description of complex systems by �nding aseries of simpler descriptions, approximations converging at the full complexity. Onesource of inspiration for such theory comes from the theory of information, devisedby Shannon [4] and others to measure the amount of information in an arbitrarydata system. Another approach is o�ered by statistics, in particular statistical theo-ries of language. The latest approach comes from the distributed storage of patternsin simpli�ed neural networks.Some interesting connections of complex systems of the second kind with in-formation theory, statistical approach and simplest models of neural networks aredescribed below.2 Information And Complexity Measures.More than 40 years after the de�nition of information appeared in the landmarkpaper of Claude Shannon [4] we still do not have a satisfactory de�nition of infor-mation that would be in accord with our intuition and that could unambiguously beapplied to such concepts as biological information or linguistic information. Di�er-ent de�nitions or measures of information exist now, including axiomatic de�nitionof Shannon information, algorithmic information, pragmatic information and cyclo-matic information (for details see [5]).The simplest approach to the quantitative de�nition of information is basedon combinatorics [5]. Interesting applications of combinatorial information to theestimation of "entropy of a language" have been reported (Kolmogorov 1968). Theentropy of words in a dictionary is considerably higher than the entropy of words ina literary text, indicating that there are some constrains (grammatical and stylistic)in literary texts.The second approach is based on probability. It was introduced in the theory ofinformation transmission by C. Shannon (1949) and is based on his formulaIP = �Xi pi logpiwhere pi is the probability of item i of the data. Shannon considered a question:what is the minimal number of bits needed to transmit data?Another measure of information, called algorithmic or Chaitin-Kolmogorov in-formation is in use in computer science (Kolmogorov 1965,1968, Chaitin 1966,1990).2



Algorithmic information or the relative complexity of an object y with a givenobject x is de�ned as the minimal length of the program p for obtaining y fromx. Algorithmic information captures some intuitive features of information: a bi-nary string obtained by truly random process cannot be compressed and carries theamount of information equal to the number of its digits. Algorithmic complexityhas found interesting applications in theoretical computer science to estimate thenumber of steps necessary to solve certain classes of mathematical problems.Shannon IP measures the number of bits per item needed to code this item.For example, in English texts 26 letters and a blank space is used; for equiprobableletters I0 = log2 27 = 4:75 bits per character, but the real amount of informationis lower due to interletter correlations. Taking real probabilities for English textsShannon obtained IP = I1 = 4:03 bits. Second order information includes correla-tions between pairs of letters and is computed from the formula:I2 = I�1(�2) = I(�1�2)� I�1 = � zXl2=a zXl1=a p(l1l2) log2 p(l1l2)� p(l2) log2 p(l2)!One may de�ne higher order correlations and the in�nite order limit. Redun-dancy is de�ned as R = 1� I1=I0. For English language estimated redundancy isaround 80%.Shannon information is useful for estimation of data transmission and e�ciencyof data compression, but it does not estimate data complexity. Algorithmic infor-mation IA of a random set of binary strings with N bits is of the order of N .Algorithmic information for all possible binary strings or other well-structured setsof strings is small. Although more intuitive and useful in complexity theory thenthe Shannon de�nition the concept of algorithmic information has problems:1. Algorithmic information is hard to compute.2. All "iterative structures" like fractals or cellular automata are equivalent,even some of these structures are obviously much more complex than the others.Minimal graph complexity measure IG [5] de�nes complexity of a given datastructure to be equal to the number of arcs in the minimal graph that contains allthe data. Let us take all n-digit binary string as an example. For n = 5 all binarystrings, from 00000 to 11111, are contained in the minimal graph with 10 arcs. Ingeneral minimal graph for n-digit strings has 2n arcs, with one string removed 4n�3arcs (see Fig. 1). Minimal graph represents a set of data items.IG has properties of pragmatic information de�ned in a qualitative way by vonWeizs�acker [6]: it grows quickly when novel information is given and it shrinks whenthe information con�rms general pattern; for repeated data it does not change. Itis similar to the algorithmic information but is easier to compute.Minimal graph complexity IG has applications for �nite systems, such as lexi-cographical structures, proteins, genes, game theory. Semantic contents or meaningis relevant only if we have some cognitive system. Words and ideas have di�erentmeanings and di�erent information contents for di�erent people therefore it is notpossible to give a universal de�nition. The meaning of the same information is di�er-ent for di�erent people because their internal representation of the world is di�erent.We must refer to some representation of the world to de�ne semantic information.Such representation may be based on a set of rules stored in a knowledge base ofan expert system. This knowledge base, together with the rules of inference, de�neour universum of facts, representing knowledge or some model of the world M .There is an analogy between the theory of complex systems and linguistics.If the system is not completely chaotic we can �nd an alphabet, a list of substruc-tures or elements of behavior, which, due to some interactions, generate complexity.Interactions in this case are analogous to grammatical rules.3



0 1

0

0

0

0

1

1

1

1

32

0

0

0

0

0

1

1

1

1

1

0

1

0

1

0

0

1

30 1Figure 1: Example of completely folded graphs obtained from trees of binary stringsfor all 32 strings of 5 digits (left) and with one string, 10101, missing.3 Hierarchy Of Correlation Matrices.Calculation of the N -th order Shannon information requires knowledge of the N -thorder probabilities IN ! pN (l1; l2; : : : ; lN ). For lower order probabilities only statis-tical properties of the data will be captured, but for N large enough pN should beequivalent to the original data. In particular a list of all non-zero probabilities forwords of the length N is equivalent to the original list. The statistical approach togeneration of music or generation of texts was considered, but the low order samplesare very di�erent from the real language. For example, third order sample, i.e. tak-ing most probable (l1; l2; l3) triples of letters for polish language, gives okopomentatyka wszcza speªniergi cznieszach. There is a systematic way of going from such loworder statistical description to the original data.To measure the information content of a lexicon we present �rst the list of wordsin a graphical form and than fold this graph into minimal graph.List of words! Graph!MinGraphThe number of paths Np(MinGraph) in the minimal graph is equal to thenumber of paths Np(Graph) and to the number of words in the original list; eachword may be recreated from this graph. The structure of the minimal graph re
ectsthe structure present in the list of words. For example, minimal graph for the subsetof polish language shows clearly the pre�xes, roots and su�xes.Instead of a minimal graph larger structure may be generated, with the samestatistical properties as the original list. The list of words has a very complex struc-ture. Is there any regularity in it? One approach to �nd it is to derive probabilitiesor statistical relations among the characters composing the words belonging to thelist and than create a graph that stores all strings of characters with non-zero prob-ability. List of words! pN ! Graph p!MinGraph pAlthough the number of paths (words) in the Graph p is much higher than in theoriginal list Np(MinGraph) the minimal graph MinGraph p itself is much smallerand simpler. It shows general structure of the complex system. Since 2-nd orderp2(l1; l2) probabilities for adjacent letters give poor representation of real wordsin a dictionary and higher order pN (l1; l2; : : : ; lN ) lead to huge matrices we shall4



take hierarchical approach and consider a supermatrix of second order probabilitiesp(li; lj) for i > j . Diagonal blocks of this matrix contain p2(li; li) = p1(li), proba-bilities of single characters. The simplest and the least accurate approach is to takep2(li; li+1); next step is to add p2(li; li+2), a second sub-block of the supermatrix.Another way to increase the accuracy is to include partially higher order cor-relations by changing the representation of each letter, making it "sensitive tothe environment", i.e. to other letters adjacent to it. Selecting new characters asLi = (li; li + 1) full pair-pair correlations p2(Li; Li + 1), equivalent to the full thirdorder correlations are obtained. Smaller number of new characters Li may be chosenby mapping di�erent pairs or triples of characters into a single L. We can measurehow e�ective is each step in bringing us closer to the exact description of the com-plex system by looking at the number of paths in the Graph p; we can measurehow much information is gained by counting the arcs in the MinGraph p. A wholehierarchy of correlation matrices p(Li; Lj) is created in this way, describing complexsystem with increasing accuracy.4 Connection With Neural Networks.There is a unique correspondence between neural networks, correlation matrices ofstatistical models and graphs, with weights W of the network connections equal tothe appropriate probabilities p. Statistical model based on pairs of adjacent lettersp2(l1; l2) may be represented as a two-layered net with Nl (equal to the number ofletters) inputs and outputs; second order model with p2(li; li+ 1) is realized by thetwo-layered net with non-zero blocks near diagonal; full 2-nd order statistical model,with probabilities for all pairs of letters p2(li; lj) corresponds to the fully connectedtwo-layered network. Higher order statistical models correspond to networks withthe intermediate layers of neurons.This model is a generalization of Kohonen's CMM (Correlation Matrix Memory)[7]. Data (question) vectors x and answer vectors y are memorized in a correlationmatrix Wxy =Xk x(k)yT(k)If y vectors are orthogonal thanx(i) = Wxyy(i) =Xk x(k)yT(k)y(i)As an example of application of this approach to the real data the second-ordermodel was used for dictionary of polish words. There are 35 characters in polishalphabet. Out of 353 = 42875 possible combinations of 3 characters 624 words arefound in the dictionary, from abo to ¹li . The network is composed from 2 layers,with 335=105 units in each row, i.e. each word is represented by 105 bits andis not orthogonalized. Weight matrix W1 for correlation between (1,2), (2,3) and(1,3) letters has 3675 entries, replaced here by binary (0 or 1) values. Graph p,generated by this network (i.e. from these correlation matrices), has 1692 paths,1068 corresponding to wrong combinations of 3 letters (2.5% of errors) and 624 tothe right combinations, i.e. to the words in the original list.The third order model, with W2 matrices for non-zero p3(l1; l2; l3), correspondsto the correlations between l1 ! (l2; l3) and is equivalent to the original data.Another way of obtaining perfect representation of data by networks is to use a fewsecond order nets, separating the words into orthogonal sets. In this case 6 networksor W1 matrices are required. 5
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Figure 3: Fig. 3. An example of a minimal graph for a subset of Polish language.The root is da, there are 7 pre�xes and 65 su�xes. Very high compression of datais achieved.
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