
NEW NEURAL TRANSFER
FUNCTIONS

Włodzisław Duch & Norbert Jankowski

Department of Computer Methods, Nicholas Copernicus University,

ul. Grudzia̧dzka 5, 87-100 Toru´n, Poland

e-mail: duch,norbert@phys.uni.torun.pl, http://www.phys.uni.torun.pl/kmk

The choice of transfer functions in neural networks is of crucial importance to
their performance. Although sigmoidal transfer functions are the most
common there is noa priori reason why they should be optimal in all cases.
In this article advantages of various neural transfer functions are discussed
and several new type of functions are introduced. Universal transfer
functions, parametrized to change from localized to delocalized type, are of
greatest interest. Biradial functions are formed from products or linear
combinations of two sigmoids. Products ofN biradial functions in
N -dimensional input space give densities of arbitrary shapes, offering great
flexibility in modelling the probability density of the input vectors.
Extensions of biradial functions, offering good tradeoff between complexity
of transfer functions and flexibility of the densities they are able to represent,
are proposed. Biradial functions can be used as transfer functions in many
types of neural networks, such as RBF, RAN, FSM and IncNet. Using such
functions and going into the hard limit (steep slopes) facilitates logical
interpretation of the network performance, i.e. extraction of logical rules from
the training data.

Keywords: neural networks, adaptive systems, local learning, transfer functions, RBF
nets, IncNet, FSM, extraction of logical rules.

1 Introduction

Adaptive systems of the Artificial Neural Network (ANN) [15] type were initially mo-
tivated by the parallel processing capabilities of the real brains, but the processing el-
ements and the architectures used in artificial neural networks have little in common
with biological structures. ANNs are networks of simple processing elements (usually
calledneurons) with internal adjustable parametersW . Modificationof these adjustable
parameters allows the network to learn an arbitrary vector mapping from the space of
inputsX to the space of outputsY = AW (X). From a probabilisticpoint of view adap-
tive systems shouldapproximate the density of jointprobabilityp(X;Y) or the posterior
probabilityp(Y jX). Flexible estimation of densities is thus of primary importance.

ANNs are adaptive systems with the power of a universal computer, i.e. they can re-
alize an arbitrary mapping (association) of one vector space (inputs) to the other vector
space (outputs). They differ in many respects, one of the most important characteris-
tics being the transfer functions performed by each neuron. The first attempts at mod-
eling of neural networks was made using logical networks [25], or threshold devices
performing step functions. These step functions were generalized in a natural way to

2 NON-LOCAL TRANSFER FUNCTIONS 2

functions of sigmoidal shape. Single-layer neural networks with sigmoidal functions
are universal approximators [5, 16], i.e. they can approximate an arbitrary continuous
function on a compact domain with arbitrary precision given sufficient number of neu-
rons. The same result holds for the networks with neurons that give Gaussian outputs
instead of sigmoidal outputs [14, 29]. A new type of transfer functions, calledgaus-
sian bars, has been proposed by Hartman and Keeler [13]. In thefunctional link net-
works of Pao [28] a combination of various functions, such as polynomial, periodic,
sigmoidal and Gaussian functions are used.Rational transfer functions were used by
Haykin and Leung with very good results [21]. In theconic section function networks
Dorffner [6] introduced functions that change smoothly from sigmoidal to Gaussian-
like. Lorentzian transfer functions, which may be treated as a simplified Gaussian func-
tions, were used by Giraud et al. [12]. Nonmonotonic transfer function have been re-
cently used by Morita [27].

There is a growing understanding that the choice of transfer functions is at least
as important as the network architecture and learning algorithm. Neural networks are
used either to approximatea posteriori probabilities for classification or to approximate
probability densities of the training data [34]. None of the functions mentioned above
is flexible enough to describe an arbitrarily shaped density distributions of the multidi-
mensional input space. Viewing the problem of learning from geometrical point of view
the purpose of the transfer functions performed by the neural network nodes is to enable
the tessellation of the parameter space in the most flexible way using the lowest number
of adaptive parameters. Implications of this fact has not yet been fully understood by
many researchers.

In this paper we investigate various functions suitable as the transfer functions for
neural networks. Systematic investigation of transfer functions is a fruitful task. Since
information about various transfer functions is scattered in the literature and has not
been reviewed so far we have collected and commented upon a number of transfer func-
tions alternative to sigmoidal functions. To keep the paper rather short nonmonotonic
transfer functions have been omitted here, although they may actually be more faith-
ful to neurobiology and may help to avoid the local minima of the neural network er-
ror function ([27], Duch and Ludwiczewski, in preparation). In the next section a few
non-local transfer functions are described and their simplified versions discussed. In the
third section description of local and semi-local processing functions is presented and
biradial transfer functions are introduced. The fourth section presents results obtained
using different transfer functions in several RBF-type of networks. Short discussion
concludes this paper.

2 Non-local Transfer Functions

Two functions determine the way signals are processed by neurons.The activation func-
tion determines the total signal neuron receives. In this section a fan-in function, i.e. a
linear combination of the incoming signals, is used. For neuroni connected to neurons
j (for j = 1; : : : ; N) sending signalsxj with the strength of the connectionsWij the
total activationIi is

Ii(x) =

N∑
j=1

Wijxj (1)

The second function determining neuron’s signal processing isthe output function

2 NON-LOCAL TRANSFER FUNCTIONS 3

o(I). These two functions together determine the values of the neuron outgoingsignals.
The total neuron processing function acts in theN -dimensionalinput space, called also
the parameter space. The composition of these two functions is called thetransfer func-
tion o(I(x)). The activation and the output functions of the input and the output layers
may be of different type than those of the hidden layers, in particular frequently linear
functions are used for inputs and outputs and non-linear transfer functions for hidden
layers.

The first neural network models proposed in the forties by McCulloch and Pitts [25]
were based on the logical processing elements. The output function of the logical ele-
ments is ofthe step function type, and is known also as the Heaviside�(I��) function:
it is 0 below the threshold value� and1 above it. The use of such threshold functions
was motivated by the logical analysis of computing circuits and the metaphor (very pop-
ular in the early days of computers) of brains seen as networks of logical switching ele-
ments. In principle one can perform arbitrary computations using logical neurons. Real
values should be quantized and the logical neurons used to learn the bits. The greatest
advantage of using logical elements is the high speed of computations and the possibil-
ity to realize relatively easily some functions in the hardware. Classification regions of
the logical networks are of the hyperplane type rotated by theWij coefficients.

Multi-step functions are an intermediate type of functions, between the step func-
tions and semi-linear functions. Multi-step functionshave a number of thresholds,&(I) =

yi if �i � I < �i+1. To avoid evaluation of the logical IF conditions for constant dif-
ference� = �i � �i+1 multi-step functions are efficiently implemented using auxiliary
step vectorsv and integer arithmetics to convert rescaled input values to arbitrary output
values:v [� (1 + Int[(I � �1)=�])], where�1 is the first threshold.

Instead of the step functions semi-linear functions are also used,sl(I; �1; �2) =

f0 for I � �1; (I � �1)=(�2 � �1) for �1 < I � �2 and1 for I > �2g. These func-
tions were later generalized tothe sigmoidal functions, leading to thegraded response
neurons, used most often in the literature:

�(I; s) =
1

1 + e�I=s
(2)

The constants determines the slope of the sigmoidal function around the linear part.
It is commonly believed that the activity of biological neurons follows such sigmoidal
transfer function, but this is not the reason why sigmoidal functions became so popular.
These functions are smooth and it is easy to calculate their derivatives, equal to�(I)0 =

�(I)(1 � �(I)). Sigmoidal functions may also be replaced by the arcus tangent or the
hyperbolic tangent functions:

tanh(I=s) =
1� e�I=s

1 + e�I=s
(3)

tanh
0
(I=s) = sech2(I=s)=s =

4

s(e�I=s + e+I=s)2
(4)

Since calculation of exponents is much slower than simple arithmetic operations
other functions of sigmoidal shape may be useful to speed up computations:

s1(I; s) = �(I)
I

I + s
� �(�I) I

I � s
= I

sgn(I)I � s

I2 � s2
(5)

s2(I; s) =
sI

1 +

p
1 + s2I2

=
sI

1 + q
(6)

2 NON-LOCAL TRANSFER FUNCTIONS 4

where�(I) is a step function andq =

p
1 + s2I2. The derivative of these functions

are also easy to compute:

s01(I; s) =
s

(I + s)2
�(I) +

s

(I � s)2
�(�I) = s

(I + sgn(I)s)2
(7)

s0
2
(I; s) =

s

q(1 + q)
(8)

s1
s2
tanh
sigmoidal
atan

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Comparison of non-local transfer functions.

Shapes of these functions1 are compared in Fig. 1. The sigmoidal function and the
hyperbolic tangent functions are hard to distinguishin this figure while the arcus tangent
and thes1, s2 functions change asymptotically reaching saturation for larger activation
values more slowly. All these functions are very similar and therefore one may recom-
mend the use ofs1 or s2 functions since their computational costs are the lowest – in
practical computations avoiding calculation of exponential factors one can gain a factor
of 2-3.

Sigmoidal functions have non-local behavior, i.e. they are non-zero in infinite do-
main. The classification decision regions of neural networks based on these functions
are formed by cutting the input space with hyperplanes (Fig. 2). The systempretends
that it knows everything – this may be quite improper especially far from the sample
data regions where hyperplanes, extending to infinity, enforce arbitrary classifications.
Sigmoidal output functions smooth out many shallow local minima in the total output

1All these functions are linearly transformed to obtain output between�1 and1; their slope parameters
s are chosen to make them as similar to each other as possible.

3 LOCAL AND SEMI-LOCAL TRANSFER FUNCTIONS 5

Figure 2: Decision regions formed using sigmoidal processing functions.

functions of the network. For classification problems this is very desirable, but for gen-
eral mappings it limits the precision of the adaptive system.

For sigmoidal functions powerful mathematical results exist showing that a univer-
sal approximator may be built from only single layer of processing elements [5, 16].
Another class of powerful functions used in approximation theory [32, 9, 10] is called
the radial basis functions (RBFs). Some of these functions are non-local while most are
localized. RBF networks are also universal approximators [14, 29]. Admitting process-
ing units of the sigma-pi type higher-order products of inputs are taken into account and
the approximating function becomes a product of various powers of input signals [8].

For approximation problems Allison [1] recommends simple multiquadratic func-
tions, similar to thes2(I; s) function:

sm(I;�) =

√
I2 +�2; s0m(I;�) =

I

sm(I;�)
(9)

where� is the smoothness parameter.

3 Local and Semi-local Transfer Functions

Non-local transfer functions used in neural networks divide the total input space into
regions corresponding to different classes or values of the output vector. A single adap-
tive parameter may change the output of the network at all points of the input space.
Therefore the learning process must always change all adaptive parameters in a corre-
lated way. Such transfer functions are used in multi-layered perceptrons (MLPs) for
discrimination and approximation. Localized transfer functions use adaptive parame-
ters that have only local influence on the network output, i.e. the output is changed only
in the localized regions of the input space. Such functions are used in Gaussian-based
radial basis function (RBF) networks, where classification and approximation is based

3 LOCAL AND SEMI-LOCAL TRANSFER FUNCTIONS 6

on prototypes rather than discriminant functions. In such networks the activation func-
tion is usually changed from the fan-in function to a distance function:

Di(x) = d(x; ti) = jjx� tijj (10)

whereti is the center of thei-th unit, an adaptive parameter around which activation
has large values. In practice Euclidean distance is used most often for the real-valued
inputs and Hamming distance is frequently used for binary inputs. Additional adaptive
parameters may be introduced as scaling factors in each dimension (N parameters), or
as one common scaling factor for each center. For Euclidean distance2N adaptive pa-
rameters are defined:

D2
(x; t;V) =

∑
i

Vi(xi � ti)
2 (11)

A few attempts were made to use localized functions in adaptive systems. Some
of them may be traced back to the older work on pattern recognition [11]. Moody and
Darken [26] used locally-tuned processing units to learn real-valued mappings and clas-
sifications in a learning method combining self-organization and supervised learning.
They have selected locally-tuned units to speed up the learning process of backpropaga-
tion networks. Bottouand Vapnik [3] have shown the power of local training algorithms
in a more general way. According to Kadirkamanathan and Niranjan [18] smoothness
conditions for adding new units in constructive neural networks are satisfied only by
strongly local units.

Although the processing power of neural networks based on non-local processing
units does not depend strongly on the type of neuron processing functions such is not
the case for localized units. Gaussian functionse�D(x)2 are perhaps the simplest but
not the least expensive to compute. Simple quadratic and quartic functions approximate
roughly the shape of a Gaussian function:

G2(D(x)) =
1

1 +D2(x)
; G0

2(D) = �2DG2

2(D); (12)

G4(D(x)) =
1

1 +D4(x)
; G0

4
(D) = �4D3G2

4
(D) (13)

3.1 Radial Basis Functions (RBFs)

Radial Basis Functions are used as transfer functions in many neural network simula-
tors. These types of functions have been in use in approximation theory [32, 9, 10] and
in pattern recognition under different names for many years (cf. potential function ap-
proach, [11]). A very good introduction to RBF and more general regularization net-
works was given by Poggio and Girosi [31] (see also [15, 4, 6, 22, 23, 24, 2, 30]). Sev-
eral types of localized radial basis functions exist. They all treat the activation value as
radial coordinater = jjx � tijj. Among themGaussian functions (Eq. 14) are unique
since for Euclidean distance functions (and other distance functions that may be pre-
sented as a sum of independent components) they are separable. Other examples of the
Radial Basis Functions include the nonlocal radial coordinates, general multiquadratics,
and thin-plate spline functions:

h1(x; t; b) = e�jjx�tjj
2=b2 (14)

3 LOCAL AND SEMI-LOCAL TRANSFER FUNCTIONS 7

h2(x; t) = jjx� tjj (15)

h3(x; t; b) = (b2 + jjx� tjj2)��; � > 0 (16)

h4(x; t; b) = (b2 + jjx� tjj2)� ; 0 < � < 1 (17)

h5(x; t; b) = (bjjx� tjj)2 ln(bjjx� tjj) (18)

The simplest approach, used in the RBF networks, is to set a number of radial func-
tionsGi(x) with predetermined parametersb and positionst (for example, positions
are set byk-means clustering and dispersions to twice the nearest neighbor distance)
and determine the linear coefficientsWi in the approximation function:

f(x;W;b; t) =

M∑
i=1

WiGi(x;bi; t) =

M∑
i=1

Wie
�jjx�tijj

2=b2
i : (19)

In the regularization networks also the centersti of each of the radial units are op-
timized [31], allowing for reduction of the number of basis functions in the presence
of noisy data (corresponding to the regularization of approximating function). Thus in
theN -dimensional case a center is described byN coordinatesti and one parameterbi
(dispersion for Gaussians). A straightforward generalization of the radial units of the
Gaussian type with Euclidean distance function is to allow different dispersions for dif-
ferent dimensions, giving2N adaptive parameters, or centers and dispersions, per each
neural unit.

3.2 Gaussian and sigmoidal bar functions

The problem of noisy dimensions in RBF networks, i.e. irrelevant inputs that do not
contribute to the determination of the output values, has been addressed by Hartman
and Keeler [14] and by Park and Sandberg [29]. Instead of multidimensional Gaussian
functions these authors advocate a combination of one-dimensional Gaussians:

Gb(x; t;b;v) =

N∑
i=1

vie
�(xi�ti)

2=b2
i (20)

In this case the activation and the output functions are inseparable.3N adjustable
parameters are needed per processing unit. These functions are calledGaussian bar
functions because (except for a single maximum around centert inN -dimensions) they
include Gaussians inN �1 dimensional subspaces. For large number of dimensionsN

these bars have valuesvi that may be much lower than the sum ofN weightsvi aroundt.
To smooth the network output and remove small maxima in the output layer sigmoidal
function are used.

Gaussian bars make elimination of irrelevant input variables, i.e. dimensionality re-
duction, easier than in the multidimensionalGaussian case. Variable dispersions should
also allow to reduce some of the dimensions to zero (cf. the example of quadratic lo-
gistic mapping given by Moody and Darken [26]). Another advantage of using the bar
functions follows from the very existence of these bars. A single maximum or a few
separated maxima are described by a small number of Gaussian functions with only
N + 1 parameters each and require the same number of Gaussian bar functions with
almost three times as many parameters. However, if there arek regularly spaced input
clusters in each dimension in theN -dimensional hypercubekN clusters are formed,
and each should be represented by a separate multivariate Gaussian. On the other hand
kN Gaussian bar functions are sufficient to describe such a case.

3 LOCAL AND SEMI-LOCAL TRANSFER FUNCTIONS 8

Gauss

BiRadial

G. Bars

G. ellipsoidal

G_S

G_2

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

Figure 3: Comparison of several localized functions fitted to a gaussian.

Similar combination of sigmoidal functions will createsigmoidal bar function:

�b(x; t;W;v) =

N∑
i=1

vi

1 + e�Wi(xi�ti)2=b
2

i

(21)

These functions, similarly as Gaussian bars, give surfaces of constant densities that
cannot easily be rotated, which is clearly a disadvantage. Sigmoidalbar functions should
not be used to represent data clustered around a few points only because each cluster re-
quires2N sigmoidal functions while one Gaussian function may be sufficient to model
a cluster. However, if the data clusters are regularly spaced in a quadratic mesh each
of thek2 clusters should be represented by a separate Gaussian, while2 � 2k = 4k sig-
moidalbars in the input space are sufficient to represent such data.

3.3 Ellipsoidal density functions

The multivariate Gaussian functions give hyperellipsoidal output densities:

Gg(x; t;b) = e�D
2
(x;t;b)

=

N∏
i=1

e�(xi�ti)
2=b2

i (22)

Dispersionsbi may be interpreted as scaling factors in the distance function:

3 LOCAL AND SEMI-LOCAL TRANSFER FUNCTIONS 9

D2
(x; t;V) =

∑
i

Vi(xi � ti)
2 (23)

with Vi = 1=b2i . Similar result is obtained by combining the sigmoidal output function
(or any other logistic function) with the quadratic distance function, for example:

GS(x; t;b) = 2
(
1� �(D2

(x; t;b)
)
) (24)

=
2

1 +
∏N
i=1 e

(xi�ti)2=b
2

i

=
2

1 + eD
2(x;t;b)

(25)

ForN -dimensional input space each ellipsoidal unit uses2N adaptive parameters.
Taking the Mahalanobis distance function

D2

M (x; t) =

∑
ij

(xi � ti)�
�1

(xi � ti) (26)

where� is the (symmetric) covariance matrix ofx� t, rotation of hyperellipsoids
is introduced. Treating the elements of covariance matrix as adaptive parameters is
equivalent to the use of a general metric tensor in the distance function:D2

g(x;G; t) =∑
i�j Gij(xi�ti)(xi�ti). The total number of parameters per each function becomes

N (N+3)=2 and the constant density surfaces are given by general quadratic forms, i.e.
they are ellipsoidal, parabolic or hyperbolic.

A single unit may also provide more complex densities if more general distance
functions are used, but one should avoid too many parameters per one neural node. Sim-
pler units giving approximately ellipsoidal densities are also useful, for example:

G2(x; t;b) =

N∏
i=1

1

1 + (xi � ti)2=b
2

i

(27)

This formula cannot be easily expressed in terms of an overall distance function.
Using linear approximation forGS (instead of a product) the squared distance function
appears in the denominator:

G3(x; t;b) =
1

1 +
∑N

i=1(xi � ti)2=b
2

i

=
1

1 +D2(x; t;b)
(28)

These functions give hyperellipsoidal densities. Giraud et al. [12] used a fan-in
function to create theLorentzian response functions:

L(x;W) =
1

1 + I2(x;W; �)
=

1

1 + (
∑N

i=1Wixi � �))2
(29)

AlthoughGS andL functions look similar they are in fact quitedifferent: Lorentzian
functions are not ellipsoidal, surfaces of constant density are in their case a window-type
non-localized function, with the half-width equal to1=

√∑
iW

2
i .

A number of local training algorithms has been devised for local transfer functions,
combining the k-means clustering for initialplacements of ellipsoids in a self-organizing
fashion, followed by growing and pruning of the new ellipsoidal units in supervised al-
gorithm. In particular if the training algorithm localizes neuron processing function in
the region far from the given data points the unit may be removed without loss.

3 LOCAL AND SEMI-LOCAL TRANSFER FUNCTIONS 10

An interesting feature2 of Gaussian functionsGg (Eq. 22) is that after a simple renor-
malization (Eq. 30) they become non-local and are equivalent to sigmoidal functions
�(x;p), wherepi = b2i =4ti:

GR(x; t;b) =
Gg(x; t;b)

Gg(x; t;b) + Gg(x;�t;b) =
1

1 + e
�4

P
N

i=1
xiti=b

2

i

(30)

3.4 Universal transfer functions

Linear terms used to calculateI(x;W; �) activations and quadratic terms used in Eu-
clidean distance measures combined together create functions that for some parameters
give localized, and for other parameters non-localized densities. Several functions of
such kind have been proposed recently. Ridella et al. [33] use circular units in their Cir-
cular Backpropagation Networks. The output function is a standard sigmoid while the
activation function contains one extra term:

Ic(x;W) = W0 +

N∑
i=1

Wixi +WN+1

N∑
i=1

x2i (31)

and may also be presented in form of a distance function with:

Ic(x;W) = dc(x; c) = (jjx� cjj2 � �)WN+1; (32)

ci = �Wi=2WN+1; � =
1

WN+1

(
N∑
i=1

W 2

i

4W 2

N+1

�W0

)

Ridella et al. [33] obtained very good results using these units in the standard back-
propagation network and proved that in many ways circular units provide an optimal
solution in classification problems. Different type of circular units have been used by
Kirby and Miranda [20]. In their implementation two sigmoidal units are coupled to-
gether and their output is restricted to lie on a unit circle.

Dorffner [6] proposed conic section transfer functions as a unified framework for
MLP and RBF networks. Straight lines and ellipses are special cases of conic sections.
From geometrical considerations Dorffner proposes a combination of fan-in and dis-
tance activation functions:

C(x;W; t; !) = I(x � t;W) + !D(x � t) (33)

=

N+1∑
i=1

Wi(Xi � ti) + !

√√√√N+1∑
i=1

(xi � ti)2

This activation is then composed with the standard sigmoidal function to produce
the conical transfer function. From our previous discussion it should be clear that many
other combinations of fan-in and distance functions could also serve as universal trans-
fer functions. For example,exp(�I2 � �D2

) or the approximated Gaussian combined
with the Lorentizan function also provide an interesting universal transfer function:

2W.D. is indebted to Igor Grabiec for pointing this out in a private discussion

3 LOCAL AND SEMI-LOCAL TRANSFER FUNCTIONS 11

CGL(x;W; t; �; �) =
1

1 + �I2(x;W; �) + �D2(x; t)
(34)

For simplicity we may assume that� = 1��. The� parameter scales the relative
importance of the linear, non-localized terms. The number of adaptive parameters in
this case is equal to2N + 1 (no scaling factors in distance function) or3N + 1 (sep-
arate distance scaling factors for each dimensions). Unfortunately universal functions
are nonseparable.

3.5 Biradial functions

Bi−RBF(x,0,0,1)

Bi−RBF(x,0,4,16)

Bi−RBF(x,0,4,1)

1.27.*Bi−RBF(x,0,0.7,3)

Bi−RBF(x,0,0.7,16)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0

0.5

1

1.5

Figure 4: A few shapes of the biradial functions in one dimension.

Sigmoidal functions may be combined into a “window" type localized functions in sev-
eral ways. Perhaps the simplest is to take the difference of two sigmoids,�(x)��(x�
�). One may also use products of pairs of sigmoidal functions�(x)(1��(x)) for each
dimension. This type of transfer functions are very flexible, producing decision regions
with convex shapes, suitable for classification. Product ofN pairs of sigmoids has the
following general form:

Bi(x; t;b; s) =

N∏
i=1

�(esi � (xi � ti + ebi))(1� �(esi � (xi � ti � ebi))) (35)

where�(x) = 1=(1 + e�x). The first sigmoidal factor in the product is growing
for increasing inputxi while the second is decreasing, localizing the function aroundti.
Shape adaptation of the densityBi(x; t;b; s) is possible by shifting centerst, rescaling
b ands. Radial basis functions are defined relatively to only one centerjjx� tjj. Here

4 NEURAL NETWORKS WITH BIRADIAL TRANSFER FUNCTIONS 12

two centers are used,ti + ebi andti � ebi , therefore we call these functions biradial.
Product form leads to well-localized convex densities of biradial functions.

The number of adjustable parameters per processing unit is in this case3N . Dimen-
sionality reduction is possible as in theGaussian bar case, but more flexible density
shapes are obtained, thus reducing the number of adaptive units in the network. Ex-
ponentialsesi andebi are used instead ofsi andbi parameters to prevent oscillations
during the learning procedure (learning becomes more stable).

Localized biradial functions may be extended to the semi-localized universal trans-
fer functions by adding two parameters:

SBi((x; t;b; s) =

N∏
i=1

(�+�(esi � (xi� ti+ebi)))(1���(esi � (xi� ti�ebi))) (36)

This function does not vanish for largejxj, for � = 0, � = 1 it is identical to the
biradial localized functions while for� = � = 0 each component under the product
turns into the usual sigmoidal function. For each unit semi-local functionsSBi have
3N+2 parameters or5N parameters (if different�i and�i are used in each dimension).

4 Neural networks with biradial transfer functions

As far as we know biradial functions as well as universal functionsCGL Eq. (34) have
never been tested before in the neural network context. We have performed tests of bira-
dial transfer functions for classification and approximation problems with two different
neural network architectures. To test the difference in performance between the stan-
dard sigmoidal and biradial transfer functions for classification we have used the modi-
fied Stuttgart Neural Networks Simulator (SNNS) [17]. Backpropagation formulas for
the biradial transfer functions were derived and implemented in the RBF package. We
have also modified RBF to work not only with radial, but also with sigmoidal transfer
function.

The two-spiral classification benchmark3 is a difficult test frequently used for back-
propagation networks. The number of data points used for training is 196, points are
divided into two classes (represented by the dark and light areas in Figure 5). Three
RBF-type networks of identical structure were trained using the two-spiral data. The
same initialization procedure was used with the Gaussian, sigmoidal and biradial trans-
fer functions. The number of network nodes was set to 100 (about half of the number
of the training vectors) and each network was trained for2000 epochs.

In Figure 6 convergence of errors during training of the RBF network using Gaus-
sian transfer functions (Eq. 14, with the same dispersion in each dimension, but opti-
mized for each node), sigmoidal functions (Eq. 2, with the same dispersion and slope in
each dimension, also optimized for each node) and biradial transfer functions (Eq. 35,
all dispersions and slopes optimized by the learning procedure) is presented. The net-
work based on biradial transfer functions not only learns faster (Fig. 6) but also gener-
alizes better (Fig. 5). It is interesting to note that the sigmoidal functions used in the
RBF-type of networks performed much better than Gaussian functions. The two-spiral
problem is easy for the Gaussian RBF network if the number of nodes is equal to the
number of training vectors. If the number of nodes is restricted Gaussian functions are
not sufficiently flexible to represent the density accurately.

3These benchmark data is stored at: http://www.cs.cmu.edu/afs/cs/project/connect/bench/.

4 NEURAL NETWORKS WITH BIRADIAL TRANSFER FUNCTIONS 13

Figure 5: Results for the two spiral classification problem solved with the Gaussian (left figure) and

biradial (right figure) transfer functions.

biradial

sigmoidal

Gaussian

Figure 6: Comparison of the summed squared errors for different transfer functions: Gaussian

(Eq. 14), sigmoidal (Eq. 2) and biradial function (Eq. 35) used in the same RBF net during 2000

epochs.

Our second benchmark problem concerns approximation rather than classification.
Approximation of Sugeno function [35]f(x; y; z) = (1 + x0:5

+ y�1
+ z�1:5

)
2 was

attempted using Gaussian and biradial transfer functions. Although this function is fre-
quently used for testing the approximation capabilities of adaptive systems there is no
standard procedure to select the training points and thus the results are rather hard to
compare. Here for training216 points from[1; 6]section and125 points for testing from
[1:5; 5:5] section were randomly chosen. Since our goal is to test the usefulness of the
biradial functions the results of computations made by the IncNet neural network [19]
with Gaussian and biradial functions are compared. IncNet is a network with statistical
control of growing and pruning of neurons in hidden layer in RBF-like structure net-
work. All tests were performed using the same initial parameters.

Two learning processes were pursued for4000 iteration4 Although it is possible to
obtain smaller RMS error by increasing the number of iterations and changing other

4One iteration is a single update of parameters in which only one pattern is presented for learning.

5 DISCUSSION AND POSSIBLE EXTENSIONS 14

parameters used in control of learning it will not change the qualitative difference of
our results. The change of RMS errors in the training process is presented in Figure 7.
Learning using Gaussian functions is unstable, the network is unable to build suitable
landscape to approximate the function. The IncNet network gives clearly better results
using biradial transfer functions than Gaussian functions.

0 500 1000 1500 2000 2500 3000 3500 4000
10

−3

10
−2

10
−1

10
0

RMSE

Figure 7: Comparison of RMS errors obtained by the IncNet network using biradial (solid line) and

Gaussian (dashdot line) functions.

5 Discussion and Possible Extensions

We have presented an overview of different transfer functions used in neural network
models and presented several new functions suitable for this purpose. From the geomet-
rical pointof view learning requires approximation of complicated probabilitydensities.
In the process of density estimation by neural networks flexible transfer functions are as
important as good architectures and learning procedures. Small number of network pa-
rameters should allow for maximum flexibility. Universal (semi-localized) functions,
such as the circular, conical, biradial or simplified Lorentzian/Gaussian functions lead
to more compact networks that learn faster. These functions unify the distance-based,
localized paradigm using terms quadratic in inputs, with the non-local approximations
based on discriminant functions that use only the linear terms.

An important advantage of the biradial functions comes from their separability. Sig-
moidal functions are not separable and among radial basis functions only Gaussians are
separable. Separability enables analysis of each dimension or a subspace of the input
data independently. In other words one can forget some of the input features and work
in the remaining subspace. This is very important in classification when some of the
features are missing.

Biradial transfer functions may also be used forlogical rule extraction using FSM
density estimation network. Logical interpretation of the function realized by neural

5 DISCUSSION AND POSSIBLE EXTENSIONS 15

network is possible if instead of hyperellipsoidal densities cuboidal densities are used.
In case of sigmoidal and biradial transfer functions sufficiently big values of the slopes
are needed, changing graded sigmoidal functions into step functions and biradial func-
tions intocuboidal (rectangular) functions. There are several ways to enforce large slopes
of the transfer functions. The network may be trained with modified error function, for
example:

Enew = Eold +

∑
i

1=s2i (37)

Modification of the error function may also be done after the trainingprocess is com-
pleted, with subsequent retraining to maximize the slopes with minimal change of the
network parameters. The “window" for irrelevant inputs becomes broad and when it
covers all the data the links to these inputs are removed. Using these ideas we have ob-
tained very good results in applications to rule extraction from data (Duch, Adamczak
and Gra̧bczewski, in preparation).

The biradial functions proposed and tested in this paper contain3N parameters per
one unitand are quite flexible in representing various probabilitydensities. Semi-biradial
functions provide local and non-local units in one network. Next step towards even
greater flexibility requires individual rotation of densities provided by each unit. Of
course one can introduce a rotation matrix operating on the inputsRx, but in practice it
is very hard to parametrize thisN �N matrix withN � 1 independent angles (for ex-
ample, Euler’s angles) and calculate the derivatives necessary for the backpropagation
procedure. We have found two ways to obtain rotated densities in all dimensions using
transfer functions with justN additional parameters per neuron. In the first approach
product form of the combination of sigmoids is used

CP (x; t; t
0;R) =

∏
i

(
�(Rix+ ti) � �(Rix + t0i)

)
(38)

SCP (x; t; t
0;p; r;R) =

∏
i

(
pi � �(Rix + ti) + ri � �(Rix + t0i)

)

whereRi is thei-th row of the rotation matrixR with the following structure:

R =




s1 �1 0 � � � 0

0 s2 �2 0

...
...

...
sN�1 �N�1

0 � � � 0 sN




(39)

If pi = 1 andri = �1 thenSCP function is localized and gives similar densities
as the biradial functions (except for rotation). Choosing other values for thepi andri
parameters non-local transfer functions are created.

In the second approach the density is created by the sum of a “window-type" com-
binations of sigmoidsL(x; t; t0) = �(x + t) � �(x + t0) in N � 1 dimensions and a
combination rotated by a vectorK:

CK(x; t; t0;W;K) =

N�1∑
i=1

WiL(xi; ti; t
0

i) +WNL(Kx; t; t
0
) (40)

REFERENCES 16

The last density is perpendicular to theK vector. TreatingCK(�) as the activation
function and using sigmoidal output function with a proper threshold leaves only the
densities in the direction perpendicular toK. An alternative is to use the product form:

CPK (x; t; t0;K) = L(Kx; t; t0)

N�1∏
i=1

L(xi; ti; t
0

i) (41)

as the transfer function – the output sigmoid is not needed in this case. Rotation
adds onlyN � 1 parameters forCP (�) function andN parameters forCK(�) function.

So far we have not seen any adaptive systems using such generalized transfer func-
tions. There is an obvious tradeoff between the flexibility of the processing units in-
creasing with the number of adjustable parameters and the complexity of the training
process of the whole network. Biradial and rotated transfer functions (CP (�), CS(�))
are flexible but still rather simple, therefore we intend to use them also in the FSM [7]
and other networks.

Although the importance of density estimation seems rather obvious the value of
research on the transfer functions is frequently overlooked. We believe that the point of
view presented in this paper is very fruitful and should be pursued.

References

[1] John Allison. Multiquadratic radial basis functions for representing multidimen-
sional high energy physics data.Computer Physics Communications,77:377–395,
1993.

[2] Chris Bishop. Improving the generalization properties of radial basis functionneu-
ral networks.Neural Computation, 3:579–588, 1991.

[3] L. Bottou and V. Vapnik. Local learning algorithms.Neural Computation,
4(6):888–900, 1992.

[4] D. S. Broomhead and D. Lowe. Multivariable functional interpolation and adap-
tive networks.Complex Systems, 2:321–355, 1988.

[5] G. Cybenko. Approximation by superpositions of a sigmoidal function.Mathe-
matics of Control, Signals, and Systems, 2(4):303–314, 1989.

[6] Georg Dorffner. A unified framework for MLPs and RBNFs: Introducing conic
section function networks.Cybernetics and Systems, 25(4), 1994.

[7] Włodzisław Duch and G. H. F. Diercksen. Feature space mapping as a universal
adaptive system.Computer Physics Communications, 87:341–371, 5 1994.

[8] R. Durbin and D. E. Rumelhart. Product units: A computationally powerful and
biologically plausible extension to backpropagation networks.Neural Computa-
tion, 1:133–142, 1989.

[9] N. Dyn. Interpolation and approximation by radial and related functions. In C. K.
Chiu, L. L. Schumaker, and J. D. Watts, editors,Approximation Theory VI. Aca-
demic Press, 1989.

[10] R. Franke. Scattered data interpolation: test of some methods.Math Computation,
38:181–200, 1982.

REFERENCES 17

[11] K. Fukunaga.Introduction to Statistical Pattern Recognition. Academic Press,
1972.

[12] B. G. Giraud, A. Lapedes, L. C. Liu, and J. C. Lemm. Lorentzian neural nets.
Neural Networks, 8:757–767, 1995.

[13] E. Hartman and J. D. Keeler. Predicting the future: Advantages of semilocal units.
Neural Computation, 3(4):566–578, 1991.

[14] E. J. Hartman, J. D. Keeler, and J. M. Kowalski. Layered neural networks
with Gaussian hidden units as universal approximations.Neural Computation,
2(2):210–215, 1990.

[15] Simon Haykin. Neural Networks - A Comprehensive Foundation. IEEE Press,
1994.

[16] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators.Neural Networks, 2(5):359–366, 1989.

[17] Institute of Parallel and Distributed High-Performance Systems (IPVR).
Stuttgart Neural Networks Simulator. http://www.informatik.uni-
stuttgart.de/ipvr/bv/projekte/snns/snns.html.

[18] V. Kadirkamanathan and M. Niranjan. A function estimation approach to sequen-
tial learning with neural networks.Neural Computation, 5(6):954–975, 1993.

[19] Visakan Kadirkamanathan and Norbert Jankowski. Rbf-like neural networks sta-
tistical control of growing and pruning. in preparation, 1997.

[20] M. J. Kirby and R. Miranda. Circular nodes in neural networks.Neural Com-
putaitons, 8:390–402, 1996.

[21] H. Leung and S. Haykin. Rational neural networks.Neural Computation, 5, 1993.

[22] D. Lowe. Adaptive radial basis function nonlinearities, and the problem of gener-
alisation. In1st IEE InternationalConference on Artifical Neural Networks, pages
171–175, 1989.

[23] D. Lowe. On the iterative inversion of rbf networks: Astatistical interpretation.
In 2nd IEE International Conference on Artifical Neural Networks, pages 29–33,
1991.

[24] D. Lowe. Novel “topographic" nonlinear. In3rd IEE International Conference
on Artifical Neural Networks, pages 29–33, 1993.

[25] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[26] John Moody and Christian J. Darken. Fast learning in networks of locally-tuned
processing units.Neural Computation, pages 281–294, 1989.

[27] M. Morita. Memory and learning of sequential pattern by nonmonotone neural
networks.Neural Networks, 9:1477–1489, 1996.

[28] Yoh-Han Pao. Adaptive Pattern Recognition and Neural Networks. Addison-
Wesley, Reading, MA, 1989.

REFERENCES 18

[29] J. Park and I. W. Sandberg. Universal approximation using radial-basis-function
networks.Neural Computation, 3(2):246–257, 1991.

[30] J. Park and I. W. Sandberg. Universal approximation using radial-basis-function
networks.Neural Computation, 3(2):246–257, 1991.

[31] T. Poggio and F. Girosi. Network for approximation and learning.Proc. IEEE,
78(9):1481–1497, September 1990.

[32] M. J. D. Powell. Radial basis functions for multivariable interpolation: A review.
In J. C. Mason and M. G. Cox, editors,Algorithms for Approximation of Functions
and Data, pages 143–167. Oxford University Press, 1987.

[33] S. Ridella, S. Rovetta, and R. Zunino. Circular backpropagation netwoprks for
classification.IEEE Transaction on Neural Networks, 8:84–97, 1997.

[34] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, 1996.

[35] M. Sugeno and G. T. Kang. Structure identification of fuzzy model.Fuzzy Sets
and Systems, 28:13–33, 1988.

