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A New Methodology of Extraction, Optimization and
Application of Crisp and Fuzzy Logical Rules

Wiodzistaw Duch Member, IEEERafat Adamczak, and Krzysztof Grezewski

Abstract—A new methodology of extraction, optimization, and
application of sets of logical rules is described. Neural networks
are used for initial rule extraction, local, or global minimization
procedures for optimization, and Gaussian uncertainties of
measurements are assumed during application of logical rules. Al-
gorithms for extraction of logical rules from data with real-valued
features require determination of linguistic variables or mem-
bership functions. Context-dependent membership functions for
crisp and fuzzy linguistic variables are introduced and methods
of their determination described. Several neural and machine
learning methods of logical rule extraction generating initial
rules are described, based on constrained multilayer perceptron,
networks with localized transfer functions or on separability cri-
teria for determination of linguistic variables. A tradeoff between
accuracy/simplicity is explored at the rule extraction stage and
between rejection/error level at the optimization stage. Gaussian
uncertainties of measurements are assumed during application
of crisp logical rules, leading to “soft trapezoidal” membership
functions and allowing to optimize the linguistic variables using
gradient procedures. Numerous applications of this methodology
to benchmark and real-life problems are reported and very simple
crisp logical rules for many datasets provided.

Index Terms—Backpropagation, data mining, decision trees,

feature selection, fuzzy systems, logical rule-based systems, neura

networks.

. INTRODUCTION

Comprehensibility is often regarded in machine learning
(ML) as the most desired characteristic of inductive methods
(i.e., methods that learn from examples). Michalski, one of
the ML pioneers, formulated it in the following way: “The
results of computer induction should be symbolic descriptions
of given entities, semantically and structurally similar to those
a human expert might produce observing the same entities.
Components of these descriptions should be comprehensible
as single “chunks” of information, directly interpretable in
natural language, and should relate quantitative and qualitative
concepts in an integrated fashion” [2].

Many methods to find logical description of the data have
been designed in the past using statistical, pattern recognition
[3] and machine learning [4] approaches. Rule-based systems
should be preferred over other methods of classification only
in cases when the set of logical rules is not too complex and
their predictive accuracy is sufficiently high. Hundreds of log-
ical rules produced by some algorithms provide opaque descrip-
tion of the data and therefore are not more comprehensible than

ny black-box classification system. Although the class of prob-
Fems with inherent logical structure simple enough to be man-
ageable by humans may be rather limited, nevertheless it covers
some important applications, such as the decision support sys-
tems in medicine, finances, commerce, and other applications.

(MLP) and other neural networks, adjust their internd{S€ the simplest description of the data that does not compro-

parameters performing vector mappings from the input to tly@ise accuracy: extract crisp logical rules first, use fuzzy rules
output space. Although they may achieve high accuracy of cldscrisp rules are not sufficient, and only if the number of log-
sification, the knowledge acquired by such systems is rep}gal rules required for high accuracy of classification is too large
sented in a large number of numerical parameters and netwHf€ other, more sophisticated tools. In many applications simple
architectures, in a way thatis incomprehensible for humans. TH&P logical rules proved to be more accurate and were able to
a priori knowledge about the problem to be solved is frequentfigneralize better than many machine and neural learning algo-
given in a symbolic, rule-based form. Extraction of knowledgdthms [5]. In other applications fuzzification of logical rules
from data, combining it with available symbolic knowledge angave more accurate results [6]. Crisp logical rules may be con-
refining the resulting knowledge-based expert systems is a gré@fted to a specific form of fuzzy rules (Section VIil) and op-
challenge for computational intelligence. Reasoning with logMized using gradient procedures, providing higher accuracy
ical rules is more acceptable to human users than recommeritfbout significant increase of the complexity or decrease of
tions given by black box systems [1], because such reasonfi@jnPrehensibility of the rule-based system.

is comprehensible, provides explanations, and may be validated\re neural methods competitive to other methods in pro-
by human inspection, increasing confidence in the system, iMding simple and accurate sets of logical rules? There are two

portant relationships and features may be discovered in the d&tgues here: understanding what neural networks really do, and
using neural networks to extract logical rules describing the

. . _ data. Many neural rule extraction methods have been devised in
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been given. There is a strong competition from decision treasd consistency of the extracted rules); 3) the “translucency”
[8], which are fast, accurate, and can easily be converted to seftthe method, based on local-global use of the neural network
of logical rules, from inductive methods of machine learnin(analysis of individual nodes versus analysis of the total net-
[4], and from systems based on fuzzy [9], [10] and rough setsork function); 4) the algorithmic complexity of the method; 5)
[11], [12]. specialized network training schemes. One should add one more
Despite this competition neural networks seem to have impalimension to this scheme; and 6) the treatment of linguistic vari-
tant advantages, especially for problems with continuous-valugiles: some methods work only with binary variables, other with
inputs. Good linguistic variables may be determined simultangiscretized inputs, and yet other with continuous variables that
ously with logical rules, selection and aggregation of featurese converted to linguistic variables automatically.
into smaller number of more useful features may be incorpo-In the simplest case the inputs are binary and the network
rated in the neural model, adaptation mechanisms for contirgives logical outputs. After training the network performance is
ously changing data are built in, and wide-margin classificati@guivalent to a set of logical rules that may be found by giving as
provided by neural networks leads to more robust logical rulésput all possible combinations of features. kdrinary features
In this paper we do not introduce “a new neural method” fdhe number of conjunctive rules3$ (since each feature may ei-
rule extraction, but rather present a complete methodology tber be absent, present or its negation may be present in the rule
extraction, optimization, and application of sets of logical rulegntecedent). To limit the number of nodes in the search graph
An overview of neural rule extraction methods is made in th@e may try to limit the number of literals in the antecedents of
next section, followed by some comments on types of logicaxtracted rules. In one of the first neural rule extraction methods
rules used in inductive methods. The first step in the rule-basgdito and Nakano [14] restricted the maximum number of posi-
data analysis requires selection of initial linguistic variablegye and negative literals and the depth of the breadth-first search
as described in Section IV. Several new neural rule extractiprocess, additionally restricting the search tree to those combi-
methods are presented in Section V and a pedagogical examjsitions of literals that were present in the training set. Due to
of the actual process of rule extraction, based on the well-knorese restrictions their method could sometimes accept a rule
Iris flower data [7], is given in Section VI. Once initial rulesthat was too general. This drawback has been removed in the
are extracted simplification and optimization of linguistic varimethod developed by Gallant [15]. The difficulty comes from
ables for real-valued attributes is done. In Section VII, the accilre inputs that are not specified in the rule provided as a candi-
racy/rejection tradeoff for sets of rules is explored. A new errélate by the search procedure. Gallant takes all possible values
function is defined allowing to create hierarchical sets of rulefr these inputs and although his rules are always correct they
starting from rules that are very reliable but reject many casewy be too specific.
(assigning them to the “unknown” class), to rules that classify The validity interval analysis (VIA) method developed by
all data but are less reliable. Thrun [16] is a further extension of the global approach. A
Crisp logical rules assign a given input vector to a singhglidity interval, specifying the maximum activation range
class with probability equal one, even in cases when similar each input, may be found using linear programming
probability for two or more classes should be reported. In Sdechniques. These intervals may be propagated backward and
tion VIII, amethod for calculation of probabilities for rule-basedorward through the network. Arbitrary linear constraints
classifiers is presented. Assuming Gaussian uncertainties ofth@y be applied to input as well as output units, giving the
measured features analytical formulas for classification probaethod the ability to check the validity of nonstandard form
bilities are derived. Such approach is equivalent to the usedadfrules, such as thé/-of-\V rules, i.e., logical expressions in
fuzzy rules with “soft trapezoid” membership functions applie@hich at leastM of N literals are true. VIA can handle also
to crisp input vectors. This enables optimization of linguisticontinuous-valued input features, starting from the training
variables for very large sets of rules using efficient gradient prgalues and replacing them with intervals that are increased
cedures and preserves the ease of interpretation of crisp logtealachieve good generalization of rules. The method may
rules. lllustration of the optimization and probability calculabe applied to any neural network with monotonic transfer
tion steps is done in Section IX, while in Section X many agunctions. Unfortunately it has a tendency to extract rules that
plications on well-known data and some real-world exampl@ge too specific and rather numerous.
are presented and, whenever possible, compared with other ag-hese methods are global, based on analysis of outputs of the
proaches. Explicit form of rules are given, in most cases the simihole network for various inputs. Local, or “decompositional”
plest and most accurate reported in the literature so far for thegethods [1] analyze fragments of the network, usually single
datasets. Section XI contains summary and conclusions.  hidden nodes, to extract rules. Such networks are either based
on sigmoidal functions (step functions in the logical limit), or
on localized functions. Using step functions the output of each
Il. AN OVERVIEW OF NEURAL RULE EXTRACTION METHODs  heuron becomes logical (binary) and since sigmoidal transfer
functions are monotonic and activations are between zero and
A taxonomy of the neural rule extraction algorithms magne it is enough to know the sign of the network weight to de-
characterize different methods using five dimensions [13]: 1grmine the contribution to activation of a given unit. Search for
the “expressive power” of the extracted rules (types of rulesles has now2™ possible combinations of input features (ir-
extracted); 2) the “quality” of the extracted rules (accuracy, frelevant or relevant feature, with negation of literal determined
delity comparing to the underlying network, comprehensibilitipy the weight sign), while in the global approach monotonicity
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does not, in general, hold. Rules corresponding to the whole niefactive. After training a skeletal network structure is left and
work are combined from rules for each network node. the dominant rules extracted. Keeping this skeletal network
Local methods for extraction of conjunctive rules were prdrozen small connections are revived by decreasing the reg-
posed by Fu [17]-[20] and Gallant [15]. As with the globallarization parameters. After training of the more complex
methods depth of search for good rules is restricted. The weighttwork additional logical rules are obtained from analysis of
may be used to limit the search tree by providing the evaluaew nodes/connections. Another simple method belonging to
tion of contributions of inputs that are not specified in rule arthat group has been presented by Geczy and Usui [29]. Weights
tecedents. As shown by Sethi and Yoo [21] the number of seaiohthe MLP network with one hidden layer are mapped after
nodes is then reduced 2" //n). In theSubset algorithm training into zero;+1 or —1 values, simplifying the rule search
of Towell and Shavlik [22] inputs with largest weights are anastep. In our own MLP2LN approach [30] described below such
lyzed first, and if they are sufficient to activate the hidden nodemapping is incorporated in the learning scheme.
of the network irrespectively of the values on other inputs, a Rule extraction as learning (REAL) is a rather general tech-
new rule is recorded. Combinations of the two largest weightgque introduced by Craven and Shavlik [31] for incremental
follow, until the maximum number of antecedent conditions igeneration of new rules (conjunctive df-of-N). If a new ex-
reached. A fuzzy version of this approach has been proposeddmyple is not classified correctly by the existing set of rules a
Hayashi [23]. new rule, based on this example, is added and the fidelity of the
All these methods still have a problem with exponentiallgxtended set of rules is checked against the neural network re-
growing number of possible conjunctive prepositional rulesponses on all examples used so far. The RULENEG algorithm
Towell and Shavlik [22] proposed to use tié-of-N rules, [1], [32], [94] is based on a similar principle: one conjunctive
since they are implemented in a natural way by networkle per input pattern is generated and if a new training vector
nodes. In some cases such rules may be more compact @sndot correctly classified by the existing set of ruiRsa new
comprehensible than conjunctive rules. To avoid combinataile is created as a conjunction of all those inputs literals that
rial explosion of the number of possible input combinationsave influence on the class of the vector. This is determined by
for each network node groups of connections with similaonsecutive negation of each input value followed by checking
weights are formed. Weights in the group are replaced by théising the neural network) if the predicted class has changed.
averages. Groups that do not affect the output are eliminatedn the BRAINNE algorithm [33] a network of: inputs andh
and biases reoptimized for frozen weights. Such a simplifieditputs is changed to a network:af+ » inputs and. outputs
network has effectively lower number of independent inputand retrained. Original inputs that have weights which change
therefore it is easier to analyze. If symbolic knowledge is uséittle after extension and retraining of the network correspond
to specify initial weights, as it is done in the knowledge-basdd the most important features. The method can handle con-
artificial neural networks (KBANNSs) of Towell and Shavliktinuous inputs and has been used in several benchmark and
[24], weights cluster before and after training. The searckal-life problems, producing rather complex sets of rules. Log-
process is further simplified if the prototype weight templatdsal rule extraction has also been attempted using self-orga-
(corresponding to symbolic rules) are used for comparison witlizing ART model [34] and fuzzy ARTMAP architecture [35].
the weight vectors [25] (weights are adjusted during trainirlg the last case a certainty factors for each rule are provided.
to make them more similar to templates). The RuleNet meth&impler self-organizing architectures may also be used for rule
based on templates has also been used to find thelbaxft N extraction [36], although accuracy of the self-organized map-
rules inO(n?) steps and the best sets of nesbdeof-V rules ping for classification problems is rather poor.
in O(n?) steps [26], exploring large spaces of candidate rules.The DEDEC algorithm [1], [37] extracts rules by finding a
The method handles only discrete-valued features, therefomgimal information sufficient to distinguish, from the neural
initial discretization is necessary for continuous features. Thetwork point of view, between a given pattern and all other pat-
network has only one hidden layer with a specific architectuterns. To achieve this a new set of training patterns is generated.
to inject symbolic rules into the network and refine therfirst, inputs are ranked in order of their importance, estimated
iteratively. by inspection of the influence of the input weights on the net-
Several authors noticed the need for simplification ofork outputs. Second, clusters of vectors are selected and used
neural networks to facilitate rule extraction process. Setiomustead of original cases. Only those features ranked as impor-
and Liu [27] use a regularization term in the cost functiotant are used to derive conjunctive rules, which are found by
to iteratively prune small weights. After simplification thesearching.
network is discretized by clustering activation values of the Since our goal is to get the simplest logical description of the
hidden unit obtained during presentation of the training setata, rather than description of the network mapping, we are in
The method does not guarantee that all rules will be founiyvor of using specialized training schemes and architectures. Of
but results for small networks were encouraging. The methodurse any rule extraction method may be used to approximate
of successive regularization [28] is based on a similar idethe neural-network function on some training data. The network
with Laplace regularization (sum of absolute weight value® used as an “oracle,” providing as many training examples
in the error function, inducing a constant decay of weightas one wishes. This approach has been used quite successfully
Only weights smaller than some threshold are included by Craven and Shavlik in their TREPAN algorithm [38], com-
the regularizing term (this is called “selective forgetting”)bining decision trees with neural networks. Decision trees are
Hidden units are forced to become fully active or completeipnduced by querying neural network for new examples, adding
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tree nodes that offer the best fidelity to the classification by tlemple description of the data and to be able to provide more
network. New branches of the tree are created only after a laggeurate, but more complex description, in a controlled manner.
number of queries has been answered. Therefore the methodésiral methods of rule extraction may provide initial rules, but
more robust than direct decision tree approach, which sufféhat should not be the end of the story.

from small number of cases in the deeper branches. Classifiers

based on ensembles of different models, similarity-based clas- lll. TYPES OFRULES

sifiers, statistical methods or any other classifiers that producqn this section types of logical rules are discussed, stressing

incomprehensible m_odels of the data may be approxmated&% importance of decision borders they are able to provide in
rule-based systems in the same way. . multidimensional feature spaces. Although nonstandard form of
_ Neural neMorks based on s_eparable localized transfer fu?ﬁl’es, such as/-of-N rules (M out of N antecedents should
tlon_ are (_aquwalent_to fgzzy logic systems [39]. Each nodg hﬁﬁ true), fuzzy rules, decision trees [4] and more complex forms
a direct interpretation in terms of.fuzzy rulles and there is g knowledge representation are sometimes used in this paper
need for a search process. Gaussian functions were used fowa'will consider only standard IF...THEN prepositional rules.

serting and extracting knowledge into the radial basis set YBfhce these rules are the simplest and most comprehensible they
of networks [40]. More general proposal for neurofuzzy systeg’hould be tried first.

base_d on separable fu_nction_s was mgde by Duch [41], [42]. Dis-p very general form of prepositional rule is

cussion of rule extraction using localized transfer functions has

been given by Andrews and Geva [43], [95]. These authors de- IEX € K@ THEN Clas$X) = C; (1)

veloped a quite successful approach called RULEX [44], based ‘

on constrained MLP networks with pairs of sigmoidal functionke-, if X belongs to the clustek ™ then its class i¥; =

combined to form “ridgeS," or “local bumps_” Rules may in th|§1&SS(K(Z)), the same as for all vectors in this cluster. This gen-

case be extracted directly from analysis of weights and thre$tal approach does not restrict the shapes of clusters used in log-

olds, without the search process, since disjoint regions of ti§@l rules, but unless the clusters are visualized in some way (a

data correspond to one hidden unit. In effect the method is siffifficult task in high-dimensional feature spaces) it does not give

ilar to a localized network with rectangular transfer functiongnore understanding of the data than any black box classifier.

The method works for continuous as well as discrete inputs. Therefore some assumptions regarding the shapes of clusters
Methods of combining neural and symbolic knowledge, réhould be madg, with the_goa! of obtaining the smallest number

fining probabilistic rule bases, scientific law discovery and daf¥f comprehensible rules in mind.

mining are closely related to applications of neural networks For clusters with decision borders that have simple convex

for extraction of logical rules. Symbolic rules may be convertetlapes several conjunctive rules of the type

into RAPTUR_E networks [45] and _tre_line_d using a modifieqF (01 € Xy As € Xy A ..oy € Xx) THEN Class= Gy

backpropagation algorithms for optimization of certainty fac- )

tors. The network prunes small connections and grows add'rrrl%y be sufficient. Ift; are sets of symbolic values, discrete nu-

new nodes if classification accuracy becomes too low. . ; : i _
It that f ¢ hould h d merical values, or intervals for continuous features, crisp logic
may seem 1hat neurofuzzy systems shou ave advafiias are obtained. They provide hyperrectangular decision bor-

tages i.n application to rule extrac@ion, since crisp rules are ijsérs in the feature subspaces corresponding to variables ap-
a special case of fuzzy rules. Quite many neurofuzzy systeEE

’ aring in rule conditions. This approximation may not be suffi-
a4r$ kr:l%wnHand som?hlndet_ed wgrk rathe; well [42], [4?].’ [9'[6 ient if complex decision borders are required, but it may work
[47]-{49]. However, €€ IS a danger of overparametnzatiqf) o \ye|| if the problem has inherent logical structure.
of such systems, leading to difficulty of finding optimal solu-

. ) . X A fruitful way of looking at logical rules is to treat them
tions [10], [50], even with the help of genetic algorithms O%s an approximation to the posterior probability of classifica-

other global optimization methods. Systems based on rough SRIR (C;|X; M), where the modeM is composed of the set
[11] require additional discretization procedures which may dgf ru];esz Cr}sp rijles give(C;|X; M) = 0, 1 but if clusters

termine the quaillty of their performance. We havg mclud'ed longing to different classes overlap this is obviously wrong.
few results obtained by fuzzy and rough systems in Section ﬁoﬂ interpretation of the operator requires “membership”

presenting applications. Simpler rule extraction systems ba§8 ctions and leads to fuzzy rules, for example in the form
on neural networks may have advantages over the fuzzy, roug '

or neurofuzzy systems, although a good empirical comparison u("‘>(X)

of their capabilities is certainly needed. Many rule extraction p(Cil X5 M) = S uO(X) 3)
methods have been tested on rather exotic datasets, therefore ;
their relative advantages are hard to judge.
Most papers on the rule extraction are usually limited to tiyghere
description of new algorithms, presenting only a partial solution : k
p g p gonlyap 19 (X) IHN5 )(X;) (4)

to the problem of knowledge extraction from data. Control of the
tradeoff between comprehensibility and accuracy, optimization
of the linguistic variables and final rules, and estimation of thend ;:*) (X) is the value of the membership function defined
reliability of rules are almost never discussed. In practical afer clusterk. Suchcontext-dependentor cluster-dependent

plications it may be quite useful to have rough, low accuraayembership functionsare rarely used in classification systems
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indiscernibility (or similarity) relation used. Linear approxima-
tion to the boundary region leads to trapezoidal membership
functions, i.e., the same shapes of decision borders as obtained
by fuzzy systems with such membership functions. The crisp
form of logical rules is obtained when trapezoidal membership
functions are changed into rectangular functions. Rectangles
allow to define logical linguistic variables for each feature by
intervals or sets of nominal values.
@) (b) Crisp, fuzzy, and rough set decision borders are special cases
of more general decision borders provided by neural networks
based on localized separable transfer functions [42]. Although
individual fuzzy, rough and neurofuzzy systems differ in their
approach to logical rule discovery, their ultimate capability de-
pends on the decision borders they may provide for classifica-
e tion.
(c) (d)
Fig. 1. Shapes of decision borders for (a) general clusters, (b) fuzzy IV. CONTEXT-DEPENDENTLINGUISTIC VARIABLES
rules (using product of membership function), (c) rough rules (trapezoidal Logical rules require symbolic inputs, called linguistic vari-
approximation), and (d) crisp logical rules. ables. The input data has to be quantized first, i.e., features
. , . defining the problem should be identified and their subranges
based on fuzzy logics, although they are quite natural in thes of symbolic values, integer values, or continuous intervals)
neurofuzzy systems [42]. _labeled. For example a variable “size” has the value “small” if
The flexibility of the fuzzy approach depends on the choicge continuous variable; measuring size falls in some speci-
of membership functions. Fuzzy logic classifiers frequently ugg q rangezx € |a, b]. Using one input variable several binary

a few membership functions per input feature [10]. Triangulaf,gical) variables are created, for example= §(size, small)
membership functions provide oval decision borders, S|mll%ua| to one (true) only if variable “size” has the value “small.”

to those provided by Gaussian functions (cf. Fig. 1). ThereforeLinguistic variables used by us acentext dependenti.e.,

results should be similar to that of the radial basis functiodc\ey may be different in each rule (cf. [51]). For real-valued
(RBF) networks and indeed they are formally equivalenfyintes intervals defining linguistic variables used in logical
[39]. Triangular membership functions may be regarded @es are needed. Determination of these intervals is done by
piece-wise linear approximation to Gaussian membership,ysis of histograms (only in simple cases), information-based
functions, while trapezoidal membership functions are simil@fiteria Jike those used for decision-trees [4], using feature space
approximations to the ;oft trapezmd functlons'obtalned fromapping (FSM) constructive neural network [42], using special
complnatlons of two sigmoidal transfer functions (cf. nexrlinguistic units” (L-units) in multilayer perceptron (MLP) net-
section). _ works [51] or using an explicit separability criterion [52]. Since

Thus decision borders provided by the fuzzy rules, althougf)s harq to overestimate the importance of good linguistic units
of different shape than those of crisp rules, do not allow fQfce methods are described below in some details.

more flexible partitioning of the input space. Their big advan- A symbolic attributecolor may take valuegreen, red, blue

tage is the ability to provide classification probabilities insteag}, 4 appear in a rule as logical condition, for examitor =
of yes/no answers. From the accuracy and simplicity point piy ap ajternative way is to use a predicate functimior(z).

view the ability to deal with obliq_u_e distribution of da_ta may bebepending on the type of variablethe predicate function may
more important than softer decision borders. Rotation of degjze 4 different interpretation. For examplexifs the wave-

sion borders requires new linguistic variables, formed by takirpgngth of light ande € [600 nm, 700 nm then color(x) is
linear combination, or by making nonlinear transformations of i . logical conditioncolor(ag) — red is true. One may

input features. The meaning of_su‘f:h rules is sometimes diffirs introduce predicates for each color defined by logical func-

cult to comprehend (cf. proverbial “comparing apples with Okjo s color-greerfx), color-red(x), color-blue(z). Such logical

anges”). Another form of incomprehensible rules is obtainegeicate functions are linguistic variables, mapping symbolic

from a union of halfspaces defined by hyperplanes, forming @ raa values of: into binary zero, one dalse, true

convex, polyhedral shapes. , , _ Ifthe inputz € X, whereX is the subset of real numbers, or
The rough set theory [11] is also used to derive crisp 109i¢j5rge set of integers or symbolic values, linguistic variables are

prepositional rules. In this theory for two-class problems thgeated dividing the dat# into distinct (for crisp logic) subsets
lower approximation of the data is defined as a set of vectorg, Linguistic variables are introduced as

or a region of the feature space containing input vectors that be-

long to a single clas€’, with probability p(C|X; M) = 1, si(x) = F, unlessz € X, thens;(z) = 1.

while the upper approximation covers all instances which have

a nonzero chance to belong to this class [i.e., probability isFor X C R setsd; are usually intervals and linguistic vari-
p(Cy|X; M) > 0]. In practice the shape of the boundary beables are binary functions mappingnto zero or one. A typical
tween the upper and the lower approximations depends on linguistic variable associated with the attribute “tire pressure”
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will be low if + < 1.7, normalif 1.7 < 2 < 2.2 andhighif C. Nodes of this network use localized, separable transfer
z > 2.2. A rule may then have conditions of the folmgh(z), functions, providing good linguistic variables. Crisp decision
which is usually written ag = high, meaning that > 2.2. regions are obtained by using rectangular transfer functions; if
Introducing acolor-red(z) predicate that has values in the [Othis is not sufficient Gaussian, trapezoidal or other separable
1] range, instead of the binary 0, 1 values, one may interpteansfer functions are used.
it as estimation of similarity of color that has to the typical = The network is initialized using a decision tree or a cluster-
red color. Using such predicate functions as logical conditioization method based on dendrograms [53], and adapted to the
is equivalent to some form of fuzzy logic, depending on the wagcoming input data by moving the transfer functions centers,
logical functions are mapped on arithmetic functions [9]. Thudecreasing and increasing their dispersions, or by adding more
soft predicate functions play the role of membership functionsansfer functions (new network nodes) if necessary. The ini-
binary valued functions are used in crisp logic and real valudidlization process is robust and may already lead to reasonable
functions in fuzzy logic (for multistep values multivalued logidntervals for the initial linguistic variables. In some cases results
conditions are defined). Fot' C R crisp membership func- after initialization, before the start of learning, were better than
tions are rectangular while fuzzy membership functions hafieal results of other classification systems [53]. The FSM net-
triangular, trapezoid, Gaussian, or other shapes that are usefotk may use an arbitrary separable transfer function, including
for evaluation of similarities. triangular, trapezoidal, Gaussian, or the bicentral combinations
In many applications of fuzzy sets a common set of linguistif sigmoidal functions [55] with soft trapezoidal shapes. Two
variables is assumed for all rules. Such membership functiosimple bicentral-type functions are constructed as the difference
arecontext-independent identical for all regions of the input of two sigmoids,c(z) — o(x — 8) or the product of pairs of
space. Defining, for example, three triangular membership fursigmoidal functions>(z)(1 — o(x)) for each dimension. For
tions per attributey; (z;), pa(z;), ps(z;), rules for combina- logistic functions of the fornw(x) = 1/(1 + ¢*) after nor-

tions malization the two forms become identical
T (o) An olx+b(1—o(x—0b)) o(z+b) —o(r—0)
IF (pae (1) A iy (2) -+ A e (7)) SO = o) —o(-D) (5)

are sought [9], withk; = 1, 2, 3. Unfortunately, the number

of combinations grows exponentially with the number of at-

tributes (here like3"), and the method works only for two or o(b) o (—b) = ¢ o(b) = 1 — o(—b) (6)

three dimensions. Covering of a complex cluster may require a ’ ’

large number of such membership functions. In both crisp andif the gain of sigmoidal functions () is slowly increased

fuzzy cases linguistic variables should ¢entext dependent  during learning rectangular functions are smoothly recovered

ie., Optimized in each rule. Small tire pressure for bicyC|e is difrom productq_[i (O’(J}Z _ bz) _ O'(J}i +b;)) After training nodes

ferent than for a car or a truck. For example:if = broadfor  of the FSM network are analyzed, providing good intervals for

1 <z < 4,2 = averagefor 2 < z; < 3, andz, = smallfor |ogical variables. To encourage broad intervals, increasing sta-

1 < wy 2,3, =largefor 3 <z, < 4 then two simple rules  pjjity of rules and facilitating selection of features, the lower

and the upper values defining linguistic variables are moved
IF (21 = broad Az = small)  THEN C = great away from the center of the function during iterative training
IF (x1 = average A x2 = large) ~ THEN C = great (the same effect may be achieved by adding penalty terms to the
ELSEC = so0-s0 cost function). To obtain initial linguistic variables for rule ex-

traction we start with rectangular transfer functions which may

would be more complex if written using linguistic variablede fuzzified by using soft trapezoidal functions.

that partitionz; into distinct or just partially overlapping sub-

sets. In the context of, = large linguistic variabler; = av- B. Linguistic Neural Units

erage rather thamroad should be used. Instead of using afixed | jnguistic neural units (L-units) automatically analyze con-

number of linguistic variables one should rather use rule-dep&fiyous inputs and produce linguistic variables [51]. The basic
dent linguistic variables, optimized for each rule. scheme of such unit is shown in Fig. 2. An inpyiis connected
The simplest way to select initial linguistic variables is to anyia 1, | 1w/, weights to two neurons, each with its own separate
alyze histograms, displaying data for all classes for each fagas 5. andy;. All transfer functions are sigmoidal. Atthe end of
ture. Histograms should be smoothed, for example by assumifg training they should be very steep, although at the beginning
that each data vector is really a Gaussian or a triangular fuzgéy may be quite smooth, allowing for fuzzy approximation of

number. Unfortunately histograms for all features frequentlfassification borders. The two hidden neurons of the L-unit are
overlap. Therefore we have developed several methods for @gnnected to its output neuron using weighits Se.

termination of initial linguistic variables.

The proof is not difficult if one notes the following identities:

Experiments showed that learning is faster if connections
from the two hidden L-unit neurons to other hidden neurons
are added. All weights have values constrained at the end

Feature space mapping (FSM) is a constructive neuddl the training to0, +1. The network (Fig. 3) composed of
network [42], [53], [54] that estimates the probability densit{-units and hidden units (called R-units, since they provide
p(C|X,Y; M) of input X-output Y pairs in each class logical rules) is an MLP network with specific (constrained)

A. Selection using Density Networks
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TABLE |
EXAMPLES OF POSSIBLE FUNCTIONS REALIZED BY L-UNITS, b > ¥/, TYPE

W\b‘
S — .2
X / 5\/; 1-TYPE 4 AS IN FIG

Wi | W2 | S1 | S2 | Function type

G(V\éx+b') #l|+1|+1] -1 Type 1
141 [ +1 | +1 Type 2

+1 b
+11 0 |+1| 0 Type 3
-1 0(-1(0 Type 4
T 1 ' b b'
pe Type 2 In some applications with a large number of featuses
aggregation of some types of features is possible and should
lead to better linguistic variables. Groups of features that are
Type 3 Type 4

of the same type may be combined together by an additional
Fig. 2. Construction of a linguistic unit converting continuous inputs ttIJay_er of nel_”ons between m_pUt an_d L-units. These a_lggr_egatlon
linguistic variables. units (A-units) are either trained without any regularization, or
trained with initial enforcement of zero connections followed
by training without any regularization. The A-units should
be designed incorporating knowledge about the type of input
features. We have used this approach only in a few difficult
cases, when hundreds of features are present.

The L-units take as input continuous vectal&?) =
(x§P>, e xﬁ{f)) and give as output a vector of linguistic
variablesL® = L(X®) = (% ... %) since this
mapping is not one-to-one it may happen that two or more
input vectors belonging to different classes are mapped to the
same vectoL(?), This leads to classification errors (“conflicts”
Fig. 3. MLP network with linguistic and rule units. An additional aggregationn the rough set terminology) that other network nodes are not
layer may be added between the input and L-units. able to remove. If the network is not able to discover better

features that prevent this kind of errors it may be worthwhile
architecture. Since L-units have only one input, one output, atwlexplicitly force the distinguishability of all input vectors to
four constrained weights as parameters, functions realized dwoid such situation. One solution is to minimize the number
these units belong to one of the four types shown in the limit of identical linguistic variables corresponding to vectors that

L-units R-units

large gain in Fig. 2. belong to different classes
The first of these functions (Type 1) is obtained as a difference
of two sigmoids and represents a typical linguistic variatle E(B,B) = Z § (L(P), L(P')) (7)
equivalenttar; € [b;, ¥], the second (Type 2) denotes negation pp
—s, while the other two (Type 3 and 4), with only one nonzero crc?’

weight, correspond te; > b orz; < b. The borders,; and )
b, defining linguistic variables and the four constrained weighhereC? = C(X®) is the class thet ?) vector belongs to
are treated as adaptive parameters of our network. andB, B’ are the intervals defining linguistic variabl&s To
The threshold of the output unit is kept fixed at one. Inpinable gradient minimizatio functions may be replaced by
weights W, W», and the weightsS;, S», each taking values Narrow Gaussian distributions. The total error function should
constrained t®, +1, may take at most 81 values. Only a fewpe summed over all interval8, B’. Such explicit conditions
combinations give different L-unit transfer functions (Table jgnforcing distinguishability may be desirable, but may also lead
Most combinations are identically zero—in this case the fel creation of too many linguistic variables handling noise in the
ture does not contribute to the rule. One could also use a sin@ﬁ?a-
neuron with rectangular or bicentral transfer function instead of . o
the L-unit. The network structure would then look simpler bift- Separability Criterion
it would not be a constrained MLP network, easy to implement Another approach to selection of linguistic variables is based
using conventional neural-network programs. on a general separability criterion introduced by us recently
In practice training L-units separately from R-units leadg2]. The best “split value” for an open interval should sep-
to faster convergence. When the L-unit weights are trainagate the maximum number of pairs of vectors from different
(optimizing linguistic variables) R-unit weights are kept frozeslasses. Among all split values which satisfy this condition the
and vice versa. The output L-unit neurons have frequently bathe which separates the smallest number of pairs of vectors be-
weights 51, S2 = 0 and are deleted, because open intervalsnging to the same class is selected. The criterion is applicable
realized by other hidden L-unit nodes are sufficient. to both continuous and discrete features. Since one feature is
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treated at a time the minimization process is easier than eitladirsplit values for a given feature, which can be used for the
trying to minimize classification error or (7) in respect to all infeature selection. If separability measures for all features are
tervals at the same time. low context dependent linguistic variables are necessary. Search
Thesplit value(or cutoff poinj is defined differently for con- for the best separability of a pair or a combination of several
tinuous and discrete features. In the case of continuous featuesdures is performed quite efficiently using beam search tech-
the split valueis a real number, in other cases it is a subset afques. For a pair of features the search complexity is quadratic
the set of alternative values of the feature. In all casedette inthe number of split values considered, enabling in practice ex-
side(LS) and theright side(RS) of a split values of featuref haustive search. Searching for all feature split values at the same
for given dataseD is defined as time takes into account mutual interaction of features, therefore
it may significantly improve results, but since the search com-

D: if fi ti
LS(s, f, D) = { {we H@)<sp i fis c.on inuous plexity is high the width of the beam search should be selected
{z e D: f(z) ¢ s} otherwise to make it practical.
RS(87 f?D):D_LS(Sv f7 D) (8)

wheref(x) is the f’s feature value for the data vector V. RULE EXTRACTION ALGORITHMS

Theseparability of a split value is defined as After initial definition of linguistic variables methods to find
S8V (s) logical rules are needed. Neural methods that we will use for
that purpose focus on analysis of parameters (weights and bi-
=2 |LS(s, f, D)N D.| - [RS(s, f, D)N(D = D.)|  ases) of trained networks. Since in many cases inductive bias

ceC of neural networks may not be the most appropriate for a given
- Z min(|LS(s, f, D) N D.|, |RS(s, f, D)N D.|) data methods described below may either be used to extract log-
ccC ical rules directly from the data or to find a set of logical rules

(9) that approximates the mapping generated by a neural network.
_ _ These and other methods of rule extraction are useful to gen-
whereC’ is the set of classes arid. is the set of data Vectors g 416 jnitial form of rules that should be further simplified and
from D_whlch belong to clags. The higher the separability optimized together with the linguistic variables.
of a split value the better. Points beyond the borders of feature
values existing in the dataset have the SSV (separability split \jp2LN: Changing MLP into Logical Network

value) equal to zero, while separability of all points between theT tacil .  logical rules f MLP K
borders is positive. This means that for every dataset containinﬁ; o facilitate extraction of logical rules from an networ

vectors which belong to at least two different classes, for ea@i€ Should transform it smoothly into a network performing

feature which has at least two different values, there exists a s %'Cal operations (logical network, LN). This transformation,
value of maximal separability. called here MLP2LN [56], may be realized in several ways.

When the feature being examined is continuous and there§ .Ietolnlzat|on Of a Igrge M.LP network is the methoq of
several different split values of maximal separability close oice if our goal is to find logical rules for an already trained

each other, a reasonable heuristics is to select the split varll?éwqu' Otherywse starting fr.0m a.s'mgle neuron and con-
ucting the logical network using training data directly (called

closest to the average of all of them. To avoid such situatio L ) )
C-MLP2LN method) is faster and more accurate. Since

split values which are natural for a given dataset are examined, _ ¢ th 7 f the MLP K nodes i
i.e., values that are between adjacent feature values. If there'§fgrPretation of the activation ot the network nodes s

two maxima with smaller split values in between, or if the fedlot €asy [57] a smqoth trarysmon frqm MI.‘P toa Ioglcal—type
ture is discrete, then the selection of the best split value may%fene_t\,'vor!( perf.ormlng s_|m|Iar funct|on_s S advocated. This
arbitrary. transition is achieved during network training by:
The separability criterion can be used in several different 1) gradually increasing the slopof sigmoidal functions
ways to discretize a continuous feature, if context-independent (/) to obtain crisp decision regions;
linguistic variables are desired. For instance, the same algo-2) simplifying the network structure by inducing the weight
rithm can be followed as for the construction of a decision  decay through a penalty term;
tree, but the possible cut points should be checked only for the3) enforcing the integer weight values 0 ahd, interpreted
feature being discretized. The recursive process stops when the as0 = irrelevant input+1 = positive and—1 = neg-
subsequent splits do not significantly improve the separability ~ ative evidence. These objectives are achieved by adding
or when a sufficient number of cut points is obtained. The  two additional terms to the standard mean square error
recursive process is necessary, because usually features have function Eq(W)
just one or two maximal cut points. When the data is split into 1 2\
two parts at least one best split value for each of the parts wii(W) = 3 Z Z (Yk(p) —Fy (X(p); W)) +5 Z W7
certainly be found in the next stage. p ok ¥
Sometimes all split values of a given feature have very low
separability. This either means that the feature is not important
or that it should be taken into account in conjunction with dis-
cretization of another feature. The separability of a single split The first part is the standard mean square error measure of
value can easily be generalized to the separability of a setroéitching the network output vectdf§ X ); W) with the de-

A2 2 2 2
t5 Z Wi (Wi —1)° (Wi + 1) (10)
i34
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sired output vectord” @ for all training data sampleg. The functions amounts to different priors for regularization, for ex-
second term, scaled by, is frequently used in the weightample using Laplace instead of the Gaussian prior. Initial knowl-
pruning or in the Bayesian regularization method [58], [59] tedge about the problem may also be inserted directly into the
improve generalization of the MLP networks. network structure, defining initial conditions modified further
A naive interpretation why such regularization works is based view of the incoming data. Since the final network structure
on observation that small weights and thresholds mean that obgcomes quite simple insertion of partially correct rules to be
the linear part of the sigmoid around0) is used. Therefore the refined by the learning process is quite straightforward.
decision borders are rather smooth. On the other hand for l0gThe training proceeds separately for each output class.

ical rules we need sharp decision borders and as simple skelgfighough the method works with general multilayer backprop-
network as possible. To achieve these objectives the first regiation networks we recommend the C-MLP2LN constructive
larization term is used at the beginning of the training to forggocedure that frequently leads to satisfactory solutions in
some weights to become sufficiently small to removed therg. mych faster way. As with all neural procedures for some
The second regularization term, scaled Xy is a sum over gata the network training may slow down and require some
all weights and has minimum (zero) for weights approachingperimentation. Initially several constructive networks should
zero or+1. The first term is switched off and the second inpe trained without regularization to determine the expected
creased in the second stage of the training. This allows the Ne4ining error and the average number of epochs needed for

work to increase the remaining weights and together with igpnvergence. Below typical values of parameters that work
creasing slopes of sigmoids to provide sharp decision bordekge|| in most cases are given.

The sixth-order regularization term in the cost function may
be replaced by one of the lower order terms

|Wi;||W7 — 1] cubic
|Wi;| + W} — 1| quadratic

1) Create one hidden neuron (R-unit neuron).

2) Trainthe neuron on data for the first class using backprop-
agation procedure with regularization. Start with small
A1 = 107% andA; = 0 and the unit slope(z/1), T =
1.

3) If convergence is slow (for example, for 10% of the max-
imum number of training epochs the decrease of the error
is lower thanl /n, wheren is the number of the training
samples) try training two neurons simultaneously; in rare
cases training more than two neurons simultaneously may
significantly speed up the training.

+1
> Wi+ k= Wiy — 5| = [Wi; + 5| -1 (A1)
k=—1
These extra terms lead to the additional change of weights in
the backpropagation procedure, for example for the sixth-order
term

Wij = MWij + X Wi (W] — D(BW7 - 1). 12)

Although nonzero weights have values restrictedttb in-
creasing the slope8 is equivalent to using one, large nonzero
weight value+1¥. One could consider several different max-
imal values ofi¥ in the final network, for example by adding,
after skeletonization of the network, the following penalty term:

Y (oW +1) = o(Wi; — 1)) (13)

(%)
This term will not restrict the weights tb1 but will allow them
to grow beyond these values. We have not explored yet this pos-
sibility because at the end of the training the slopes should be
infinitely steep, corresponding to infinite nonzero weights. Such
approach may be interesting if the final goal is a hybrid, net-

a) Train as long as the error decreases; then increase
A1 < 10A; and the slope of sigmoidal functions
T «— T + 1 and train further; repeat this step until
sharp increase of the error (typical more than five
times) is noticed when; is increased.

b) Decrease slightly until the error is reduced to the
previous value and train until convergence.

¢) Remove weights smaller thaW| < 0.1.

d) Take s = A; and A; = 0 and train slowly
increasing the slopes and, until the remaining
weights reach £0.05 or+1+0.05.

e) Set very large slopés ~1000 and integer weights
0+1.

work-rule based system.
Introduction of integer weights may also be justified from the

Bayesian perspective [58], [59]. The cost function specifies our

prior knowledge about the probability distributid?{(1V | M) of
the weights in our modéeV/. For classification tasks, when crisp
logical decisions are required, the prior probability of the weight

values should include not only small weights, but also large pos-

itive and negative weights distributed around. For example
P(W|M) = Z(a)™ e PN

72 72
~ He_alwij He—azmij_u
X X

where the parametets play a similar role for probabilities as
the parameters; for the cost function. Using alternative cost

(14)

4) Analyze the weights and the threshold(s) obtained by
checking the combinations of linguistic features that
activate the first neuron(s). This analysis (see Section VI
for an example) allows to write the first group of logical
rules that cover the most common input—output relations.

5) Freeze the weights of existing neurons during further
training. This is equivalent to training only new neurons
(usually one per class at a time) on the data that has not
been properly handled so far.

6) Add the next neuron and train it on the remaining data
in the same way as the first one. Connect it to the output
neuron for the class it belongs to.

7) Repeat this procedure until all data are correctly classi-
fied, or the number of rules obtained grows sharply, sig-
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nifying overfitting (for example, one or more rules peintervals of the linguistic variables. This optimization step, de-

one new vector classified correctly are obtained). scribed in Section VI, is performed at the level of the rule-based
8) Repeat the whole procedure for data belonging to othdassifier, not the MLP network. A direct method to obtain log-
classes. ical MLP network is described below.

Thus the network expands after a neuron is added and then
shrinks after connection_s with small weights are removed. A $8t Search-Based MLP
ofrulesRi VR, ...VR, isfound for each class separately. The
output neuron for a given class is connected to the hidden neuMinimization and search methods share the same goal of
rons created for that class—in simple cases only one neuron neg@§imizing some cost functions. Quantization of network pa-
be sufficient to learn all instances, becoming an output neurtameters (weights and biases) allows to replace minimization
rather than a hidden neuron (Fig. 3). Output neurons performihyg search. Increasing step by step the resolution of quantiza-
summation of the incoming signals are linear and have eith&mn from coarse to fine allows to find the network parame-
positive weight+1 (adding more rules) or negative weighl. ters with arbitrary precision. Search-based optimization allows
The last case corresponds to those rules that cancel some ofohgse step-like discontinuous transfer functions as well as any
errors created by the previously found rules that were too gesmooth functions. Replacing the gradient-based backpropaga-
eral. They may be regarded as exceptions to the rules. tion training methods by global search algorithm to minimize
Since each time only one neuron per class is trained tife value of the error function is rather expensive, therefore
C-MLP2LN training is fast. Both standard MLP architectureéome form of a heuristic search should be used, for example the
with linguistic inputs or the L-R network may be used with théest first search or the beam search [60]. Even if the best first
C-MLP2LN approach. Since the first neuron for a given clasgarch algorithm is used (corresponding to the steepest gradient
is trained on all data for that class the rules it learns are maktscent) a good solution may be found gradually increasing
general, covering the largest number of instances. Therefthe resolution of the discrete network parameters [61]. In back-
rules obtained by this algorithm are ordered, starting with rul@sopagation training this would roughly correspond to a period
that have the largest coverage and ending with rules that hanofidearning with rather large learning constants, with some an-
only a few cases. This order allows for a very easy check of thealing schedule for decreasing the learning constant.
quality of a set of rules by looking at the errors on the training Given a network architecture the algorithm starts with all
data. An optimal balance between the number of rules and theightsW;; = 0 and biase®); = —0.5, so that all data is
generalization error is usually obtained when only the rules thedsigned to the default class (corresponding to zero network
cover larger number of cases are retained. output). At the beginning of the search procedure the step
The final solution may be presented as a set of rules oredue A for weights (and biases) is set. This value is added or
a network of nodes performing logical functions, with hiddesubtracted from weights and biasés;; + A, 6; = A. This
neurons realizing the rules, and the hidden-output neursignificantly reduces the search space. The best first and the
weights set tet1. However, some rules obtained from analysiseam search strategies are used to modify one parameter at
of the network may involve spurious conditions and therefoee time. Since computer experiments showed that sometimes
the optimization and simplification step is necessary (cfuch search is not sufficient computationally more demanding
Section VII). variants of the search methods modifying two weights at a time
Although constraints (10) do not change the MLP exactly intmay be used. To speed up the search they are performed in two
a logical network they are sufficient to facilitate logical interstages. First, all the single changes of parameters are tested
pretation of the final network functiom\; and A, parameters and a number of the most promising changes (i.e., changes
determine the simplicity/accuracy tradeoff of the generated netcreasing the value of the cost function) is selected (the beam
work and extracted rules. If a very simple network (and thugidth). Second, all pairs of parameter changes from the chosen
simple logical rules) is desired, giving only rough descriptioget, or even all the subsets of this set, are tested, and the best
of the data\; should be as large as possible: although one magmbination of changes applied to the network. Since the first
estimate the relative size of the regularization term versus thtage reduces the number of weights and biases that are good
mean square error (MSE) a few experiments are sufficient candidates for updating the whole procedure is computationally
find the largest value for which the MSE is still acceptable arefficient.
does not decrease quickly wh&nis decreased. Smaller values The search-based training procedure is an interesting al-
of A; should be used to obtain more accurate networks (largernative to the gradient-based backpropagation training [61].
sets of rules). The final value of near the end of the training Adding some constraints to the optimized cost function can
may grow larger than the maximum value af. produce networks easily convertible to crisp logical rules or
The only way to change MLP into a logical network is by infuzzy logical rules with soft trapezoidal membership functions
creasing the slope of sigmoidal functions to infinity, changingbtained by subtracting two sigmoidal functions (5). If all
them into the step-functions. Such a process is difficult sincela weights are integers (which is the case when= 1)
very steep sigmoid functions leads to the nonzero gradients oalyd the hidden neuron transfer function is sufficiently steep,
in small regions of the feature space, and thus the number of viien the resulting network can easily be converted to a set of
tors contributing to the learning process goes to zero. Therefdveof-IV rules. The rules are generated by simple analysis of
when convergence becomes slow for large slopes it is necessatwork parameters. All the input combinations are checked
to stop network training, extract logical rules and optimize thend if their sum exceeds appropriate bias a logical rule is
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generated. To obtain small number of conjunctive logical rulesrresponding data subsets). The tree is finished when it classi-

the space of weight values is searched assuming that biasediasgthe data with maximal accuracy. 100% accuracy is possible

always equal to the sum of the incoming weights minus 0.8nly if there are no contradictory examples in the dataset.

i.e.,8; = >, [Wi| — 0.5 In such cases a single neuron is The accuracy of 100% usually means overfitting. To avoid ita

equivalent to just one logical rule, since only one combinatigmuning technique is used maximize generalizationcapacity

of inputs gives a sum greater than the bias. For example, if thithe resulting tree. Ten-fold crossvalidation for the training set

only nonzero weights for neuron 1 aé; = +1, Wi, = —1, is performed. In each crossvalidation pass unseen samples are

the threshold is-1.5 and the rule is: IEX; A =X, THEN True. used to find the best way to prune the tree. Leaves that lead to
overfitting cannot be determined because the final tree may be

C. Probability Density Networks quite different than the tree built for the training data available

_ . during crossvalidation (i.e., 90% of the data in ten-fold cross-
Although constructive C-MLP2LN algorithm and Searcr\1/atlidation), since decision trees, as well as most other classi-

based MLP method work very well, especially with the opti: : .
mization of final rules described in Section VII, in comple jiers, are unstable [62]. Therefore an optirdagree of pruning

) . %s determined. Pruning with the degreerofmeans cutting off
caseT F?M r:_etwortI; Vf{"th recLangul?jr _futncnonts (or ISOft dre%-” the pairs of leaves which reduce the number of errors of their
anguiar functions that are changed into rectangular durnpg,. . by not more tham In each pass of the crossvalidation the

training) may be easier to use. FSM uses eff|C|e|.1t.cIuster|zat| Umber of errors counted for the test part of the data is checked.
pr.i)lc:(le.dutr.es (fbased t(I)n cti)(teqdrogramts or (?jemsmll: trgtehs) e optimal degree of pruning is the maximal degree (natural
initiafization, Irequently obtaining quite good resufts wi Ouﬁumber) corresponding to the minimal total crossvalidation test

any training (see [42], [53], [54] papers, where details of thgrror (sum of all crossvalidation test errors).

training algorithm are described). Each network node covers, step of the best first search grows the decision tree by

a cluster of input vectors. The training procedure changes tgeéitting one of its leaves in two. So after each step we im-

node parameters (such as their positions in the input spaé ve (or in the worst case preserve) the classification accu-

unltll th? errtor.fgnctlon treaches a mmm&um.dNoddes tthhattcov a{cy. It means that the best first search follows a single branch
only a Tew training vectors are removed and nodes that Covghy, o cearch tree: if at a given stage we choose the best split we
many training vectors are optimized.

will never try any alternative split although it can finally give
The node that has the largest output most often when ﬁ‘llh y any P g y g

- . ch better (i.e., smaller) tree. To diminish this drawback we
training vectors are presented covers the largest number of 'nﬁgé beam search instead of best first search, capable of finding
vectors. This node, assigned to a certain alggshis is the class b '

o ) etter results at a larger computational cost.
majority of the vectors it covers belong to), corresponds to theThe decision tree is easily converted into a set of crisp log-

most general logical rule. The intenigdk., 4},] for the selected .
; . ’ . . ical rules (each branch of the tree represents one rule). However,
node is adjusted to cover @, class vectors that activate it. The, ( p )

) . the rules containing premises describing all the nodes from the
valueby, () is set between the lowest (highest) value ofihe gp g

belonaing to the traini ; f tiga cl d by thi root of the tree to its leaves can be more complex than neces-
elonging fo the training vectors o class covered by this sary. Especially in bigger trees it may turn out that the decisions

node and they,, value of the nearest vector from another clas agde at the very beginning are notimportant for classification of
Those features that cover the whole input data range are dele & ectors which end up in a leaf. They may be important for

since their contribution is always constant. For the remam'%glarge data set, but not necessarily for smaller, localized sam-

features further selectl_on is done by checking the number of les. Therefore redundant rule antecedents should be removed.
rors on vectors belonging to classes other than the class assi

$find out which premises are spurious they are deleted one by

to agiven node. This procedure is repeated for all network nOdoer’?e and a check of the accuracy is made. If the accuracy is de-

[SAIr:](.)r radial membership functions. such as Gaussians Ocrgased the premise should be kept. We will refer to this method

P ’ ) : - G generating rules as SSV, i.e., using the same name as for the

could also use the RBF networks for extraction of crisp rule§ . o

. ) ...Séparability criterion.

although we are not aware of any papers in which the transition
from Gaussian-like functions to rectangular function limit [for

example by increasing exponentn exp(—xz?") function] has ~ VI. EXTRACTION OF RULES—PEDAGOGICAL |LLUSTRATION

been studied. . - .
For pedagogical purposes we will illustrate the first steps of

our methodology using the Fisher Iris dataset. The data has been
taken from the UCI machine learning repository [7]. The Iris
SSV separability criterion defined in (9) has a natural appldata has 150 vectors evenly distributed in three classes: iris-
cation in construction of decision trees. The simplest methsétosa, iris-versicolor, and iris-virginica. Each vector has four
of building such a tree is to use the best first search methdeatures: sepal lengthy and widthz,, and petal lengtlr; and
The separability of each possible cut point of each continuowsdth x4 (all given in centimeters).
feature, or of each subset of the set of values of each discretd@he simplest way to obtain linguistic variables, often used in
feature, is evaluated. The best splits are selected and the sphesign of fuzzy systems, is based on division of each feature
(and dataset as well) is divided into two parts by the first twdata range into a fixed number of parts and use of the triangular
branches of the binary tree. The criterion is then applied recijor similar) membership functions for each part [10]. The same
sively to each of the resulting parts of the input space (with theipproach may be used for crisp logic. Dividing the range of each

D. Rule Generation using Separability Criterion
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20 2 TABLE I
LINGUISTIC VARIABLES OBTAINED BY ANALYSIS OF HISTOGRAMS
15 15
s m )
10 10
X1 [4.3,5.5] (5.5,6.1] (6.1,7.9]
5 5
x| [2.0,2,75] | (2.75,3.2] (3.2,4.4]
04 5 6 7 8 °2 3 4 5 X3 [1.0,2.0] (2.0,4.93]1 1] (4.93,6.9]
X4 [0.1,0.6] (0.6,1.7] (1.7,2.5]
30 40
25 linguistic  hidden
30 input variables layer output
20
Setosa
15 20 50 cases,
10 all correct
10
5 .
Versicolor,
% 2 4 6 8 % 1 2 3 47 cases,

all correct

Fig. 4. Histograms of the four; —z4 Iris features. The s, x4 features (lower
part) allow for better discrimination than the first two features. Virginica
53 cases
3 wrong

feature into three equal parts, called snia)l medium(m) and

large (1) the z; feature will be called small if it is in [4.3, 5.5] Fig. 5. Final structure of the network for the Iris problem.

range, mediumin (5.5, 6.7] and large in (6.7, 7.9]. Thus instead

of four continuous-valued inputs a network with 12 binary indendrogram initialization with Gaussian nodes gives 95%

puts equal ta:1 is constructed. For example, the medium valueorrect answers without any training of the network or opti-

of a single feature is coded by three input urfits, +1, —1). mization of rules. The network has four nodes corresponding to

With this discretization of the input features three vectors of theur fuzzy rules. FSM initialization with rectangular functions

iris-versicolor class [coded &3n, m, I, {), (m, I, m, 1) and gives 80% of correct answers and requires short training to

(m, s, [, m)] become identical with some iris-virginica vectorsmprove the linguistic variable intervals [53].

and cannot be classified correctly. Therefore after discretizationA single neuron per class was sufficient to train the

the maximum classification accuracy is 98.7%. Indistinguisi--MLP2LN network, therefore the final network structure

able vectors should be removed from the training sequence.(Fig. 5) has 12 input nodes and three output nodes. Hidden
Although there is no reason why such a procedure should pigdes are only needed when more than one neuron is necessary

vide good linguistic units for the Iris example by chance itis nd@ cover all the rules for a given class. The network was trained

so bad! The accuracy of classification using logical rules crifor about 1000 epochs and the final weights were within 0.05

ically depends on selection of linguistic variables. Using twiom the desired:1 or zero values. The following weights and

variables per feature, small and large, dividing the range of fegresholds for the three neurons were obtained (only the signs

ture values in the middle, 13 vectors from Iris-setosa class gétthe weights are written):

mixed with the vectors from two other classes. Using four lin-

guistic variables per feature also decreases classification accgetosa  (0,0,0 0,0,0 +,0,0 4,0,0) 6=1
racy, mixing 16 Iris-versicolor cases with Iris-virginica. Evi- Versicolor (0,0,0 0,0,0 0,+,0 0,+,0) 6#=2
dently division into three classes is fortuitous. Analysis of thevirginica  (0,0,0 0,0,0 0,0,+ 0,0,+) 6=1

histograms of the individual features for each class, shown in

Fig. 4 and Table I, proves that the division into three equal parts These weight vectors are so simple that there is no need for

is almost optimal, cutting the histograms into the regions wheféle extraction. The corresponding rules are:

values of features are most frequently found in a given class. For Iris-setosa ifcg = s V x4 = s;

example, Iris-virginica class is more frequent for the value of Iris-versicolor ifxs = m A 24 = m;

x3 above 4.93 and Iris-versicolor are more frequent below this  Iris-virginica if zz3 =1V 24 = [.

value. Discretization based on histograms (shown in Table tl))nly two featuresgs andz,, are relevant since all weights for

was made by dividing the data range into 15 bins and smoothigt@ remaining features become zero. The trained network struc-

these histograms by counting not only the number of vectaisgre is shown in Fig. 5. The first rule correctly classifies all sam-

falling in a given bin, but also adding 0.4 to adjacent bins.  ples from the Iris-setosa class. Together with the other two rules
This discretization is quite useful for the initialization ofl47 vectors (98%) are correctly classified using onlyithand

L-units, although random initialization would, after some:, features.

training, also lead to similar intervals. It may also be used Linguistic variables were not optimized in the example above.

for initialization of the FSM network nodes, although denAs a result the solution obtained is rather brittle (Fig. 6)—the

drogram-based methods work quite well. For the Iris caskecision borders are placed too close to the data.
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2.5 T T T T |+ +¢ + TABLE 1l
ot + CONTRIBUTIONS OFFEATURES FOR THEFIRST CLASS (IRIS-SETOSA)
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xsetosa o versicolor  + virginica

Fig.6. Iris datasetdisplayedin andz, coordinates; decision regions (rules)

for the three classes are also shown. Note the three Iris-versicolor cases that are
incorrectly classified using these two features only. The brittleness of rules is
illustrated by decision border that is placed too close to the setosa class.

Using L-R network several solutions with optimized |in_Fig. 7. Structure of the network trained with = 0 on the Iris problem.
guistic variables are found, depending on the regularization

parametersi. The simplest rules involve only one attributegnd its contribution to the activation is equal to the dot product

petal lengthz;. of the subse®V, of the weight vectorV, - W,. To find all
R iris-setosa ifrs < 2.5 (100%); rules that are compatible with a given set of weights and thresh-
R iris-virginica if s > 4.8 (92%); olds one has to perform a search process, considering com-
Rgl): else iris-versicolor (94%) binations of all inputs to the activation of the network node.

Since MLP2LN method guarantees that only relevant inputs

The first rule is accurate in 100% of cases since the setosa clﬁg\% nonzero weights the search space2tiaslements, where

is easily separated from the two other classes. The overall acggt;-s the number of used features.

. 0 .
;?gygiti?ﬁigjfgegﬁgﬁ érrC)rre's,) 'ulsallr?zhetglozm;ergr%c;gt; rules (96% For the Iris-setosa vectors the weights for the first feature are
9 P ' (+, 0, 0), therefore contribution frona; = sisA = +1. From

Iris-setosa itrz < 2.56; bothz; = m andz; = I, equivalentta:; = —s, contribution is
Iris-virginica if z4 > 1.63; A = —1. Analysis of other features and weights is summarized
Iris-versicolor otherwise. in the Table 11l and the structure of the network for this case is

Similar solutions are found with search-based MLPs. Allhown in Fig. 7.

variables from histograms. SSV criterion has found anothgith weights equal to the total contribution of each feature to

simple set of rules, offering 98% accuracy: the final activation. At the first level there are two branches, at
Iris-setosa ifrs < 0.8; the second level also two, fas it is three and forz4 it is two,
Iris-virginica if z3 > 4.95 A 24 > 1.65; giving a total of 24 leaves. At the first level contribution.of
Iris-versicolor otherwise. is+1 for z; = s or —1 for z; = —s. For Iris-setosa class only

What about more complex solutions? Usig= 0 and small the leaves with activation equal to or larger than the threshold
value of \, the following weights and thresholds are found: ¢ = 2 should be considered.

Logical rules are read directly from this tree. Changing the
order in which the levels are considered equivalent rules are

Seto_sa (+.0,0 0,04 +,-,0 +-,-) #=2 obtained. A useful heuristic to find the simplest set of rules is
Versicolor (0,0,0 0,0,0 0,4,— 0,4,—) 6=3 . . e

L to start with features that contribute the most to the activation
Virginica (0,0,0 0,0,0 —,—+ —,—4) 6=1

(features four and three in this case). As shown in Fig.:8, =
sthe activatiom\ is already three and if it is followed by = s

To analyze these vectors note that in MLP2LN or in searcthe activationA = 5 and the two other features will not reduce
based MLPs with discretized network parameters ridgsm-  the activation below three (since each may subtract at most one).
plemented by trained neurons are written in the form of logic@herefore the activation is greater than the threskolg ¢ =
conditions by considering contributions of inputs for each lir2 for z3 = s A z4 = s. In the same way other conditions
guistic variable. Such variableis represented by a vectdf consistent with the weights are found, giving a rule with four
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rule optimization involves simplification and symbolic opera-
tions on rules. We use a Prolog program for such simplifications.
In addition optimal linguistic variables for continuous-valued
features may be found for the sets of rules extracted. These op-
timized linguistic variables may be used to extract better rules in
an iterative process, starting from initial values of linguistic vari-
ables, extracting logical rules, optimizing linguistic variables,
and repeating the whole process with new linguistic variables
until convergence is achieved. Usually two or three iterations
are sufficient to stabilize the sets of rules.

Optimal linguistic variables (intervals) and other adaptive pa-
Fig. 8. Tree-based search for rules after network has been trained. rameters may be found by maximization of a predictive power of

a rule-based (or any other) classifier. LB(C;, C;|M) be the

antecedents for class Iris-setosa, one rule for Iris-versicolor ag@nfusion matrix, i.e., the number of instances in which class

one for Iris-virginica C; is predicted when the true class wé&g given some param-
etersM. Then forn sampleg, (C;, C;) = F(C;, C;|M)/n
IF (z3 =sAxzy=35) is the probability of (mis)classification. The best parameiérs

are selected by maximizing the number (or probability) of cor-

v =sANzz3=1lAz4= i -
(@1 = s A3 T4=5) rect predictions (called also the “predictive power” of rules)

V(zr=-sAze=1lAz3=1Azy4=35)

V(zy=sAzy=1A23=5AT4="5) max[TrF(C;, C;|M)] (16)
THEN iris-setosa Y

IF (z3 =m Ay =m)  THEN iris-versicolor over all parametera/, or minimizing the number of wrong pre-
IF (z3 =1)V(z4=1)  THENIris-virginica. (15) dictions [possibly with some risk matriR(C;, C;)]

These rules allow for correct classification of 147 vectors,
achieving the highest theoretical accuracy (98%) for the min Z R(C;, C))F(Cy, C;|M)| . (17)
histogram discretization. Comparing them to simpler rules of M oy
the same accuracy presented above it is clear that they are too
complex. Large thresholds may simplify the rule extraction We
process, leading to simpler search trees. One could implement
additional conditions in the MLP2LN algorithm to encourage
such large thresholds, but we have not tested this option yet, E(M) =~ _ F(C;, C;|M) — TrF(C;, C;|M)  (18)
although we use itin SSV and search-based MLPs. The validity 7]
of all rules presented here has been confirmed with a Prolog
program, which is also used to search for rules in complék bounded by-n and should be minimized over parameters
cases. M without constraints. For discontinuous cost functi\/)

Density networks provide logical rules without the need tthis minimization may be performed using simulated annealing
check the combination of linguistic features. An FSM node infr multisimplex global minimization methods.4fis large the
plementing rectangular transfer function has the intervals daumber of errors after minimization may become zero but some
fined for each relevant feature and is equivalent to a conjuristances may be rejected (i.e., rules will not cover the whole
tive rule. Using Gaussian or other soft transfer functions h##put space). Thus optimization of the cost functi}/) al-
direct interpretation in form of fuzzy rules, and the transitiofPWs to explore theccuracy-rejection rate tradeoff
process between fuzzy and crisp rules may be studied by inSince rules discriminate between instances of one class and
creasing the slopes of sigmoidal functions combined to credé other classes one can define a cost function for each rule

ighted combination of these two terms:

bicentral transfer function (5). separately
It is impossible to estimate statistical accuracy of the log-
ical rules in cross-validation tests since for each training data Er(M)=~n(Fy_+F_ )~ (Fepr +F__) (19

set a different set of rules is obtained. Comparison of accuracy

toicr)1nd<>';1(tasets with separate training and test parts is done in SEC1 minimize it over parameted used in the rul& only (+

means here one of the classes, antheans all other classes).

The combinationF, | /(F4 + F1_) € (0, 1] is sometimes

called the sensitivity of a rule [75], whil&__ /(F__ + F_)
Rules obtained from analysis of neural networks or decisia called the specificity of a rule. Some rule induction methods

trees may involve spurious conditions, more specific rules maptimize such combinations &, , values.

be contained in general rules or logical expressions may be simEstimation of the reliability of rules is very important in

plified if written in another form. Therefore an important part omany applications. Tests of classification accuracy should be

VII. OPTIMIZATION AND RELIABILITY OF RULES
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performed using stratified ten-fold crossvalidation, each timdefined for all attributes. Analytical evaluation is based on the
including rule optimization on the training set. Changing theumulative distribution function

value ofy will produce a series of models with higher and higher

classification accuracy at the expense of growing rejection rate, [ ) 1 a—

A set of rules may classify some cases 100% correctly for allp( —7)= /_Oo Gly; x, s2)dy = 2 {1 e <3w\/§>}

data partitionings; if some instances are not covered by this set ~o(fla— 1)) (20)

of rules another set of rules of lower accuracy is used (the accu-

racy of rules is.estimated on fchetraining setonly). High accuragy o orf is the error function angl — 2.4/\/5% makes the

rules should give mF’re confidence th?‘t they are reliable. erf function similar to the standard unipolar sigmoidal function
Most rule extraction procedures give only one set of rulegji the accuracy better than 2%. A rukg («) with single crisp

assigning to each rule a confidence factor, for example=  -onditionz > « is fulfilled by a Gaussian numbeg, with

pm(Ci, Ci)/zj pum(Cs, Cj). Thisis rather misleading. Arule probability -

R that does not make any errors on the training set covers typ-

ical instances and its reliability is close to 100%. If a less accu- +oo

rate ruleR? is given, for example classifying correctly 90% of p(Ra(G.) =T) = / G(y; @, s2) dy = o(B(x — a)).

instances, the reliability of classification for instances covered “ (21)

by the first rule is still close to 100% and the reliability of classitaking instead of the erf function a logistic function corre-

fication in the border regio®®\R(") [cases covered bR®  gponds to an assumption about the error distribution: of

border cases gives much lower confidence factors and since §i&ripution withs2 = 1.7 within 3.5%. If the rule involves

number of such cases is relatively small the estimate itself hagsed intervala, 5], a < b the probability that it is fulfilled by

low reliability. A possibility sometimes worth considering is t03 sample from the Gaussian distribution representing the data is
use a similarity-based classifier (such as AN method or

RBF network) to improve accuracy in the border region. This
may be useful if the optimal classification borders have com-

plex shape that logical rules are not able to approximate. . . L i .
Logical rules, similarly as any other classification system.{husme probability that a given condition is fulfilled is propor-

may becomérittle if the decision borders are placed too closional to the value of soft trapezoid function realized by L-unit.
to the data vectors instead of being placed between the clusfef§P l0gical rules with assumption that data has been measured
(cf. Fig. 6). The brittleness problem is solved either at the opt4ith finite precision lead to soft L-functions that allow to com-
mization stage by selecting the middle values of the intervals fB€ classification probabilities that are no longer binary. In this
which best performance is obtained or, in a more general w4y We may either fuzzify the crisp logical rules or obtain fuzzy
by adding noise to the data. Using the first method one detétles directly from neural networks. Crisp logical rules with the
mines the largest cuboid (in the parameter space) in which @#SUmption of input uncertainties are equivalent to fuzzy rules
number of errors is constant, starting from the values of the opffith SPecific membership functions. The ease of interpretation
mized parameters. The center of this cuboid is taken as the fif@0rS crisp rules, while the accuracy and the possibility of ap-
estimation of the adaptive parameters. A better method to ovBlcation of gradient-based techniques to optimization favors

come the brittleness problem is presented in the next sectior]Y22Y rules: we have the best of both worlds. N
It is easy to calculate probabilities for single rule conditions

of the formz < a,z > aorz € (a, b)

P(Ra,o(Ge) =T) mo(B(x —a)) —o(Bz—1)).  (22)

VIIl. PROBABILITIES FROM CRISPRULES plz < a) = /a Gly; z, s,) dy
Neural systems have good generalization properties because 10 a—1x)\]
they are wide margin classifiers. Their decision borders are ob- =3 1+erf <S \/5)
tained from the mean square error optimization of smooth func- Foo ” }
tion that extends over larger neighborhood contributing to the plz > a) = / G(y; z, sz)dy
error. This allows for three important improvements: 1) the use a B}
of inexpensive gradient method instead of global minimization; I <“ - x)
2) more robust rules with wider classification margins; 3) esti- 21 s2V2/ ]
mation of class probability, instead of 0-1 dECI§I0nS. _ p(z € (a, b)) = 1 orf <b - x) erf <a — x>:| (23)
Input values result usually from observations which are 20 22 SaV/2

not quite accurate, therefore instead of the attribute valae

Gaussian distributio?,, = G(y; z, s,) centered around  Notice that this interpretation does not differentiate between in-
with dispersions, should be given. This distribution may beequalities< and<. To obtain reasonable probabilities rules with
treated as a membership function of a fuzzy numBgr To borders such that may be replaced by without loss of accu-
compute probabilitieg(C;|X) a Monte Carlo procedure mayracy are required, i.e., borders should be placed between discrete
be performed, sampling vectors from Gaussian distributiomalues.
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The probability that a vectaK belongs to a rulg? = r; A An alternative possibility that we have considetelut not
... Ary may be defined as the product of the probabilities amplemented yet, is to use the renormalized network outputs to
X; € r;fori = 1, ..., N. Such definition assumes that allcompute probabilities
the attributes which occur in rul® are mutually independent,
which is usually not the case. However, if a pair of strongly . or(X)
dependent attributes is used in linguistic variables that appear p(CilX) = ZO‘(X) (26)
in a single rule one of these variables is dropped and the other - ‘
reoptimized at the stage of rule simplification. Therefore the
product should be very close to real probability. Obviously thgith output neurons for class summing the contributions of
rule may not contain more than one premise per attribute, butife nodes
is easy to convert the rules appropriately if they do not satisfy
this condition. - . on(X) =0 <Z Ri,k(X)> . 27)
Another problem occurs when probability &f belonging to p
a class described by more than one rule is estimated. Rules usu- )
ally overlap because they use only a subset of all attributes andF@ch of these rule nodes computes normalized products of
their conditions do not exclude each other. Summing and nér{nit outputs connected to it. Although results will not be
malizing probabilities obtained for different classes may givgduivalent to Monte Carlo simulationg(Cx|.X) values behave
results quite different from real Monte Carlo probabilities. THK€ probabilities and may be useful.

avoid this problem probabilities are calculated as This approach to soft optimization may be used with any set
of crisp logical rules to overcome the brittleness problem and to

obtain robust wide margin rule-based classifiers. Wide margins
p(C|X; M) = Z (—1)IRIH1, (X c ﬂR) (24) are desi.rab!eto optimizelthe place.ment of decision bqrders from
generalization point of view. If a single parametescaling all
s, is used it may be hard to avoid an increase of the number of
classification errors despite the fact that the overall probability
whereR ¢ is the set of the classification rules for claSs2™<  of correct classification will increase. To avoid this problem a
is the set of all subsets of rules api| is the number of el- few iterative steps are used: after minimizatiois decreased
ements inR. The probabilityp(X € [ R) is calculated as a and minimization repeated until becomes sufficiently small
product of probabilities for single rule conditions according tand probabilities almost binary. In the limit minimization of
(23) (X € (12 may be treated as a single conjunctive ruleMSE becomes equivalent to minimization of the classification
This formula takes care of overlapping rule regions, for exrror, but the brittleness problem is solved because the intervals
ample for two rulesk; (X)), R»(X) for classC the probability that are optimally placed for larger input uncertainties do not
p(C|X; M)isp(X € R1)+p(X € Ry) —p(X € Ry N Ry). change in subsequent minimizations.
Instead of the number of misclassifications the error function
may include a sum over all probabilities IX. OPTIMIZATION AND PROBABILITIES FORIRIS DATA

Rc2%c

In the MLP2LN methodA; and A\, constraint parameters
E(M, s,) =1 Ci|X: M) — §(C(X), C;))? (25 aIIQW to generate Filffergnt sets Qf rgles. If_the LR netyvork ar-
(M, 50) = 3 ;Z(p( [X5 M) = 6(C(X), C))” (25) chitecture is used iterative optimization of linguistic variables is
’ possible. The initial rules were derived in Section VI. The cost

function in (18) allows for final optimization of linguistic vari-

where ables. Fuzzy rules allow for direct gradient-based optimization.
M includes intervals defining linguistic vari- For crisp rules probabilities should be introduced first, as de-
ables; scribed in Section VIII, or nongradient optimization techniques
should be used. Different values of thandA; parametersX,
Sz are Gaussian uncertainties of inputs; is not so important here) lead to a hierarchy of rules with in-
creasing reliability.
p(Ci|X; M) is calculated using (24). This process is illustrated below on the Iris data. In the pre-

vious section the simplest set of rulB$!) using only one fea-

The Confusion ma’[l’iX Computed Using probabi”ties inStead ﬁjre,xg, was found_ Lowering the ﬁna| hyperparame\eneads
the error counts allows for optimization of (18) using gradientp the following set of rules:
based methods. This minimization may be performed directly ., (2). setosa if(zs < 2.9V z4 < 0.9) (100%);
. A 3 - 4 - ’
or may be presented as a neural network problem with a spema,ﬁ%g)_ versicolor if (zs € [2.9.4.95]Az4 € [0.9,1.65])(100%):
network architecture. gy o B S e o
- o R~ virginica if (z3 > 4.95) V (24 > 1.65) (94%).
Uncertaintiess,. of the values of features are additional adap- The R set of rules classifies correctly 147 vectors
3\6/8 pg??:tgr?i:]iiggg iyvsi?hoarl)lﬂm'lnzekgﬁvgg Zaveer:esr?t:\ Sg (f)?arlc%ieving the overall 98.0% accuracy. However, the first two
Y pie op z . A P N'age Ol \les have 100% reliability while all errors are due to the
the range of feature to perform one-dimensional minimiza-

tion of the error function independently of other steps. IWe are grateful to N. Jankowski for this idea.
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third rule, covering 53 cases. Further decrease of constraint TABLE IV
hyperparameters\ allows to replace one of these rules by SUMMARY OF RULE EXTRACTION RESULTS FOR THEIRIS DATASET. F =

L L Fuzzy, C = CrisP, R = ROUGH, W = WEIGHTED
four rules, with a total of three attributes and 11 antecedents,

necessary tp classify corrgctly a single additional .vector, 3 Method Rules/cond. | Type | Reclassification

clear indication that overfitting occurs. One cannot find more

reliable rules this way. features accuracy
100% reliability of all rules is achieved after optimization of ReFuNN [10] 9/26/4 F 95.7

R rules with increasing > 0 and minimizing Eq. (18). The ReFuNN [10] 14/28/4 F 95.7

smallest valge O‘fy for which all rules do not make any errors is ReFuNN [10] 104/368/4 | F 95.7

found. For Iris this set of rules leaves 11 vectors, eight virginica )

and three versicolor, as unclassified. Grobian [72] 118/-/4 R 100.0
Rf’): setosa if £z < 2.9) (100%); GA+NN [65] 6/e/ W 100.0
72%3): versicolor if (c3 € [2.9, 49| Axy < 1.7)  (100%); NEFCLASS[70] 172814 F 96.7
R;’): virginica if (z3 > 5.3V 24 > 1.9) (100%). NEFCLASS[70] 3/6/2 F 96.7
The vectors rejected bR rules may be classified 5 (2 FuNe-I[74] 7113 F 96.0

ru!;:‘)s, bgt) the reliability of classmcatlo? for the vectors in the C-MLP2LN 22 C 95.7

REA\RES) border region is rather low: with = 8/11 they

should be assigned to the virginica class and with- 3/11 C-MLPZLN 21212 ¢ 6.0

to the versicolor class. It is possible to generate more specific =~ C-MLP2LN 27312 C 98.0

rules, including more features, just for the border region, orto  ggy 2212 C 98.0

use in this region similarity-based classification system, such
ask-NN, but for this small dataset we do not expect any real

improvement since the true probability distributions of leaveigms, such as FuNe-l [74], give even worse results. Kasabov
sizes for the two classes of iris flowers certainly overlap. [71] has used his neurofuzzy FUNN system partitioning each

The Iris example is too simple to see the full advantage of afeature into five fuzzy linguistic variables, obtaining as a result
plying the optimization and probabilistic evaluation, since th&04 fuzzy rules with 368 conditions (for 150 data vectors)! In-
number of parameters to optimize is small and optimal accstead of compression of information that logical rules should
racy (98%) is achieved with crisp rules. For cases near the geovide a reverse process occurred. Ishibwttl. [66] report
cision border between Iris virginica and Iris versicolor a morgetter results by combining several fuzzy systems and using var-
realistic probabilitieg(C|X; M) are calculated using formulaious voting methods. Jagielskaal.[65] reports 100% reclassi-
(23). The natural uncertainties here &@.1, equal to the accu- fication accuracy with six genetically optimized weighted rules,
racy of measurements. Six vectors near that border have progaich means that the data is overfitted and the method should
bilities around 0.5, up to 0.75, the remaining vectors have highgive poor result in crossvalidation tests of classification accu-
probabilities. Calculation of probabilities was essential in ouwgcy. Unfortunately the main purpose of building rule-based sys-
real-life application of rule extraction methods to psychometriems, i.e., comprehensibility of data description, is lost in both
data and NASA shuttle, presented below. cases.

We have used the Iris example for pedagogical reasons onlyRough sets also do not produce comprehensible description
Reclassification accuracy (in-sample accuracy for the whadé this simple data, producing a large number of rules. Gro-
dataset) of rules derived by several rule extraction systems hian [72] uses 118 rules for perfect classification, clearly over-
collected in Table IV. Unfortunately the statistical estimatiofitting the data, reaching only 91-92% in ten-fold crossvalida-
of accuracy (out-of-sample accuracy) has not been given tign tests. Earlier application of rough sets to the Iris data [73]
the authors of these methods (such comparison is done gave very poor results (77% accuracy), probably because four
data with separate test parts). Nevertheless complexity dimgjuistic attributes per feature were used. This shows again the
reclassification accuracy of rules found by different methodsiportance of optimization and the use of context-dependent
give some idea about their relative merits. The number of rullisguistic variables instead afd hocpartitions of input features.
and conditions does not characterize fully the complexity dihus even such a simple data seems to be difficult to handle for
the set of rules, since fuzzy rules have additional parametergny rule extraction systems.

“Else” condition is not counted as a separate rule.

The neurofuzzy NEFCLASS system [70] belongs to the best
of its kind and if it had used context dependent linguistic vari-
ables it would probably achieve better results, but following We have analyzed a large number of datasets comparing our
the crowd the authors used three equally distributed fuzzy setsults with the results obtained by other methods whenever pos-
for each feature. The best seven fuzzy rules classified corredliple. Many results, including explicit logical rules, are collected
96.7% of data. The system is not able to reduce the numberabhttp://www.phys.uni.torun.pl/kmk/projects/rules.html. As we
features automatically, but if used with the last two iris featurdmve already stressed, rules are useful if they are comprehensible
it will give the same performance using only three best rulesid accurate. Although many sets of rules of various complexity
(out of nine possible) with six conditions. Other neurofuzzy sy$ave been found only the simplest and the most accurate sets of

X. ILLUSTRATIVE APPLICATIONS
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rules are given here. They may be used as a reference or bench- TABLE V
mark for other rule extraction systems SUMMARY OF RULE EXTRACTION RESULTS FOR THEMUSHROOM DATASET;
. . . ) . . RECLASSIFICATION ACCURACY IS GIVEN IN PERCENTS
Crossvalidation is useful as a measure of generalization capa-

bility since cllass.ifiers may overfit the trgining data. Such danger Method Rules/cond. | Reclassification
does not exist if a small number of simple rules is extracted.
Accuracy on the training data should in such cases be similar features Accuracy
as the accuracy on the test data and the differences tell us more RULENEGI[33] 300/8087 91.0
about the statistical representativeness of the training and the grgar 31] 155/6603 98.0
test data than about the classification method itself (cf. results
. - DEDEC [37 26/26 99.8

for larger datasets given below). Statistical tests, such as the 371
stratified ten-fold crossvalidation or the leave-one-out tests, are  TREX(1] 313 100.0
difficult to perform since rules have to be extracted many times. 4.5 (decision tree) 33 99.8
Moreove_r,.smc.e .d|fferent _rules may be extr.acted for different RULEX[44] 131 98.5
data partitions it is impossible to present a single set of rules or ) lariz 190 V4R 99.4
to compare rules obtained by different methods. Successive Regulariz.[30] i

The simplest form of rules is frequently quite stable when  Successive Regulariz.[90] 2122/4 99.9
training on 90% of the data. In the mushroom case described  Successive Regulariz.[90] 3/24/6 100.0
beloyv it is sufficient to use 10% of the data for tralnmg to find C.MLP2LN, SSV 3 98.5
the first two rules that cover 99.4% of all the cases. During cross-
validation it may happen that the rare cases, covered by the two C-MLPZLN, S8V 2/412 99.4
remaining rules, will be missing from the training part and thus ~ C-MLP2LN 37714 99.9
the rules will not be found. Thus the averaged accuracy of the ggv 3/7/4 99.9
method will be below 100%, although the method is capable of
finding 100% accurate rules for this data. Crossvalidation may CMLPZLN 4916 1000
not be so useful for evaluation of the rule extraction methods. ~ SSV 4915 100.0

Quite frequently only the reclassification accuracy (in-sample
or overall accuracy) on the whole dataset for extracted rules is _ )
quoted. This may not be sufficient to estimate statistical accu-RUle R1 misses 120 poisonous cases (98.52% accuracy),
racy of rules, therefore in a few cases crossvalidation results 8fling ruleR, leaves 48 errors (99.41% accuracy), adding
also given here. The best comparison of accuracy is offered §id rule leaves only eight errors (99.90% accuracy), and all
large dataset with the separate test part, such as the hypothyFB|gS1 t0 R4 classify all poisonous cases correctly. The first
or the NASA shuttle problem. We have analyzed six databad¥@ rules are realized by one neuron. For large value of the
with such separate test sets, allowing to judge generalization Wgight-decay parameter only one rule with odor attribute is
pability of the methods proposed in this paper. obtgmed, while for smaller .hyperparameter values a second
Rule extraction methods should not be judged only on tiftribute (spore-print-color) is left. Adding a second neuron
basis of the accuracy of the rules but also on their simplicity a@&fd training it on the remaining cases generates two additional
their comprehensibility. The simplest rules are usually rathB#€S, s handling 40 cases anfl, handling only eight cases.

stable in crossvalidation tests and for such rules reclassificati$f¢ Nave also derived the same rules using only 10% of all data
accuracy is close to statistical estimations. for training, therefore results from crossvalidation should be

identical to the results given in Table V. This is the simplest
systematic logical description of the mushroom dataset that we
know of (some of these rules have probably been also found by

In the mushroom problem [1], [7] the database consists ofthe RULEX and TREX algorithms [1]) and therefore should be
8124 vectors, each with 22 symbolic attributes with up to 1@sed as a benchmark for other rule extraction methods.
different values, equivalent to 118 logical features. 51.8% of For the mushroom dataset SSV tree has found 100% accurate
the cases represent edible, and the rest nonedible (mostly soiution which can be described as four logical rules using only
sonous) mushrooms. five attributes. The first of these is identical as found by the

A single neuron is capable of learning all the training samplésMLP2LN, but next two rules are different, using “gill-size”
(the problem is linearly separable), but the resulting netwotkstead of stalk and cap related attributes. Since the last two
has many nonzero weights and is difficult to analyze from ttigles cover only a small percentage of all cases many equivalent
logical point of view. Using the C-MLP2LN algorithm with the descriptions are possible. SSV rules give perhaps the simplest
cost function (10) the following disjunctive rules for poisonouset of rules found so far.

A. Mushrooms

mushrooms have been discovered: R.: odor= —(almondv aniseV none);
R:) odor= —(almondV anisev none); Ro:  spore-print-coloe= green;
R,) spore-print-coloe= green; Rs: gill-size = narrow A (stalk-surface-above-ring=
R3) odor = none A stalk-surface-below-ring= scaly A (silky Vv scaly)V population= clustered.
(stalk-color-above-ring= —brown); If odor is removed from the list of available features 13 rules

R4) habitat= leavesn cap-color= white. are needed to reach 100% correct classification. This example
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tive ones. The patterns which are not recognized properly are
treated as exceptions to the general rules extracted from the net-
work. The hidden layer had to be extended adding neurons with
a negative contribution to the output node. After the whole rule
extraction process is finished two separate sets of rules are ob-
tained, one comprising information on positive examples, and
the other describing exceptions, modifying the first set of rules.
Below we will use the word “rules” to mean the rules of the first
set, and the word “exceptions” for the members of the second
set. To classify a pattern correctly, the first condition one ought
to check is whether it is an exception, and then (only if it is not
true) the basic classification rules can be applied to determine if
the pattern belongs to the class.

C-MLP2LN method applied to the Monk 1 problem needed
three passes (one pass, or training stage, is a single process
ves of training leading to convergence, finished with freezing the
no weights of all trained neurons). The two hidden neurons trained

during the first pass recognized all the positive examples and 11
Fig.9. The network for the Monk 1 problem. The first two neuronsweretaughregative ones. In the second training pass one hidden neuron
simultaneously. The other two handle exceptions. detected six exceptions and in the third pass another hidden
neuron was taught the remaining five exceptions. Some statis-
illustrates how important the simplicity of the rules is. Althouglics concerning all the stages of the algorithm for all three Monk
neural and other methods may give a perfect solution logiGghplems is given in Table VI. Successive columns of the table
rules derived here give probably the most comprehensible gigye the following meaning: the first specifies problems and the

scription of the data. final numbers of generated rules and exceptions, the second enu-
merates particular stages, the third gives the number of neurons
B. The Three Monk Problems trained simultaneously and fourth says if the aim was searching
The three monk problems are artificial, small problems déar rules or exceptions (to highlight the difference rules are
signed to test machine learning algorithms [67], [1], [76]. Eaglrinted in bold and exceptions in italic). The fifth column con-
of the three monks problems is to determine whether an objeégins the numbers of instances classified properly thanks to rules
described by six features (shown in Fig. 9) is a monk or not. Tigenerated during a given pass. The last column supports our
three problems define “being a monk” as having features satidaim that the method learns the most common rules first. The
fying the following formulae respectively: isolated cases are being recognized after subsequent stages.
1) head shape body shape/ jacket color= red; In the Monk-1 problem four rules and two exceptions have
2) exactly two of the six features have their first values; been generated, altogether composed of 14 atomic formulas.
3) —(body shape= octagon Vv jacket color= blug) v They classify the training data without any errors.

(holding = sward A jacket color= greer). Although the definition of the Monk-2 problem is very
There are 432 combinations of the six symbolic attributesimple, the training process required much more effort. As
In the first problem 124 cases were randomly selected for thkown in Table VI it needed the biggest number of passes of the
training set, in the second problem 169 cases and in the thidgorithm. Each of the three first rule searching stages ended
problem 122 cases of which 5% were misclassifcations intraith some exceptions and thence required additional stages.
ducing some noise in the data. Such atrtificial data may be diftoreover last stages made the impression that the relations
ficult to handle. Attempts to train the MLP2LN network withamong the training samples were very difficult to detect. Three
a single neuron were not successful—convergence was unpasses trained networks with two hidden units, and the last
ceptably slow and therefore the final error was too large. It wasie required even four units. It is worth to point out that the
necessary to train two or more neurons in the hidden layer simidur nodes of the network constructed during the last pass are

taneously. The number of neurons trained should be increasesponsible for correct classification of just five examples.
until convergence is fast (the definition of “fast” depends on thEhis shows how the neurons trained in the final passes of our
data, but it does not differ from evaluation of the convergence algorithm can specialize in recognizing patterns which do not
standard MLP). After training on the Monk 1 data the weight®esemble other patterns. Sixteen rules and eight exceptions
for the two neurons were frozen (Fig. 9). This technique has algere extracted from the resulting network. The number of
been used in the Monk 2 problem where up to four neurons wext®mic formulas which compose them is 132.
trained simultaneously (real data never required more than twaThe third Monk problem also required one additional pass to
neurons to be simultaneously trained). find exceptions. Two neurons gave three rules, and two other
Initial rules derived for the Monk problems were too generaheurons generated four exceptions. The whole logical system
i.e., each rule covered relatively large percentage of cases friamthis case contains 33 atomic formulas. Although the data has
a wrong class. The first two neurons in the Monk 1 probleimeen deliberately contaminated with 5% noise it is well known
classify properly all positive examples accepting some nedé&7] that rules giving 100% accuracy may be found.

head shape

body shape

octagon

yes

is smiling =

sword
holding balloon
flag

red
jacket yellow

colour green |
ue

has tie




296 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

TABLE VI
TRAINING STAGES IN THE 3 MONK PROBLEMS

TABLE VII
COMPARISON OFRESULTS FOR THE3 MONK DATASETS, ACCURACY
ON THE TEST SET IN %

Problem Pass No. | Neurons | Rules/Exc. | Examples
Method Monk-1 | Monk-2 | Monk-3
Monk 1 1 2 rules 42
AQ17-DCI 100 100 94.2
4 rules 2 1 exceptions
AQ17-HCI 100 93.1 100
2 exceptions 3 1 exceptions
AQ17-GA 100 86.8 100
Monk 2 1 1 rules 33
Assistant Pro. 100 81.5 100
16 rules 2 1 exceptions 5
mFOIL 100 69.2 100
8 exceptions 3 1 rules 16
IDSR 79.7 69.2 95.2
4 2 exceptions 6
IDL 97.2 66.2 -
5 2 rules 10
IDSR-hat 90.3 65.7 -
6 2 exceptions 3
TDIDT 75.7 66.7 -
7 4 rules
ID3 98.6 67.9 94.4
Monk 3 1 1 rules 57
AQR 95.9 79.7 87.0
3 rules 2 2 exceptions
CN2 100 69.0 89.1
4 exceptions 3 1 rules
AQR 95.9 79.7 87.0
) _ ) ) CLASSWEB 0.10 71.8 64.8 80.8
FSM fuzzy rules obtained with Gaussian membership func- CLASSWEB 0.15 65.7 616 85.4
tions were not so good as the crisp rules from C-MLP2LN. For ) ) : )
the Monk 1 problem 16 rules were generated, giving 97.9% ac- CLASSWEB 0.20 63.0 572 75.2
curacy on the training and 94.5% accuracy on the test set. For PRISM 86.3 727 90.3
Monk 2 the number Qf_ generated rules was 32, and the accu- ECOWEB, ext 827 713 68.0
racy was 94% on training and only 79.3% on the test set. Fif-
teen rules generated for Monk 3 gives 96.7% on the trainingand ~ Neural methods
95.5% on the test set. Soft decision borders are not appropriate MLP 100 100 93.1
for this problem, therefore fuzzy methods will not be as accurate MLP+regularization | 100 100 972
as crisp rule extraction. Results obtained with many machine ,
. . . .. Cascade Corelation 100 100 97.2
learning rule-based systems described in the original paper on
the three monk problems [67] are compared in Table VII. ESM, fuzzy rules 94.5 79.3 95.5
L SSV, crisp rules 100 80.6 97.2
C. The Appendicitis Data
C-MLP2LN rules 100 100 100

The appendicitis data contains only 106 cases, with eight at-
tributes (results of medical tests), and two classes: 88 cases with
acute appendicitis and 18 cases with other problems. For thlighe data then to a highly specific and rare case of interest to
small dataset very simple classification rules have been fouad expert. Using L-units and random MLP initialization another
by Weiss and Kapouleas [80] using their predictive value maxget of rules giving 89.6% of accuracy has been found
mization (PVM) approach. Since PVM makes exhaustive search
testing all possible simple rules we may be sure that this is in-
deed the simplest solution. Using histograms for the two classes
initial linguistic variables were found. Initially two simple ruleswith the confusion matri® = (?4 llf), Here column labels are
have been found [81] of the true class and row labels of the assigned class, i.e., one
real appendicitis case was classified as “other problem” and ten
“other problems” as appendicitis. For comparison [Z3JN in
the leave-one out test gives 82.1% and with optimization of dis-

The overall accuracy of these rules is 91.5%. Since these tance function and accuracy is about 89%, MLP reaches about
essentially the same rules as found by Weiss and Kapouleas [86% and Bayes rule 83%. C4.5 decision tree gives three rules
using their PVM approach the leave-one-out accuracy showarrectly covering 91.5% of all cases. For this case we would
also be close to 89.6%. Rules are rather robust and do not chaeggect about the same accuracy in the leave-one-out tests from
much if a single vector is removed from the training set in theur C-MLP2LN rules, PVM rules and CART or C4.5 decision
leave-one-out procedure. Although we have improved classtfiees since these methods consistently generate similar rules for
cation accuracy by generating two more rules (adding a secahis dataset. Twelve fuzzy rules from FSM achieve 84.5% accu-
neuron) the first of these rules covers just two cases and tlaey in the leave-one-out test, and in the ten-fold crossvalidation
second just one case. Such rules are more likely due to the n@seuracy is only slightly lower, 84.3%.

WBC1 > 8400 V MBAP > 42 (29)

MNEA > 6650 V MBAP > 12. (28)
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TABLE VI TABLE IX
RESULTS FOR THEAPPENDICITISDATASET; RECLASSIFICATION AND THE RESULTS FROM THE10-FOLD CROSSVALIDATION FOR THEHEPATITIS DATASET
LEAVE-ONE-OUT ACCURACY ARE GIVEN IN PERCENTS
: Method Accuracy | Remarks
Method Reclassific. | L-one-out
- k-NN, k=18, Manhattan | 90.2+ 0.7 | our result
SSV, 2 crisp rules (our) 94.3 89.6
FSM + rotations 89.7 | our results
C-MLP2LN, 1 neuron (our) 91.5 89.6
LDA 86.4 | Ref. [88]
PVM [75] 91.5 89.6
Naive Bayes 86.3 | Ref. [88]
MLP+backprop [75] 90.2 85.8
IncNet + rotations 86.0 | Ref. [69]
CART [75] 90.6 849
QDA 85.8 | Ref. [88]
FSM, 12 fuzzy rules (our) 92.5 844
1-NN 85.3 | Ref. [88]
Bayes [75] 88.7 83.0
ASR 85.0 | Ref. [88]
k-NN [75] - 82.1
FDA 84.5 | Ref. [88]
C-MLP2LN, 2 neurons (our) 94.3 -
LVQ 83.2 | Ref, [88]
CART 82.7 | Ref. [88]
The decision tree built with SSV converted into logical rules MLP with BP 82.1 | Ref. [88]
gives just two rules per class. Because there are no “don’t know ASI 820 | Ref. [88]
answers, only the rules for one of the cases need to be presented,
the other class can be summarized using the ELSE condition. LFC 81.9 | Ref. [88]
The first rule obtained using separability criterion gives 91.5% Deafult 79.4

accuracy. The second one is already unreliable, covering only

three additional data vectors and increasing the accuracy of re- . ) ]
classification to 94.3%. using the C-MLP2LN method do not contain such misleading

Ry HNEA < 7520.5A MBAP < 12: attributes [81]
Ro: HNEA € (9543.5, 9997.5).

Statistical accuracy is of course lower. In the leave-one-out
test rules differ only slightly for different runs, achieving 89.6%
of accuracy. In the 10-fold crossvalidation tests (repeated ten
times) SSV rules achieve on average 86.3% accuracy (best re[hese rules classify correctly 14 of the 32 vectors rep-
sults+2.6% and worst-1.1%). In Table VIII results of different resenting the “die” class, giving 88.4% accuracy for the
methods for this dataset are compared. Twelve fuzzy rules frégelassifcation of the whole dataset. Further efforts to add new
FSM were derived using Gaussian membership functions. Waurons to classify the remaining data lead to a large number
have not made the leave-one-out test with the more compfxules which is a clear indication of data overfitting.
C-MLP2LN rules, but the results should be close to 89.6% ob- The highest accuracy, 90.2 0.7% was obtained using

tained with a single neuron and with SSV rules. k-nearest neighbors method, with only slightly lower accuracy
of 89.7% obtained from FSM generating fuzzy rules, using

Gaussian membership functions and allowing for rotation.
Other classification methods give slightly lower accuracy, for
This is another small medical database from UCI [7kxample CART decision tree giving only 82.7%NN 85.5%
containing only 155 samples belonging to two different class@f®r & = 1) and linear discriminants analysis 86.4%. A majority
(32 “die” cases, 123 “live” cases). There are 19 attributes, thssifier is correct in 79.4% of cases.
binary, and six attributes with six to eight discrete values. This Considering thak-NN has rather small variance of 0.7% the
data is quite “dangerous” to use, since it contains many missigifferences between the two best methods and the rest are sig-
values—for some features almost half of the vectors hawficant. The two best methods provide quite complex decision
missing values. Using averages of these missing values leadbsdeders, perhaps indicating that classification using simple rules
very good, but quite useless results. For example, using L-unitsnnot be accurate in this case. One may still argue that logical
to generate linguistic variables we were able to find one ruteles are a reasonable way to approach such small datasets. Al-
for the “die” class, achieving overall 96.1% of accuracy though statistical accuracy offered is lower rules give at least
some guidance and allow for validation of the classification
model by experts. Table IX shows the results from the 10-fold
crossvalidation of the dataset.

age> 52 A bilirubin > 3.5
histology=yesA ascites= no A agec [30, 51].

D. Hepatitis

age> 30 A sex= maleA fatigue= no A protime< 50. (30)

The confusion matrix (live, die) is now? = (,7). E. The Ljubliana Cancer Data
This single rule is very accurate but it uses variable “protime” The Ljubliana cancer data [7] contains 286 cases, of
which is missing in almost half of the cases. Rules discoveradhich 201 are no-recurrence-events (70.3%) and 85 are
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recurrence-events (29.7%). There are nine attributes, with TABLE X

two to 13 different values each. A single logical rule for th@0-FOLD CROSSVALIDATION AND RECLASSIFCATIONACCURACY IN % FOR THE
recurrence-events ' LJUBLIANA CANCER DATASET

Method 10-fold CV | Remarks
involved nodes= —[0, 2] A Degree-malignant 3
C-MLP2LN, 1 rule 77.1 | our result
with ELSE condition for the second class, gives over 77% accu- CART, PVM 77.1 | Ref. [75]
racy in crossvalidation tests. Such simple rule cannot overfit the Naive Bayes rule 75.9 | Ref. [75]
data and is found onany prossvalidatior_l _par'Fition. Therefore the SSV. 3 rules 73.540.9 | our result
10-CV accuracy is identical to reclassification accuracy. This FSM. 33 f | 114 |
rule is easy to interpret: recurrence is expected if the number of » 92 TUZZy Tuies 4 | our result
involved nodes is bigger than two and the cells are highly ma- MLP +BP 715 | Ref. [75]
lignant. More accurate optimized rules: Default 70.3
R1: Degree malignarnt= 3A breast= left A node caps= AQ15 66-72 | Ref. [86]
yes; i
Ro: (Degree malignant 3V breast= left) A age=¢ Weighted network 68-73.5 | Ref. [87]
[30—49] A tumor size= [35-54]. LERS (rough rules) 69.4 | Ref. [78]
give slightly higher reclassification accuracy, but no increase in k-NN 65.3 | Ref. [75]
crossvalidation. Since the dataset is small many different sets Reclassification
of rules may give similar accuracy. Using the separability split .
R ; Assistant- 78.0 | Ref.
values (SSV) to generate linguistic variables one rule for the ssistant-86 8.0 Ref. [85]
class of recurrence-events is obtained C-MLP2LN, 2 rules 78.0 | our result
SSV, 3 rules 77.6 | our result
involved nodes|0, 2] A Degree-malignang [2, 4] SSV, 1 rule 76.2 | our result

achieving 76.2% accuracy in reclassification of the data. More )

complex set of three rules obtained using SSV gives 77.6% d¥hile the database has 76 raw attributes, only 13 of them are
curacy and in the ten-fold crossvalidation tests an average@stually used in machine learning tests, including six contin-
73.5% (worst result-0.8%, best+1.0%), i.e., only a few per- Uous features and four nominal values. There are many missing
cent above the default value, indicating that rules are already ¥gues of the attributes. Results obtained with various methods
complex and overfit the data. Several machine learning methd@&this data set are collected in Table XI.

give results below the default, as shown in Table X. After some simplifications rules derived by the C-MLP2LN
It would be hard to improve upon result of these simple rule@PProach are

which are easily understood by anyone. We doubt that there isR1: (thal= 0V thal= 1) A ca= 0.0 (88.5%);

any more information in this dataset. Most methods give sig-R2: (thal= 0V ca= 0.0) A cp# 2 (85.2%).

nificantly lower accuracy using more complex models. For ex- These rules give 85.5% correct answers on the whole set and
ample, FSM with 33 fuzzy rules gives results that are only igompare favorable with the accuracy of other classifiers. Three
significantly better than the default accuracy. LERS [78], a madles describing the Cleveland heart data obtained using SSV
chine learning technique based on rough sets, gave after optethod are 85.8% accurate (the first rule containing alternative
mization almost 100 “certain” rules and about the same numbgrcounted as two rules)

of “possible” rules, achieving accuracy that is below the ma- R,: ca= 0.0A (thal= 0v exang= 0);

jority rate. Although it may not be the limit of accuracy for R,: cp# 2A slope# 2.

rough set systems the number of rules produced by such systhese rules are quite similar to rules generated by
tems is usually quite large, and thus the insight into the knowt-MLP2LN. Ten-fold crossvalidation using SSV method
edge hidden in the data is lost. FSM generates 33 rules Wiffyes an average of 81 0.8% accuracy and the leave one
Gaussian membership functions, achieving 71.4% accuracyqit results are about 1% better. Twenty four fuzzy rules were
the test part and 85.4% accuracy on the training part. CART dgenerated by FSM, achieving 93.4% on the training and 82.5
cision tree gave the best results, 77.1% in the crossvalidatien] 6% on the test part. These results are lower than those

tests. Since CART reclassification results are not much betigcriminant analysis, perhaps indicating the need to provide
little difference between reclassification and crossvalidation agtated sharp decision borders.

curacy of the MLP2LN and SSV rules should be expected.
G. Wisconsin Breast Cancer Data

F. The Cleveland Heart Disease Data The Wisconsin cancer dataset [68] contains 699 instances,
The Cleveland heart disease dataset [7] (collected at VMith 458 benign (65.5%) and 241 (34.5%) malignant cases.
Medical Center, Long Beach and Cleveland Clinic Foundatidfach instance is described by the case number, nine attributes

by R. Detrano) contains 303 instances, with 164 healthy (54.1%ith integer value in the range 1-10 (for example, featfsres
instances, the rest are heart disease instances of various sevéciymp thickness” andfs is “bland chromatin”) and a binary
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TABLE XI TABLE Xl
RESULTS FROM THE10-FOLD CROSSVALIDATION FOR THE CLEVELAND RESULTSFROM THE TEN-FOLD CROSSVALIDATION AND RECLASSIFICATION FOR
HEART DISEASE DATASET THE WISCONSINBREAST CANCER DATASET
Method Accuracy Ref. Method Accuracy Ref.
k-NN, k=28, 7 features 85.1+0.5 | our result IncNet 97.1 [69]
Linear Discriminant Analysis 84.5 [88] K-NN 97.0+0.12 our result
Fisher LDA 84.2 [88] Fisher LDA 96.8 [88]
Naive Bayes 83.4 (88] MLP-+backprop 96.7 [88]
Bayes (pairwise dependent) 83.1 [88] LVQ 96.6 [88]
LVQ 82.9 (88] Bayes (pairwise dependent) 96.6 (88]
k-NN, k=27, Manhattan 82.840.6 | ourresult Naive Bayes 96.4 (88]
MLP+backprop 81.3 [88] DB-CART 96.2 [79]
CART (decision tree) 80.8 [88] LDA 96.0 [88]
Quadratic Discriminants 754 (88] LFC, ASL, ASR dec. trees | 94.4-95.6 [88]
LFC, ASI, ASR decision trees | 74.4-78.4 [88] CART (dec. tree) 93.5 [79]
FSM, 27 fuzzy rules 82.0 | our result Quadratic DA 34.5 (88]
SSV, 3 rules 81.8+1.6 | our result FSM, 12 fuzzy rules 96.5 our result
SSV, 3 crisp rules 96.31+0.2 our result
class label. For 16 instances one attribute is missing (it was re-  Results from reclassification Rules/type
placed by an average value). This data has been analyzed in a ¢c.mip2LN 99.0 | 5, C, our result
number of papers (Table XIl). . . C-MLP2LN 97.7 | 4, C, our result
The simplest rules obtained for the malignant class using
C-MLP2LN are SSvV 97.4 | 3, C, our result
NEFCLASS 96.5 4,F [70]
f227TV f726 (95.6%). C-MLP2LN 949 | 2, C, our result
These rules cover 215 malignant cases and ten benign cases, NEFCLASS 927 3, F[70]

achieving overall accuracy (including the ELSE condition) of . _
94.9%. More complex network gave five disjunctive rules for Using L-units four more accurate rules for the malignant class
the malignant cases, with benign cases covered by the EL®E created (their reliability is in parenthesis):

condition: Ri: fi<3Afs<4Af:<6Afl0=1 (99.5)%;
Ri:i fo<ObAfa<4N[fr<2Afs<5b (00)%, Rai fo<TAfs<4Nfr<6AfI0=1 (99.8)%;
Rol fo<b6Afs <AANfr<2Afs<5 (100)%; Ra: fo<TAfi<3Afr<6Afl0=1 (99.4)%;
Ra: fa<OAfi<AAfs <4Afr <2 (100)%;  Rai f2<TAfs<3Afs <4Af:<6 (99.4)%.
Ry [2€[68]A Lo <ANSfs <ANfr<2Afs<5  (100)%; Including the ELSE condition they give 97.7% overall ac-

Rs: fa<OAfi<ANfs<ANfr€[2, TIAfa<D (92.3)%. curacy. The confusion matrix (benign, malignant) j§,. ).

The first four rules achieve 100% accuracy (i.e., they cov&inly five malignant cases are misclassified as benign. Fuzzified
cases of ma"gnant class 0n|y), the last rule covers 0n|y 39 Cag’élg?s predict with almost 100% confidence that these vectors be-
36 malignant and three benign. The confusion matrixis= long to the wrong class, indicating that the data is slightly noisy.
(22384333) i.e., there are three benign cases wrongly classified adMinimization of (18) allows to enforce 100% reliability of all
malignant and 25 malignant cases wrongly classified as benig#es. Eight rules were obtained, rejecting 51 cases (7.3% of all

giving overall accuracy of 96%. Optimization of this set of rule¥ectors). For malignant class these rules are

[(18)] gives Ri1) fo<IANfa<4AANfr <3N [fs<6;
Ri: fo<6Afi<3Afs<8 (99.8)%; R2) fo<BAfs <8Afr <5A fs <10;
Rol fo<OANFfs <AANfr<2Afs<5 (100)%; Ra) fo<4Afa<2A[5<3A[:<T,
Ra: fo<IOAfL<A4NMf3 <4NAfr<3 (100)%;  Ra) fo<IOAf5 <10A fre[1, 5] A fs < 2.
Ry: [2<TASfs<INfs<3Afre[4, Afs<4  (100)%; For the benign cases initial rules are obtained by negation of

Rs: fa€[3AIALL<INf5 <10Afr<6Afs<8 (99.8)%. the above rules; after optimization the rule become$; v
These rules classify only one benign vector as maligriant ( Re V R7 V Rs), where

andR;, the same vector), and the ELSE condition for the be-R;) fo < 8A fa < 5 A fs < 4;

nign class makes six errors, giving 99.0% overall accuracy. INRg) fo <9A f5 <O6A fz <IN fg <5

all cases featuref and f¢ (both related to the cell size) were R7) fo < IAfi<O6Af5 <8N [f7<9;

not important ang; with f; were the most important. Rs) fo=06Af1<I0Af5 <I0Af7<2A fs<9.
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TABLE XIIl providing 97.8% on the training and 96.5% on the test part in
RESULTS FROM THETEN-FOLD CROSSVALIDATION AND RECLASSIFICATION FOR 10-fold crossvalidation tests. Thus CI’iSp rules seem to offer
THE DIABETES DATASET, ACCURACY IN % . ) — .
simpler and more accurate description of this dataset.

Method Accuracy | Reference H. Diabetes
Logdisc 77.7 | Ref. [88] The “Pima Indian diabetes” dataset is stored in the UCI repos-
IncNet 77.6 | Ref. [69] itory [7] and is frequently used as benchmark data. All patients
DIPOL92 77.6 | Ref. [88] were females at least 21 years old, of Pima Indian heritage. The
LDA 775 | Ref. [88] data contains two classes, eight att_rlbutes, 768 mstance_zs, 500
(65.1%) healthy and 268 (34.9%) diabetes cases. Our first at-
SMART 76.8 | Ref. [88] tempts at extracting rules for this dataset were not successful
ASI 76.6 | Ref. [88] because histograms do not provide a useful starting point here.
EDA 76.5 | Ref. [88] L-units and separability criterion provided good linguistic vari-
BP 764 | Ref. [88] ables. This dataset was used in the Statlog project [8], with the
) ) best 10-fold crossvalidation accuracy around 77.7% obtained by
LVQ 75.8 | Ref. [88] logistic discriminant analysis. One simple rule for the healthy
RBF 75.7 | Ref. [88] cases achieving 75% accuracy is
LFC 75.8 | Ref. [88]
-
NB 753 | Ref. [88] 2 SI51LA fo <47 (31)
SNB 754 | Ref. [88] wheref; is the “plasma glucose concentration” afithe body
DB-CART, 33 nodes 744 | Ref. [79] mass index [weight in kg/(height in M) The confusion ma-
ASR 743 | Ref. [88] trix (healthy, diabetes) i$%y %), FSM neurofuzzy system
with Gaussian functions generates 50 rules and achieves in the
FSM, 50 fuzzy rules 73.8 | our result . . .
ten-fold crossvalidation 85.3% accuracy on the training part and
CART, 11 nodes 73.7 | Ref. [79] only 73.8% on the test part. Since better results are achieved
C4.5 73.0 | Ref. [88] using linear discrimination sharp and rotated decision borders
CART 72.8 | Ref. [88] may be needed for optimal classification of this data. Table Xl
Kohonen SOM 722 | Ret. [88] s_hov_vs the regults from the 10-fold crossvalidation and reclassi-
fication for this dataset.
kNN 71.9 | Ref. [88]
Reclasssification I. Hepatobiliary Disorders
C-MLP2LN, 2 rules 77.7 | our result This data, used previously in [91], contains medical records
C-MLP2LN, 1 rule 75.0 | our result of 536 patients admitted to a university affiliated Tokyo-based

hospital, with four types of hepatobiliary disorders: alcoholic
liver damage, primary hepatoma, liver cirrhosis and cholelithi-

For the Wisconsin breast cancer data SSV generates a \,%%5 The records included results of nine biochemical tests and
simple set of three rules for the second class, achieving 97.86& Of the patient. The same 163 cases as in [91] were used as

of reclassification accuracy. In the 10-fold crossvalidation te{1€ testdata. Inthe previous work three fuzzy sets per each input
SSV rules give on average 96.3% (worsd.2%, best0.2%) were assigned using recommendation of the medical experts. A
’ fuzzy neural network was constructed and trained until 100%

accuracy. : -
correct answers were obtained on the training set. The accuracy
Rit fa> 25N f7> 2.5 on the test set varied from less than 60% to a peak of 75.5%. Al-
Rat fa> 25N fo > 35N fr < 2.5 though we quote this result in the Table XIV below it seems im-
Rai f2 > 55N fu <25A fz > 16. possible to find good criteria that will predict when the training

The NEFCLASS neurofuzzy system has also been applieddio the test set should be stopped. Fuzzy rules equivalent to the
this data [70], removing 16 cases with missing values. Tliezzy network were derived but their accuracy on the test set
system was initialized with fuzzy clustering method and usedas not given. This data has also been analyzed by Mited
three trapezoidal membership functions per input featuf®2] using a knowledge-based fuzzy MLP system with results
Reclassification error using three rules (eight conditions eaan the test set in the range from 33% to 66.3%, depending on
since one feature has been deleted) gave 92.7% correct answhesactual fuzzy model used.

Using four rules and the “best per class” rule learning resultsFor this dataset crisp rules were not too successful. The initial
gave only 80.4% correct answers, showing the usefulne&rules obtained by C-MLP2LN procedure gave 83.5% on the
of prior knowledge from initial clusterization. If only two training and 63.2% on the test set. Optimization did notimprove
membership functions per feature are used better reclasdtffiese results significantly. On the other hand fuzzy rules derived
cation accuracy of 96.5% is obtained using four fuzzy ruleasing the FSM network, with Gaussian as well as with triangular
FSM generated 12 rules with Gaussian membership functiofigctions, gave similar accuracy of 75.6—75.8%. Fuzzy neural
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TABLE XIV TABLE XV
RESULTS FOR THEHEPATOBILIARY DISORDERS ACCURACY ON THE TRAINING RESULTS FOR THEHYPOTHYROID DATASET
AND TESTSETS, IN %, ALL CALCULATIONS ARE OURS
Method % train | % test Ref.
Method Training set | Test set C-MLP2LN 99.89 | 99.36 | our result
1-NN, weighted (ASA) 834 82.8 CART 99.79 | 99.36 [80]
1-NN, 4 features 76.9 80.4 PVM 99.79 | 99.33 [80]
K* method - 78.5 SSV rules 99.79 | 99.33 | our result
kNN, k=1, Manhattan 79.1 719 FSM 10 rules 99.60 | 98.90 | our result
ESM, Gaussian functions 23 756 Cascade correl. 100.00 | 98.5 [89]
FSM, 60 triangular functions 93 75.8 MLP-+backprop 99.60 98.5 [89]
IBlc (instance-based) - 76.7 3-NN, 3 features used 98.7 97.9 | our result
FSM, Gaussian functions 93 75.6 Bayes 97.0 96.1 [80]
C4.5 decision tree 94.4 75.5 K-NN _1 953 [80]
Fuzzy neural network 100 75.5
Cascade Correlation - 71.0 h ) ] o
) ypothyroid, and normal (no hypothyroid). The class distribu-
ROP - . . . .. . .
MLP with RPRO 68.0 tion in the training set is 93, 191, 3488 vectors and in the test
Best fuzzy MLP model 75.5 66.3 set 73, 177, 3178. Initially four rules were found, with 99.68%
C4.5 decision rules 64.5 66.3 accuracy on the training set and 99.07% accuracy on the test set.
DLVQ (38 nodes) 100 66.0 For the first class two r_ul_es are sufficient (all values of contin-
uous features are multiplied here by 1000)
LDA (statistical) 68.4 65.0
. i ) Ri1: FTI < 63A TSH > 29;
49 crisp logical rules 83.5 63.2 Ri2: FTI < 63A TSHE [6.1,29)A T3< 20.
FOIL (inductive logic) 99 60.1 For the second class one rule is created
T2 (rules from decision tree) 67.5 533 Ro: FTI € [63, 180]A TSH > 6.1A on thyroxine= no A
IR (rules) 58.4 50.3 surgery= no
Naive Bayes - 46.6 and the third class is covered by the ELSE condition. With these
IB2-IB4 81.2-85.5 | 43.6-44.6 rules we get 99.68% accuracy on the training set and 99.07%

error on the test set. Optimization of these rules leads to slightly
more accurate set of rules

network used over 100 neurons to achieve 75.5% accuracy, inR11: TSH2> 30.48A FTI < 64.27 (97.06%);
dicating that good decision borders in this case are quite comR12: TSHE[6.02,29.53AFTI<64.27AT3< 23.22 (100%);
plex and many logical rules will be required. Various results for R2:  TSH> 6.02AFTI € [64.27,186.71A TT4€ [50,150.5)A
this dataset are summarized in Table XIV. on thyroxine=noA surgery=no (98.96%).

FSM gives about 60 Gaussian or triangular membership func-The ELSE condition has 100% reliability on the training set.
tions achieving accuracy of 75.5-75.8%. Rotation of these furithese rules make only four errors on the training set (99.89%)
tions (i.e., introducing linear combination of inputs to the rulegind 22 errors on the test set (99.36%). They are similar to
does not improve this accuracy. We have also made 10-falibse found using heuristic version of PVM method by Weiss
crossvalidation tests on the mixed data (training plus test data)d Kapouleas [80]. The differences among PVM, CART
achieving similar results. Many methods give rather poor resuéted C-MLP2LN are for this dataset rather small (Table XV),
on this dataset, including various variants of the instance-baded other methods, such as well-optimized MLP (including
learning (IB2-1B4, except for the IB1c, which is specifically degenetic optimization of network architecture [89]) or cascade
signed to work with continuous input data), statistical methodsrrelation classifiers, give results that are significantly worse.
(Bayes, LDA) and pattern recognition methods (LVQ). The beBpor results ofk-NN are especially worth noting, showing
results were obtained with thi€* method based on algorithmicthat in this case, despite large amount of reference vectors,
complexity optimization, giving 78.5% on the test set, &NN  similarity-based methods are not competitive. Ten fuzzy rules
with Manhattan distance functiok,= 1 with selection of fea- obtained using FSM with Gaussian membership functions are

tures, giving 80.4% accuracy (for details, see [6]). also less accurate than the three crisp rules.
The C-MLP2LN solution seems to be close to optimal [77].
J. The Hypothyroid Data Similar rules were obtained from the SSV separability criterion:

This is a somewhat larger dataset [7], with 3772 cases forR;: TSH > 6.05A FTI < 64.72A thyroid-surgery= no;
training, 3428 cases for testing, 22 attributes (15 binary, sixcon-Rs:  TSH > 6.05A FTI > 64.72A TT4 < 150.5A thyroid-
tinuous), and three classes: primary hypothyroid, compensated surgery= no A on-thyroxine= no.
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TABLE XVI training and three vectors are unclassified and one error is made
SUMMARY OF RESULTS FOR THENASA SHUTTLE DATASET (with the probability of correct class for this case close to 50%)
- for the test set. Rules from SSV gave even better results: 100%
Method Train | Test Ref. ..
correct on the training and only one error on the test set.
SSV, 32 rules 100.00  99.99 | our result These results are much better than those obtained from the
NewlID dec. tree 100.00 | 99.99 (8] MLP or RBF netwprks (as reported in the Sta_lo_g project [8]_)
ESM, 17 rules 9998 | 99.97 | our result and comparable with _the results of t_he_best de_C|S|on trees which
work very well for this problem. It is interesting to note that
k-NN + feature sel. - | 9995 | our result in the Stalog project the NewlID tree (descendant of the ID3
C4.5 dec. tree 99.96 | 99.90 (8] tree), which gave the best results here, has not been among the
&-NN ~ |99356 8] first 3 best methods for any other of the 22 d_ata_s_ets analyzed.
Results of the C4.5 decision tree are already significantly worse.
RBF 9840 | 98.60 (8] Our rule extraction approach has consistently been giving top
MLP+BP 95.50 | 96.57 (8] results. Logical rules provide highly accurate and quite simple
Logistic discrimination | 96.07 | 96.17 [8] description of Shuttle dataset.
Linear discrimination 95.02 | 95.17 [8] L. Psychometric Data

Our methodology of extraction and optimization of logical
These rules match our best results and have been found wiiles has been used by us in several real-life projects. One of
fully automatic rule extraction approach. Results are summi@ese projects concerns the psychometric data collected in the
rized in Table XV. It is worth noting that the error of the beshcademic Psychological Clinic of our University. Minnesota
neural network classifiers is still twice as large (1.5%) as th@ultiphasic Personality Inventory (MMPI) test was used, con-
error made by these simple rules. Excellent results of rule-bassisting of 550 questions with three possible answers (yes, no,
classifiers for this dataset show the need to provide sharp defin’t know) each. MMPI evaluates psychological characteris-
sion borders instead of soft borders provided by the fuzzy atigs reflecting social and personal maladjustment, including psy-
neural systems. This may be an artefact of providing sharp @hological dysfunction. Hundreds of books and papers were

vision into three output classes. written on the interpretation of this test (cf. review [93]). Many
computerized versions of the MMPI test exist to assist in infor-
K. NASA Shuttle mation acquisition, but evaluation of results is still done by an

The Shuttle dataset from NASA contains nine continuowperienced clinical psychologist. Our goal is to provide auto-
numerical attributes related to the positions of radiators in tteatic psychological diagnosis.
Space Shuttle. There are 43 500 training vectors and 14 500 testhe raw MMPI data is used to compute 14 real-valued coef-
vectors, divided into seven classes in a very uneven way: ab&oients (this corresponds to manual aggregation of input data),
80% from class 1 and only six examples from class 6 in tig@lled “psychometric scales.” These coefficients are often dis-
training set. This data has been used in the Stalog project [Bryed as a histogram (called “a psychogram”) allowing skilled
therefore accuracy of our rules may be compared with mapgychologists to diagnose specific problems, such as neurosis,
other classification systems (Table XVI). drug addiction or criminal tendencies. First four coefficients

We have used the FSM network with rectangular membersHife just the control scales (measuring consistency of answers,
functions and SSV criterion here. Initialization of the networRllowing to find malingerers, etc.), with the rest forming clinical
gives seven nodes achieving already 88% accuracy. Increasiagles. These scales were developed to measure tendencies to-
accuracy (using constructive learning algorithm) on the trainigard hypochondria, depression, hysteria, psychopathy, paranoia,
setto 94%, 96%, and 98% leads to a total of 15, 18, and 25 nogebizophrenia, etc. A large number of simplification schemes
and accuracies on the test set of 95.5%, 97.8%, and 98.3%s been developed to make the interpretation of psychograms
Backpropagation network reached an accuracy of 95.5% on gasier. They may range from rule-based systems derived from
training setk-NN is very slow in this case, requiring all 43 5000bservations of characteristic shapes of psychograms, Fisher
training vectors as reference for computing distances, reachitigcrimination functions, or systems using a small number of
on the test set 99.56% but with feature selection improving egefficients, such as the three Goldberg coefficients. Unfortu-
99.95%. Optimization of the FSM rules generated 15 logicahtely there is no comparison of these different schemes and

rules. For example, for the third class rules are their relative merits have not been tested statistically. Our goal
was to provide an automatic psychological diagnosis.
L2 €[-188.43, —27.50) A F9 € [1, 74] Rule based system is most desirable because a detailed inter-
F2 €[-129.49, —21.11] A F'9 € [17, 76]. pretation, including description of personality type, may be as-

signed to each diagnosis. We have worked with two datasets, one
The set of 17 rules makes only three errors on the training $et woman, with 1027 cases belonging to 27 classes (normal,
(99.99% accuracy), leaving eight vectors unclassified, and no seurotic, drug addicts, schizophrenic, psychopaths, organic prob-
rors on the test set butleaving nine vectors unclassified (99.94%6)ms, malingerers etc.) determined by expert psychologists, and
After Gaussian fuzzification of inputs (very small, 0.05%) onlyhe second for man, with 1167 cases and 28 classes. Rules were
three errors and five unclassified vectors are obtained for thenerated using C4.5 classificationtree [83] and the FSM system.
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Forthe firstdataset C4.5 created 55rules, achieving 93.0% of ci
rectresponses. Assuming about 1% inaccuracy of measureme 8
improves results to 93.7%. FSM (with rectangular membersh
functions) generated 69 rules agreeing in 95.4% with diagnos?® 1
by human experts. Gaussian fuzzification atthe level of 1.1-1.5 oo : :
increases accuracy to 97.6%. For the second dataset C4.5 Cre 85 {----k---i---4----t---d- A N g oo A
61 rulesgiving 92.5% accuracy (93.1% afterfuzzification), whil : N P L
FSM generated 98 rules giving 95.9% accuracy and after fuzziss J----i
cation 96.9%. Some rules cover only few cases fromthe databa
therefore further pruning and re-optimization is desirable. 5
Rules involve from two to nine attributes. For most classe ? L F K Hp D Hy Ps Mk Pa Pt Sc Ma It
there were only a few errors and it is quite probable that they are
due to the psychologists interpreting the psychogram data. Thig 10.  Psychogram with rule conditions and fuzzified input displayed.
classes, organic problems and schizophrenia, are difficult since
their symptoms are easily confused with symptoms belongiggction of logical rules it became clear that missing features in
to other classes. Each rule has detailed interpretation associatethata were replaced by their averages for a given class. Cross-
with it by psychologists. Fuzzification leads to additional adjegralidation tests on such data are quite accurate but in a real ap-
tives in verbal interpretation, like “strong tendencies,” or “typplication averages for a given class can be added only after, not
ical.” An expert system using these rules should be evaluatggfore the diagnosis.

by clinical psychologist in the near future. A typical rule has From geometrical point of view crisp logic rules correspond

the form: to a division of the feature space with hyperplanes perpendic-
ular to the axes, into areas with symbolic names (corresponding

If fr € [55, 68] A f12 € [81, 93] A f14 € [49, 56] to class and rule numbers). If the classes in the input space

Then Paranoia are correctly separated with such hyperplanes accurate logical

description of the data is possible and worthwhile. Otherwise

wheref- is the hysteria scale, etc. An example of a psychogra@gcuracy of logical description of the data may increase slowly
with rule conditions shown as vertical bars is shown in Fig. 18ith the number of linguistic variables and generalization
The rule has five conditions and the actual case is accepted@lity of a rule-based system (measured by crossvalidation
that rule with 71.8% probability, calculated with assumption dBSts) may even decrease. If the number of logical rules is
Gaussian uncertainties shown on the vertical bars for each c# high or the accuracy of classification is too low, other
ditions. The rule condition for the Ps (psychostenia) scale fiéé@ssification methods should be attempted. Fuzzy logic may
with only 72.2% to the measured value, which means that tREer better approximation with smaller number of rules,
value is close to the interval boundary. An expert system badggluding simple piecewise linear approximation rules and

on our logical rules is under evaluation by clinical psycholdl'ore complex membership functions. However, fuzzy rules
gists. based on triangular or Gaussian membership functions provide

oval decision borders that do not approximate correctly sharp
decision boundaries necessary for description of data with
inherent logical structure. Complex membership functions are
Methodology of extraction of crisp and fuzzy logical rulegrovided by neurofuzzy systems, such as the FSM network
from data and black box classifiers (such as neural networkg)]. As long as separable transfer functions are used network
has been described. This methodology includes: nodes are equivalent to fuzzy rules. Although fuzzy rules are
1) determination and optimization of linguistic variables; symbolic their comprehensibility is lower than crisp rules.
2) initial generation of rules of different complexity usingFinding a global optimum of the error function for sophisticated
constrained MLP networks, search-based MLP’s, FSklassification systems is usually more difficult than for sets of

X|. SUMMARY AND CONCLUSION

networks or separability criterion; crisp rules. Therefore a good strategy is to start with extraction
3) optimization of rules and exploration of the rejection/awf crisp rules first and use fuzzy rules only if the results are not
curacy tradeoff; satisfactory.

4) calculation of probabilities, enabling also estimation of The problem of determination of linguistic variables is not
reliability of classification, gradient optimization of largeseparable from the rule extraction itself. An iterative algorithm
sets of rules, creating more robust logical rules and prbas been proposed, improving in turns linguistic variables and
viding additional adaptive parameters. then rules based on these variables. We have stressed the im-

Extraction of crisp logical rules is advantageous indepepertance of context-dependent linguistic variables since an un-

dently of the final classifier used. First, in our tests logical rulesarranted assumption that the whole range of attribute values
proved to be highly accurate; second, they are easily understastibuld be partitioned into intervals corresponding to linguistic
able by experts in a given domain; third, they may expose prolariables is frequently used. Histograms are helpful to deter-
lems with the data itself. This became evident in the analysis ofréne initial linguistic variables only in simple cases. Good lin-
real-world medical datasets we were involved in. Some reseagtlistic variables are found using probability density networks,
groups reported very good results using this data, but after epecial neural linguistic units, or separability criterion.
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Four groups of methods for extraction of logical rules have 3) the problem of finding an optimal balance between the
been introduced in this paper. MLP2LN method of converting flexibility of adaptive models and the danger of over-
the MLP into a network performing logical operations has been fitting the data. Bayesian regularization based on priors
quite successful. The constructive C-MLP2LN version, with leading to weight decay [58] helps in case of some neural
L-R structure of the MLP network, composed of linguistic and statistical classification models, but it has an adverse
units and rule units (with possible addition of aggregation effectif sharp decision borders are needed. Sharp decision
units) is quite fast. A search-based MLP algorithm as an  borders require large weights and thresholds while regu-
alternative to backpropagation training is particularly easy to  larization terms decrease all weights. Logical rules give
implement and analyze, giving a single logical rule per neuron.  much better control over the complexity of the data rep-
MLP2LN methods in complex cases require an additional rule  resentation and elimination of outliers—rules that cover
extraction step, with search for combination of inputs that lead  only a few new data vectors are easily identified and re-
to activations exceeding the thresholds. Feature space mapping moved,;

(FSM) probability density networks are used for fuzzy rule 4) for medical data labeling the cases “sick” or “healthy”
extraction, creating also crisp rules if a transition to rectangular  introduces implicitly crisp logical rules. Forced to make
membership function is made. SSV separability criterion com-  yes—no diagnosis human experts may fit the results of
bined with the beam search techniques finds optimal separation tests to specific intervals.

values for interacting features, creating decision trees that arélthough we are pleased with the results obtained so far
easily converted to sets of logical rules. The last two methodsveral challenges still remain: aggregation of large number of
allow to extract rules by inspection of network or tree nodes. input features (some data mining problems we work on have

After extraction of rules modified predictive power cost funciore than 1000 features and less than 1000 cases), construction
tion for additional optimization of linguistic variables is used®f hierarchical systems when a large number of features contain

creating hierarchical sets of logical rules with different religMissing data, automatization of the whole process of logical
bility-rejection rate. A great advantage of fuzzy logic is the soffata description and creation of expert systems, going beyond
evaluation of probabilities of different classes, instead of brépositional logic and simple linguistic variables. We are sure
nary yes or no crisp logic answers. Gaussian fuzzification of tHeat neural networks will play an important role in this field.
input values may give the same probabilities as the Monte CarloP/€ase note that many papers of our group are available at
procedure performed for input vectors distributed around me#tP://www.phys.uni.torun.pl/kmk/publications.html.
sured values. Thus simple interpretation of crisp logical rules
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