
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001 277

A New Methodology of Extraction, Optimization and
Application of Crisp and Fuzzy Logical Rules

Włodzisław Duch, Member, IEEE, Rafał Adamczak, and Krzysztof Gra¸bczewski

Abstract—A new methodology of extraction, optimization, and
application of sets of logical rules is described. Neural networks
are used for initial rule extraction, local, or global minimization
procedures for optimization, and Gaussian uncertainties of
measurements are assumed during application of logical rules. Al-
gorithms for extraction of logical rules from data with real-valued
features require determination of linguistic variables or mem-
bership functions. Context-dependent membership functions for
crisp and fuzzy linguistic variables are introduced and methods
of their determination described. Several neural and machine
learning methods of logical rule extraction generating initial
rules are described, based on constrained multilayer perceptron,
networks with localized transfer functions or on separability cri-
teria for determination of linguistic variables. A tradeoff between
accuracy/simplicity is explored at the rule extraction stage and
between rejection/error level at the optimization stage. Gaussian
uncertainties of measurements are assumed during application
of crisp logical rules, leading to “soft trapezoidal” membership
functions and allowing to optimize the linguistic variables using
gradient procedures. Numerous applications of this methodology
to benchmark and real-life problems are reported and very simple
crisp logical rules for many datasets provided.

Index Terms—Backpropagation, data mining, decision trees,
feature selection, fuzzy systems, logical rule-based systems, neural
networks.

I. INTRODUCTION

A DAPTIVE systems, such as the multilayered perceptron
(MLP) and other neural networks, adjust their internal

parameters performing vector mappings from the input to the
output space. Although they may achieve high accuracy of clas-
sification, the knowledge acquired by such systems is repre-
sented in a large number of numerical parameters and network
architectures, in a way that is incomprehensible for humans. The
a priori knowledge about the problem to be solved is frequently
given in a symbolic, rule-based form. Extraction of knowledge
from data, combining it with available symbolic knowledge and
refining the resulting knowledge-based expert systems is a great
challenge for computational intelligence. Reasoning with log-
ical rules is more acceptable to human users than recommenda-
tions given by black box systems [1], because such reasoning
is comprehensible, provides explanations, and may be validated
by human inspection, increasing confidence in the system, im-
portant relationships and features may be discovered in the data.

Manuscript received June 15, 1999; revised December 20, 1999 and June 15,
2000. This work was supported by the Polish Committee for Scientific Research,
Grant 8 T11F 014 14.

The authors are with the Department of Computer Methods, Nicholas Coper-
nicus University, Grudzia¸dzka 5, 87-100 Torun´, Poland (e-mail: {duch; raad;
kgrabcze}@phys.uni.torun.pl).

Publisher Item Identifier S 1045-9227(00)09855-6.

Comprehensibility is often regarded in machine learning
(ML) as the most desired characteristic of inductive methods
(i.e., methods that learn from examples). Michalski, one of
the ML pioneers, formulated it in the following way: “The
results of computer induction should be symbolic descriptions
of given entities, semantically and structurally similar to those
a human expert might produce observing the same entities.
Components of these descriptions should be comprehensible
as single “chunks” of information, directly interpretable in
natural language, and should relate quantitative and qualitative
concepts in an integrated fashion” [2].

Many methods to find logical description of the data have
been designed in the past using statistical, pattern recognition
[3] and machine learning [4] approaches. Rule-based systems
should be preferred over other methods of classification only
in cases when the set of logical rules is not too complex and
their predictive accuracy is sufficiently high. Hundreds of log-
ical rules produced by some algorithms provide opaque descrip-
tion of the data and therefore are not more comprehensible than
any black-box classification system. Although the class of prob-
lems with inherent logical structure simple enough to be man-
ageable by humans may be rather limited, nevertheless it covers
some important applications, such as the decision support sys-
tems in medicine, finances, commerce, and other applications.

A good strategy in data mining and classification tasks is to
use the simplest description of the data that does not compro-
mise accuracy: extract crisp logical rules first, use fuzzy rules
if crisp rules are not sufficient, and only if the number of log-
ical rules required for high accuracy of classification is too large
use other, more sophisticated tools. In many applications simple
crisp logical rules proved to be more accurate and were able to
generalize better than many machine and neural learning algo-
rithms [5]. In other applications fuzzification of logical rules
gave more accurate results [6]. Crisp logical rules may be con-
verted to a specific form of fuzzy rules (Section VIII) and op-
timized using gradient procedures, providing higher accuracy
without significant increase of the complexity or decrease of
comprehensibility of the rule-based system.

Are neural methods competitive to other methods in pro-
viding simple and accurate sets of logical rules? There are two
issues here: understanding what neural networks really do, and
using neural networks to extract logical rules describing the
data. Many neural rule extraction methods have been devised in
the past, but there are very few comparisons with other methods
and explicit logical rules are almost never published. Several
neural methods have been compared experimentally [1] on the
mushroom and the three monk problems benchmark datasets
[7], but no comparison with machine learning methods has

1045–9227/01$10.00 © 2001 IEEE

278 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

been given. There is a strong competition from decision trees
[8], which are fast, accurate, and can easily be converted to sets
of logical rules, from inductive methods of machine learning
[4], and from systems based on fuzzy [9], [10] and rough sets
[11], [12].

Despite this competition neural networks seem to have impor-
tant advantages, especially for problems with continuous-valued
inputs. Good linguistic variables may be determined simultane-
ously with logical rules, selection and aggregation of features
into smaller number of more useful features may be incorpo-
rated in the neural model, adaptation mechanisms for continu-
ously changing data are built in, and wide-margin classification
provided by neural networks leads to more robust logical rules.

In this paper we do not introduce “a new neural method” for
rule extraction, but rather present a complete methodology for
extraction, optimization, and application of sets of logical rules.
An overview of neural rule extraction methods is made in the
next section, followed by some comments on types of logical
rules used in inductive methods. The first step in the rule-based
data analysis requires selection of initial linguistic variables,
as described in Section IV. Several new neural rule extraction
methods are presented in Section V and a pedagogical example
of the actual process of rule extraction, based on the well-known
Iris flower data [7], is given in Section VI. Once initial rules
are extracted simplification and optimization of linguistic vari-
ables for real-valued attributes is done. In Section VII, the accu-
racy/rejection tradeoff for sets of rules is explored. A new error
function is defined allowing to create hierarchical sets of rules,
starting from rules that are very reliable but reject many cases
(assigning them to the “unknown” class), to rules that classify
all data but are less reliable.

Crisp logical rules assign a given input vector to a single
class with probability equal one, even in cases when similar
probability for two or more classes should be reported. In Sec-
tion VIII, a method for calculation of probabilities for rule-based
classifiers is presented. Assuming Gaussian uncertainties of the
measured features analytical formulas for classification proba-
bilities are derived. Such approach is equivalent to the use of
fuzzy rules with “soft trapezoid” membership functions applied
to crisp input vectors. This enables optimization of linguistic
variables for very large sets of rules using efficient gradient pro-
cedures and preserves the ease of interpretation of crisp logical
rules. Illustration of the optimization and probability calcula-
tion steps is done in Section IX, while in Section X many ap-
plications on well-known data and some real-world examples
are presented and, whenever possible, compared with other ap-
proaches. Explicit form of rules are given, in most cases the sim-
plest and most accurate reported in the literature so far for these
datasets. Section XI contains summary and conclusions.

II. A N OVERVIEW OF NEURAL RULE EXTRACTION METHODS

A taxonomy of the neural rule extraction algorithms may
characterize different methods using five dimensions [13]: 1)
the “expressive power” of the extracted rules (types of rules
extracted); 2) the “quality” of the extracted rules (accuracy, fi-
delity comparing to the underlying network, comprehensibility

and consistency of the extracted rules); 3) the “translucency”
of the method, based on local-global use of the neural network
(analysis of individual nodes versus analysis of the total net-
work function); 4) the algorithmic complexity of the method; 5)
specialized network training schemes. One should add one more
dimension to this scheme; and 6) the treatment of linguistic vari-
ables: some methods work only with binary variables, other with
discretized inputs, and yet other with continuous variables that
are converted to linguistic variables automatically.

In the simplest case the inputs are binary and the network
gives logical outputs. After training the network performance is
equivalent to a set of logical rules that may be found by giving as
input all possible combinations of features. Forbinary features
the number of conjunctive rules is (since each feature may ei-
ther be absent, present or its negation may be present in the rule
antecedent). To limit the number of nodes in the search graph
one may try to limit the number of literals in the antecedents of
extracted rules. In one of the first neural rule extraction methods
Saito and Nakano [14] restricted the maximum number of posi-
tive and negative literals and the depth of the breadth-first search
process, additionally restricting the search tree to those combi-
nations of literals that were present in the training set. Due to
these restrictions their method could sometimes accept a rule
that was too general. This drawback has been removed in the
method developed by Gallant [15]. The difficulty comes from
the inputs that are not specified in the rule provided as a candi-
date by the search procedure. Gallant takes all possible values
for these inputs and although his rules are always correct they
may be too specific.

The validity interval analysis (VIA) method developed by
Thrun [16] is a further extension of the global approach. A
validity interval, specifying the maximum activation range
for each input, may be found using linear programming
techniques. These intervals may be propagated backward and
forward through the network. Arbitrary linear constraints
may be applied to input as well as output units, giving the
method the ability to check the validity of nonstandard form
of rules, such as the -of- rules, i.e., logical expressions in
which at least of literals are true. VIA can handle also
continuous-valued input features, starting from the training
values and replacing them with intervals that are increased
to achieve good generalization of rules. The method may
be applied to any neural network with monotonic transfer
functions. Unfortunately it has a tendency to extract rules that
are too specific and rather numerous.

These methods are global, based on analysis of outputs of the
whole network for various inputs. Local, or “decompositional”
methods [1] analyze fragments of the network, usually single
hidden nodes, to extract rules. Such networks are either based
on sigmoidal functions (step functions in the logical limit), or
on localized functions. Using step functions the output of each
neuron becomes logical (binary) and since sigmoidal transfer
functions are monotonic and activations are between zero and
one it is enough to know the sign of the network weight to de-
termine the contribution to activation of a given unit. Search for
rules has now possible combinations of input features (ir-
relevant or relevant feature, with negation of literal determined
by the weight sign), while in the global approach monotonicity

DUCH et al.: NEW METHODOLOGY OF EXTRACTION, OPTIMIZATION, AND APPLICATION 279

does not, in general, hold. Rules corresponding to the whole net-
work are combined from rules for each network node.

Local methods for extraction of conjunctive rules were pro-
posed by Fu [17]–[20] and Gallant [15]. As with the global
methods depth of search for good rules is restricted. The weights
may be used to limit the search tree by providing the evalua-
tion of contributions of inputs that are not specified in rule an-
tecedents. As shown by Sethi and Yoo [21] the number of search
nodes is then reduced to . In theSubset algorithm
of Towell and Shavlik [22] inputs with largest weights are ana-
lyzed first, and if they are sufficient to activate the hidden node
of the network irrespectively of the values on other inputs, a
new rule is recorded. Combinations of the two largest weights
follow, until the maximum number of antecedent conditions is
reached. A fuzzy version of this approach has been proposed by
Hayashi [23].

All these methods still have a problem with exponentially
growing number of possible conjunctive prepositional rules.
Towell and Shavlik [22] proposed to use the-of- rules,
since they are implemented in a natural way by network
nodes. In some cases such rules may be more compact and
comprehensible than conjunctive rules. To avoid combinato-
rial explosion of the number of possible input combinations
for each network node groups of connections with similar
weights are formed. Weights in the group are replaced by their
averages. Groups that do not affect the output are eliminated
and biases reoptimized for frozen weights. Such a simplified
network has effectively lower number of independent inputs,
therefore it is easier to analyze. If symbolic knowledge is used
to specify initial weights, as it is done in the knowledge-based
artificial neural networks (KBANNs) of Towell and Shavlik
[24], weights cluster before and after training. The search
process is further simplified if the prototype weight templates
(corresponding to symbolic rules) are used for comparison with
the weight vectors [25] (weights are adjusted during training
to make them more similar to templates). The RuleNet method
based on templates has also been used to find the best-of-
rules in steps and the best sets of nested-of- rules
in steps [26], exploring large spaces of candidate rules.
The method handles only discrete-valued features, therefore
initial discretization is necessary for continuous features. The
network has only one hidden layer with a specific architecture
to inject symbolic rules into the network and refine them
iteratively.

Several authors noticed the need for simplification of
neural networks to facilitate rule extraction process. Setiono
and Liu [27] use a regularization term in the cost function
to iteratively prune small weights. After simplification the
network is discretized by clustering activation values of the
hidden unit obtained during presentation of the training set.
The method does not guarantee that all rules will be found,
but results for small networks were encouraging. The method
of successive regularization [28] is based on a similar idea,
with Laplace regularization (sum of absolute weight values)
in the error function, inducing a constant decay of weights.
Only weights smaller than some threshold are included in
the regularizing term (this is called “selective forgetting”).
Hidden units are forced to become fully active or completely

inactive. After training a skeletal network structure is left and
the dominant rules extracted. Keeping this skeletal network
frozen small connections are revived by decreasing the reg-
ularization parameters. After training of the more complex
network additional logical rules are obtained from analysis of
new nodes/connections. Another simple method belonging to
that group has been presented by Geczy and Usui [29]. Weights
in the MLP network with one hidden layer are mapped after
training into zero, or values, simplifying the rule search
step. In our own MLP2LN approach [30] described below such
a mapping is incorporated in the learning scheme.

Rule extraction as learning (REAL) is a rather general tech-
nique introduced by Craven and Shavlik [31] for incremental
generation of new rules (conjunctive or-of-). If a new ex-
ample is not classified correctly by the existing set of rules a
new rule, based on this example, is added and the fidelity of the
extended set of rules is checked against the neural network re-
sponses on all examples used so far. The RULENEG algorithm
[1], [32], [94] is based on a similar principle: one conjunctive
rule per input pattern is generated and if a new training vector
is not correctly classified by the existing set of rulesa new
rule is created as a conjunction of all those inputs literals that
have influence on the class of the vector. This is determined by
consecutive negation of each input value followed by checking
(using the neural network) if the predicted class has changed.

In the BRAINNE algorithm [33] a network of inputs and
outputs is changed to a network of inputs and outputs
and retrained. Original inputs that have weights which change
little after extension and retraining of the network correspond
to the most important features. The method can handle con-
tinuous inputs and has been used in several benchmark and
real-life problems, producing rather complex sets of rules. Log-
ical rule extraction has also been attempted using self-orga-
nizing ART model [34] and fuzzy ARTMAP architecture [35].
In the last case a certainty factors for each rule are provided.
Simpler self-organizing architectures may also be used for rule
extraction [36], although accuracy of the self-organized map-
ping for classification problems is rather poor.

The DEDEC algorithm [1], [37] extracts rules by finding a
minimal information sufficient to distinguish, from the neural
network point of view, between a given pattern and all other pat-
terns. To achieve this a new set of training patterns is generated.
First, inputs are ranked in order of their importance, estimated
by inspection of the influence of the input weights on the net-
work outputs. Second, clusters of vectors are selected and used
instead of original cases. Only those features ranked as impor-
tant are used to derive conjunctive rules, which are found by
searching.

Since our goal is to get the simplest logical description of the
data, rather than description of the network mapping, we are in
favor of using specialized training schemes and architectures. Of
course any rule extraction method may be used to approximate
the neural-network function on some training data. The network
is used as an “oracle,” providing as many training examples
as one wishes. This approach has been used quite successfully
by Craven and Shavlik in their TREPAN algorithm [38], com-
bining decision trees with neural networks. Decision trees are
induced by querying neural network for new examples, adding

280 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

tree nodes that offer the best fidelity to the classification by the
network. New branches of the tree are created only after a large
number of queries has been answered. Therefore the method is
more robust than direct decision tree approach, which suffers
from small number of cases in the deeper branches. Classifiers
based on ensembles of different models, similarity-based clas-
sifiers, statistical methods or any other classifiers that produce
incomprehensible models of the data may be approximated by
rule-based systems in the same way.

Neural networks based on separable localized transfer func-
tion are equivalent to fuzzy logic systems [39]. Each node has
a direct interpretation in terms of fuzzy rules and there is no
need for a search process. Gaussian functions were used for in-
serting and extracting knowledge into the radial basis set type
of networks [40]. More general proposal for neurofuzzy system
based on separable functions was made by Duch [41], [42]. Dis-
cussion of rule extraction using localized transfer functions has
been given by Andrews and Geva [43], [95]. These authors de-
veloped a quite successful approach called RULEX [44], based
on constrained MLP networks with pairs of sigmoidal functions
combined to form “ridges,” or “local bumps.” Rules may in this
case be extracted directly from analysis of weights and thresh-
olds, without the search process, since disjoint regions of the
data correspond to one hidden unit. In effect the method is sim-
ilar to a localized network with rectangular transfer functions.
The method works for continuous as well as discrete inputs.

Methods of combining neural and symbolic knowledge, re-
fining probabilistic rule bases, scientific law discovery and data
mining are closely related to applications of neural networks
for extraction of logical rules. Symbolic rules may be converted
into RAPTURE networks [45] and trained using a modified
backpropagation algorithms for optimization of certainty fac-
tors. The network prunes small connections and grows adding
new nodes if classification accuracy becomes too low.

It may seem that neurofuzzy systems should have advan-
tages in application to rule extraction, since crisp rules are just
a special case of fuzzy rules. Quite many neurofuzzy systems
are known and some indeed work rather well [42], [46], [96],
[47]–[49]. However, there is a danger of overparametrization
of such systems, leading to difficulty of finding optimal solu-
tions [10], [50], even with the help of genetic algorithms or
other global optimization methods. Systems based on rough sets
[11] require additional discretization procedures which may de-
termine the quality of their performance. We have included a
few results obtained by fuzzy and rough systems in Section X
presenting applications. Simpler rule extraction systems based
on neural networks may have advantages over the fuzzy, rough
or neurofuzzy systems, although a good empirical comparison
of their capabilities is certainly needed. Many rule extraction
methods have been tested on rather exotic datasets, therefore
their relative advantages are hard to judge.

Most papers on the rule extraction are usually limited to the
description of new algorithms, presenting only a partial solution
to the problem of knowledge extraction from data. Control of the
tradeoff between comprehensibility and accuracy, optimization
of the linguistic variables and final rules, and estimation of the
reliability of rules are almost never discussed. In practical ap-
plications it may be quite useful to have rough, low accuracy,

simple description of the data and to be able to provide more
accurate, but more complex description, in a controlled manner.
Neural methods of rule extraction may provide initial rules, but
that should not be the end of the story.

III. T YPES OFRULES

In this section types of logical rules are discussed, stressing
the importance of decision borders they are able to provide in
multidimensional feature spaces. Although nonstandard form of
rules, such as -of- rules (out of antecedents should
be true), fuzzy rules, decision trees [4] and more complex forms
of knowledge representation are sometimes used in this paper
we will consider only standard IF…THEN prepositional rules.
Since these rules are the simplest and most comprehensible they
should be tried first.

A very general form of prepositional rule is

IF THEN Class (1)

i.e., if belongs to the cluster then its class is
, the same as for all vectors in this cluster. This gen-

eral approach does not restrict the shapes of clusters used in log-
ical rules, but unless the clusters are visualized in some way (a
difficult task in high-dimensional feature spaces) it does not give
more understanding of the data than any black box classifier.
Therefore some assumptions regarding the shapes of clusters
should be made, with the goal of obtaining the smallest number
of comprehensible rules in mind.

For clusters with decision borders that have simple convex
shapes several conjunctive rules of the type

IF THEN Class
(2)

may be sufficient. If are sets of symbolic values, discrete nu-
merical values, or intervals for continuous features, crisp logic
rules are obtained. They provide hyperrectangular decision bor-
ders in the feature subspaces corresponding to variables ap-
pearing in rule conditions. This approximation may not be suffi-
cient if complex decision borders are required, but it may work
quite well if the problem has inherent logical structure.

A fruitful way of looking at logical rules is to treat them
as an approximation to the posterior probability of classifica-
tion , where the model is composed of the set
of rules. Crisp rules give but if clusters
belonging to different classes overlap this is obviously wrong.
A soft interpretation of the operator requires “membership”
functions and leads to fuzzy rules, for example in the form

(3)

where

(4)

and is the value of the membership function defined
for cluster . Suchcontext-dependentor cluster-dependent
membership functionsare rarely used in classification systems

DUCH et al.: NEW METHODOLOGY OF EXTRACTION, OPTIMIZATION, AND APPLICATION 281

(a) (b)

(c) (d)

Fig. 1. Shapes of decision borders for (a) general clusters, (b) fuzzy
rules (using product of membership function), (c) rough rules (trapezoidal
approximation), and (d) crisp logical rules.

based on fuzzy logics, although they are quite natural in the
neurofuzzy systems [42].

The flexibility of the fuzzy approach depends on the choice
of membership functions. Fuzzy logic classifiers frequently use
a few membership functions per input feature [10]. Triangular
membership functions provide oval decision borders, similar
to those provided by Gaussian functions (cf. Fig. 1). Therefore
results should be similar to that of the radial basis function
(RBF) networks and indeed they are formally equivalent
[39]. Triangular membership functions may be regarded as
piece-wise linear approximation to Gaussian membership
functions, while trapezoidal membership functions are similar
approximations to the soft trapezoid functions obtained from
combinations of two sigmoidal transfer functions (cf. next
section).

Thus decision borders provided by the fuzzy rules, although
of different shape than those of crisp rules, do not allow for
more flexible partitioning of the input space. Their big advan-
tage is the ability to provide classification probabilities instead
of yes/no answers. From the accuracy and simplicity point of
view the ability to deal with oblique distribution of data may be
more important than softer decision borders. Rotation of deci-
sion borders requires new linguistic variables, formed by taking
linear combination, or by making nonlinear transformations of
input features. The meaning of such rules is sometimes diffi-
cult to comprehend (cf. proverbial “comparing apples with or-
anges”). Another form of incomprehensible rules is obtained
from a union of halfspaces defined by hyperplanes, forming a
convex, polyhedral shapes.

The rough set theory [11] is also used to derive crisp logic
prepositional rules. In this theory for two-class problems the
lower approximation of the data is defined as a set of vectors,
or a region of the feature space containing input vectors that be-
long to a single class with probability ,
while the upper approximation covers all instances which have
a nonzero chance to belong to this class [i.e., probability is

]. In practice the shape of the boundary be-
tween the upper and the lower approximations depends on the

indiscernibility (or similarity) relation used. Linear approxima-
tion to the boundary region leads to trapezoidal membership
functions, i.e., the same shapes of decision borders as obtained
by fuzzy systems with such membership functions. The crisp
form of logical rules is obtained when trapezoidal membership
functions are changed into rectangular functions. Rectangles
allow to define logical linguistic variables for each feature by
intervals or sets of nominal values.

Crisp, fuzzy, and rough set decision borders are special cases
of more general decision borders provided by neural networks
based on localized separable transfer functions [42]. Although
individual fuzzy, rough and neurofuzzy systems differ in their
approach to logical rule discovery, their ultimate capability de-
pends on the decision borders they may provide for classifica-
tion.

IV. CONTEXT-DEPENDENTLINGUISTIC VARIABLES

Logical rules require symbolic inputs, called linguistic vari-
ables. The input data has to be quantized first, i.e., features
defining the problem should be identified and their subranges
(sets of symbolic values, integer values, or continuous intervals)
labeled. For example a variable “size” has the value “small” if
the continuous variable measuring size falls in some speci-
fied range, . Using one input variable several binary
(logical) variables are created, for example size small

equal to one (true) only if variable “size” has the value “small.”
Linguistic variables used by us arecontext dependent, i.e.,

they may be different in each rule (cf. [51]). For real-valued
attributes intervals defining linguistic variables used in logical
rules are needed. Determination of these intervals is done by
analysis of histograms (only in simple cases), information-based
criteria like those used for decision-trees [4], using feature space
mapping (FSM) constructive neural network [42], using special
“linguistic units” (L-units) in multilayer perceptron (MLP) net-
works [51] or using an explicit separability criterion [52]. Since
it is hard to overestimate the importance of good linguistic units
these methods are described below in some details.

A symbolic attributecolor may take valuesgreen, red, blue
and appear in a rule as logical condition, for examplecolor
red. An alternative way is to use a predicate functioncolor .
Depending on the type of variablethe predicate function may
have a different interpretation. For example, ifis the wave-
length of light and nm nm then color is
red, i.e., logical conditioncolor red is true. One may
also introduce predicates for each color defined by logical func-
tionscolor-green , color-red , color-blue . Such logical
predicate functions are linguistic variables, mapping symbolic
or real values of into binary zero, one orfalse, true.

If the input , where is the subset of real numbers, or
a large set of integers or symbolic values, linguistic variables are
created dividing the data into distinct (for crisp logic) subsets

. Linguistic variables are introduced as

unless then

For sets are usually intervals and linguistic vari-
ables are binary functions mappinginto zero or one. A typical
linguistic variable associated with the attribute “tire pressure”

282 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

will be low if , normal if andhigh if
. A rule may then have conditions of the formhigh ,

which is usually written as high, meaning that .
Introducing acolor-red predicate that has values in the [0,

1] range, instead of the binary 0, 1 values, one may interpret
it as estimation of similarity of color that has to the typical
red color. Using such predicate functions as logical conditions
is equivalent to some form of fuzzy logic, depending on the way
logical functions are mapped on arithmetic functions [9]. Thus
soft predicate functions play the role of membership functions:
binary valued functions are used in crisp logic and real valued
functions in fuzzy logic (for multistep values multivalued logic
conditions are defined). For crisp membership func-
tions are rectangular while fuzzy membership functions have
triangular, trapezoid, Gaussian, or other shapes that are useful
for evaluation of similarities.

In many applications of fuzzy sets a common set of linguistic
variables is assumed for all rules. Such membership functions
arecontext-independent, identical for all regions of the input
space. Defining, for example, three triangular membership func-
tions per attribute, , , , rules for combina-
tions

IF

are sought [9], with . Unfortunately, the number
of combinations grows exponentially with the number of at-
tributes (here like), and the method works only for two or
three dimensions. Covering of a complex cluster may require a
large number of such membership functions. In both crisp and
fuzzy cases linguistic variables should becontext dependent,
i.e., optimized in each rule. Small tire pressure for bicycle is dif-
ferent than for a car or a truck. For example if broad for

, averagefor , and smallfor
, large for then two simple rules

IF broad small THEN great

IF average large THEN great

ELSE so-so

would be more complex if written using linguistic variables
that partition into distinct or just partially overlapping sub-
sets. In the context of large linguistic variable av-
erage, rather thanbroad, should be used. Instead of using a fixed
number of linguistic variables one should rather use rule-depen-
dent linguistic variables, optimized for each rule.

The simplest way to select initial linguistic variables is to an-
alyze histograms, displaying data for all classes for each fea-
ture. Histograms should be smoothed, for example by assuming
that each data vector is really a Gaussian or a triangular fuzzy
number. Unfortunately histograms for all features frequently
overlap. Therefore we have developed several methods for de-
termination of initial linguistic variables.

A. Selection using Density Networks

Feature space mapping (FSM) is a constructive neural
network [42], [53], [54] that estimates the probability density

of input -output pairs in each class

. Nodes of this network use localized, separable transfer
functions, providing good linguistic variables. Crisp decision
regions are obtained by using rectangular transfer functions; if
this is not sufficient Gaussian, trapezoidal or other separable
transfer functions are used.

The network is initialized using a decision tree or a cluster-
ization method based on dendrograms [53], and adapted to the
incoming input data by moving the transfer functions centers,
decreasing and increasing their dispersions, or by adding more
transfer functions (new network nodes) if necessary. The ini-
tialization process is robust and may already lead to reasonable
intervals for the initial linguistic variables. In some cases results
after initialization, before the start of learning, were better than
final results of other classification systems [53]. The FSM net-
work may use an arbitrary separable transfer function, including
triangular, trapezoidal, Gaussian, or the bicentral combinations
of sigmoidal functions [55] with soft trapezoidal shapes. Two
simple bicentral-type functions are constructed as the difference
of two sigmoids, or the product of pairs of
sigmoidal functions for each dimension. For
logistic functions of the form after nor-
malization the two forms become identical

(5)

The proof is not difficult if one notes the following identities:

(6)

If the gain of sigmoidal functions is slowly increased
during learning rectangular functions are smoothly recovered
from products . After training nodes
of the FSM network are analyzed, providing good intervals for
logical variables. To encourage broad intervals, increasing sta-
bility of rules and facilitating selection of features, the lower
and the upper values defining linguistic variables are moved
away from the center of the function during iterative training
(the same effect may be achieved by adding penalty terms to the
cost function). To obtain initial linguistic variables for rule ex-
traction we start with rectangular transfer functions which may
be fuzzified by using soft trapezoidal functions.

B. Linguistic Neural Units

Linguistic neural units (L-units) automatically analyze con-
tinuous inputs and produce linguistic variables [51]. The basic
scheme of such unit is shown in Fig. 2. An inputis connected
via , weights to two neurons, each with its own separate
bias, and . All transfer functions are sigmoidal. At the end of
the training they should be very steep, although at the beginning
they may be quite smooth, allowing for fuzzy approximation of
classification borders. The two hidden neurons of the L-unit are
connected to its output neuron using weights, .

Experiments showed that learning is faster if connections
from the two hidden L-unit neurons to other hidden neurons
are added. All weights have values constrained at the end
of the training to . The network (Fig. 3) composed of
L-units and hidden units (called R-units, since they provide
logical rules) is an MLP network with specific (constrained)

DUCH et al.: NEW METHODOLOGY OF EXTRACTION, OPTIMIZATION, AND APPLICATION 283

Fig. 2. Construction of a linguistic unit converting continuous inputs to
linguistic variables.

Fig. 3. MLP network with linguistic and rule units. An additional aggregation
layer may be added between the input and L-units.

architecture. Since L-units have only one input, one output, and
four constrained weights as parameters, functions realized by
these units belong to one of the four types shown in the limit of
large gain in Fig. 2.

The first of these functions (Type 1) is obtained as a difference
of two sigmoids and represents a typical linguistic variable
equivalent to , the second (Type 2) denotes negation

while the other two (Type 3 and 4), with only one nonzero
weight, correspond to or . The borders and

defining linguistic variables and the four constrained weights
are treated as adaptive parameters of our network.

The threshold of the output unit is kept fixed at one. Input
weights , , and the weights , , each taking values
constrained to , may take at most 81 values. Only a few
combinations give different L-unit transfer functions (Table I).
Most combinations are identically zero—in this case the fea-
ture does not contribute to the rule. One could also use a single
neuron with rectangular or bicentral transfer function instead of
the L-unit. The network structure would then look simpler but
it would not be a constrained MLP network, easy to implement
using conventional neural-network programs.

In practice training L-units separately from R-units leads
to faster convergence. When the L-unit weights are trained
(optimizing linguistic variables) R-unit weights are kept frozen
and vice versa. The output L-unit neurons have frequently both
weights and are deleted, because open intervals
realized by other hidden L-unit nodes are sufficient.

TABLE I
EXAMPLES OF POSSIBLEFUNCTIONS REALIZED BY L-UNITS, b > b , TYPE

1–TYPE 4 AS IN FIG. 2

In some applications with a large number of featuresan
aggregationof some types of features is possible and should
lead to better linguistic variables. Groups of features that are
of the same type may be combined together by an additional
layer of neurons between input and L-units. These aggregation
units (A-units) are either trained without any regularization, or
trained with initial enforcement of zero connections followed
by training without any regularization. The A-units should
be designed incorporating knowledge about the type of input
features. We have used this approach only in a few difficult
cases, when hundreds of features are present.

The L-units take as input continuous vectors
and give as output a vector of linguistic

variables . Since this
mapping is not one-to-one it may happen that two or more
input vectors belonging to different classes are mapped to the
same vector . This leads to classification errors (“conflicts”
in the rough set terminology) that other network nodes are not
able to remove. If the network is not able to discover better
features that prevent this kind of errors it may be worthwhile
to explicitly force the distinguishability of all input vectors to
avoid such situation. One solution is to minimize the number
of identical linguistic variables corresponding to vectors that
belong to different classes

(7)

where is the class the vector belongs to
and are the intervals defining linguistic variables. To
enable gradient minimization functions may be replaced by
narrow Gaussian distributions. The total error function should
be summed over all intervals . Such explicit conditions
enforcing distinguishability may be desirable, but may also lead
to creation of too many linguistic variables handling noise in the
data.

C. Separability Criterion

Another approach to selection of linguistic variables is based
on a general separability criterion introduced by us recently
[52]. The best “split value” for an open interval should sep-
arate the maximum number of pairs of vectors from different
classes. Among all split values which satisfy this condition the
one which separates the smallest number of pairs of vectors be-
longing to the same class is selected. The criterion is applicable
to both continuous and discrete features. Since one feature is

284 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

treated at a time the minimization process is easier than either
trying to minimize classification error or (7) in respect to all in-
tervals at the same time.

Thesplit value(or cutoff point) is defined differently for con-
tinuous and discrete features. In the case of continuous features
the split valueis a real number, in other cases it is a subset of
the set of alternative values of the feature. In all cases theleft
side(LS) and theright side(RS) of a split value of feature
for given dataset is defined as

if is continuous

otherwise
(8)

where is the ’s feature value for the data vector.
Theseparability of a split value is defined as

(9)

where is the set of classes and is the set of data vectors
from which belong to class. The higher the separability
of a split value the better. Points beyond the borders of feature
values existing in the dataset have the SSV (separability split
value) equal to zero, while separability of all points between the
borders is positive. This means that for every dataset containing
vectors which belong to at least two different classes, for each
feature which has at least two different values, there exists a split
value of maximal separability.

When the feature being examined is continuous and there are
several different split values of maximal separability close to
each other, a reasonable heuristics is to select the split value
closest to the average of all of them. To avoid such situations
split values which are natural for a given dataset are examined,
i.e., values that are between adjacent feature values. If there are
two maxima with smaller split values in between, or if the fea-
ture is discrete, then the selection of the best split value may be
arbitrary.

The separability criterion can be used in several different
ways to discretize a continuous feature, if context-independent
linguistic variables are desired. For instance, the same algo-
rithm can be followed as for the construction of a decision
tree, but the possible cut points should be checked only for the
feature being discretized. The recursive process stops when the
subsequent splits do not significantly improve the separability
or when a sufficient number of cut points is obtained. The
recursive process is necessary, because usually features have
just one or two maximal cut points. When the data is split into
two parts at least one best split value for each of the parts will
certainly be found in the next stage.

Sometimes all split values of a given feature have very low
separability. This either means that the feature is not important
or that it should be taken into account in conjunction with dis-
cretization of another feature. The separability of a single split
value can easily be generalized to the separability of a set of

all split values for a given feature, which can be used for the
feature selection. If separability measures for all features are
low context dependent linguistic variables are necessary. Search
for the best separability of a pair or a combination of several
features is performed quite efficiently using beam search tech-
niques. For a pair of features the search complexity is quadratic
in the number of split values considered, enabling in practice ex-
haustive search. Searching for all feature split values at the same
time takes into account mutual interaction of features, therefore
it may significantly improve results, but since the search com-
plexity is high the width of the beam search should be selected
to make it practical.

V. RULE EXTRACTION ALGORITHMS

After initial definition of linguistic variables methods to find
logical rules are needed. Neural methods that we will use for
that purpose focus on analysis of parameters (weights and bi-
ases) of trained networks. Since in many cases inductive bias
of neural networks may not be the most appropriate for a given
data methods described below may either be used to extract log-
ical rules directly from the data or to find a set of logical rules
that approximates the mapping generated by a neural network.
These and other methods of rule extraction are useful to gen-
erate initial form of rules that should be further simplified and
optimized together with the linguistic variables.

A. MLP2LN: Changing MLP into Logical Network

To facilitate extraction of logical rules from an MLP network
one should transform it smoothly into a network performing
logical operations (logical network, LN). This transformation,
called here MLP2LN [56], may be realized in several ways.
Skeletonization of a large MLP network is the method of
choice if our goal is to find logical rules for an already trained
network. Otherwise starting from a single neuron and con-
structing the logical network using training data directly (called
the C-MLP2LN method) is faster and more accurate. Since
interpretation of the activation of the MLP network nodes is
not easy [57] a smooth transition from MLP to a logical-type
of network performing similar functions is advocated. This
transition is achieved during network training by:

1) gradually increasing the slopeof sigmoidal functions
to obtain crisp decision regions;

2) simplifying the network structure by inducing the weight
decay through a penalty term;

3) enforcing the integer weight values 0 and1, interpreted
as irrelevant input, positive and neg-
ative evidence. These objectives are achieved by adding
two additional terms to the standard mean square error
function

(10)

The first part is the standard mean square error measure of
matching the network output vectors with the de-

DUCH et al.: NEW METHODOLOGY OF EXTRACTION, OPTIMIZATION, AND APPLICATION 285

sired output vectors for all training data samples. The
second term, scaled by , is frequently used in the weight
pruning or in the Bayesian regularization method [58], [59] to
improve generalization of the MLP networks.

A naive interpretation why such regularization works is based
on observation that small weights and thresholds mean that only
the linear part of the sigmoid around is used. Therefore the
decision borders are rather smooth. On the other hand for log-
ical rules we need sharp decision borders and as simple skeletal
network as possible. To achieve these objectives the first regu-
larization term is used at the beginning of the training to force
some weights to become sufficiently small to removed them.
The second regularization term, scaled by, is a sum over
all weights and has minimum (zero) for weights approaching
zero or . The first term is switched off and the second in-
creased in the second stage of the training. This allows the net-
work to increase the remaining weights and together with in-
creasing slopes of sigmoids to provide sharp decision borders.

The sixth-order regularization term in the cost function may
be replaced by one of the lower order terms

cubic

quadratic

(11)

These extra terms lead to the additional change of weights in
the backpropagation procedure, for example for the sixth-order
term

(12)

Although nonzero weights have values restricted to1 in-
creasing the slopes is equivalent to using one, large nonzero
weight value . One could consider several different max-
imal values of in the final network, for example by adding,
after skeletonization of the network, the following penalty term:

(13)

This term will not restrict the weights to1 but will allow them
to grow beyond these values. We have not explored yet this pos-
sibility because at the end of the training the slopes should be
infinitely steep, corresponding to infinite nonzero weights. Such
approach may be interesting if the final goal is a hybrid, net-
work-rule based system.

Introduction of integer weights may also be justified from the
Bayesian perspective [58], [59]. The cost function specifies our
prior knowledge about the probability distribution of
the weights in our model . For classification tasks, when crisp
logical decisions are required, the prior probability of the weight
values should include not only small weights, but also large pos-
itive and negative weights distributed around1. For example

(14)

where the parameters play a similar role for probabilities as
the parameters for the cost function. Using alternative cost

functions amounts to different priors for regularization, for ex-
ample using Laplace instead of the Gaussian prior. Initial knowl-
edge about the problem may also be inserted directly into the
network structure, defining initial conditions modified further
in view of the incoming data. Since the final network structure
becomes quite simple insertion of partially correct rules to be
refined by the learning process is quite straightforward.

The training proceeds separately for each output class.
Although the method works with general multilayer backprop-
agation networks we recommend the C-MLP2LN constructive
procedure that frequently leads to satisfactory solutions in
a much faster way. As with all neural procedures for some
data the network training may slow down and require some
experimentation. Initially several constructive networks should
be trained without regularization to determine the expected
training error and the average number of epochs needed for
convergence. Below typical values of parameters that work
well in most cases are given.

1) Create one hidden neuron (R-unit neuron).
2) Train the neuron on data for the first class using backprop-

agation procedure with regularization. Start with small
and and the unit slope

.
3) If convergence is slow (for example, for 10% of the max-

imum number of training epochs the decrease of the error
is lower than , where is the number of the training
samples) try training two neurons simultaneously; in rare
cases training more than two neurons simultaneously may
significantly speed up the training.

a) Train as long as the error decreases; then increase
and the slope of sigmoidal functions
and train further; repeat this step until

sharp increase of the error (typical more than five
times) is noticed when is increased.

b) Decrease slightly until the error is reduced to the
previous value and train until convergence.

c) Remove weights smaller than .
d) Take and and train slowly

increasing the slopes and until the remaining
weights reach 00.05 or 1 0.05.

e) Set very large slopes 1000 and integer weights
0 1.

4) Analyze the weights and the threshold(s) obtained by
checking the combinations of linguistic features that
activate the first neuron(s). This analysis (see Section VI
for an example) allows to write the first group of logical
rules that cover the most common input–output relations.

5) Freeze the weights of existing neurons during further
training. This is equivalent to training only new neurons
(usually one per class at a time) on the data that has not
been properly handled so far.

6) Add the next neuron and train it on the remaining data
in the same way as the first one. Connect it to the output
neuron for the class it belongs to.

7) Repeat this procedure until all data are correctly classi-
fied, or the number of rules obtained grows sharply, sig-

286 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

nifying overfitting (for example, one or more rules per
one new vector classified correctly are obtained).

8) Repeat the whole procedure for data belonging to other
classes.

Thus the network expands after a neuron is added and then
shrinks after connections with small weights are removed. A set
of rules is found for each class separately. The
output neuron for a given class is connected to the hidden neu-
rons created for that class—in simple cases only one neuron may
be sufficient to learn all instances, becoming an output neuron
rather than a hidden neuron (Fig. 3). Output neurons performing
summation of the incoming signals are linear and have either
positive weight 1 (adding more rules) or negative weight1.
The last case corresponds to those rules that cancel some of the
errors created by the previously found rules that were too gen-
eral. They may be regarded as exceptions to the rules.

Since each time only one neuron per class is trained the
C-MLP2LN training is fast. Both standard MLP architecture
with linguistic inputs or the L-R network may be used with the
C-MLP2LN approach. Since the first neuron for a given class
is trained on all data for that class the rules it learns are most
general, covering the largest number of instances. Therefore
rules obtained by this algorithm are ordered, starting with rules
that have the largest coverage and ending with rules that handle
only a few cases. This order allows for a very easy check of the
quality of a set of rules by looking at the errors on the training
data. An optimal balance between the number of rules and the
generalization error is usually obtained when only the rules that
cover larger number of cases are retained.

The final solution may be presented as a set of rules or as
a network of nodes performing logical functions, with hidden
neurons realizing the rules, and the hidden-output neuron
weights set to 1. However, some rules obtained from analysis
of the network may involve spurious conditions and therefore
the optimization and simplification step is necessary (cf.
Section VII).

Although constraints (10) do not change the MLP exactly into
a logical network they are sufficient to facilitate logical inter-
pretation of the final network function. and parameters
determine the simplicity/accuracy tradeoff of the generated net-
work and extracted rules. If a very simple network (and thus
simple logical rules) is desired, giving only rough description
of the data, should be as large as possible: although one may
estimate the relative size of the regularization term versus the
mean square error (MSE) a few experiments are sufficient to
find the largest value for which the MSE is still acceptable and
does not decrease quickly whenis decreased. Smaller values
of should be used to obtain more accurate networks (larger
sets of rules). The final value of near the end of the training
may grow larger than the maximum value of.

The only way to change MLP into a logical network is by in-
creasing the slope of sigmoidal functions to infinity, changing
them into the step-functions. Such a process is difficult since a
very steep sigmoid functions leads to the nonzero gradients only
in small regions of the feature space, and thus the number of vec-
tors contributing to the learning process goes to zero. Therefore
when convergence becomes slow for large slopes it is necessary
to stop network training, extract logical rules and optimize the

intervals of the linguistic variables. This optimization step, de-
scribed in Section VII, is performed at the level of the rule-based
classifier, not the MLP network. A direct method to obtain log-
ical MLP network is described below.

B. Search-Based MLP

Minimization and search methods share the same goal of
optimizing some cost functions. Quantization of network pa-
rameters (weights and biases) allows to replace minimization
by search. Increasing step by step the resolution of quantiza-
tion from coarse to fine allows to find the network parame-
ters with arbitrary precision. Search-based optimization allows
to use step-like discontinuous transfer functions as well as any
smooth functions. Replacing the gradient-based backpropaga-
tion training methods by global search algorithm to minimize
the value of the error function is rather expensive, therefore
some form of a heuristic search should be used, for example the
best first search or the beam search [60]. Even if the best first
search algorithm is used (corresponding to the steepest gradient
descent) a good solution may be found gradually increasing
the resolution of the discrete network parameters [61]. In back-
propagation training this would roughly correspond to a period
of learning with rather large learning constants, with some an-
nealing schedule for decreasing the learning constant.

Given a network architecture the algorithm starts with all
weights and biases , so that all data is
assigned to the default class (corresponding to zero network
output). At the beginning of the search procedure the step
value for weights (and biases) is set. This value is added or
subtracted from weights and biases, , . This
significantly reduces the search space. The best first and the
beam search strategies are used to modify one parameter at
a time. Since computer experiments showed that sometimes
such search is not sufficient computationally more demanding
variants of the search methods modifying two weights at a time
may be used. To speed up the search they are performed in two
stages. First, all the single changes of parameters are tested
and a number of the most promising changes (i.e., changes
decreasing the value of the cost function) is selected (the beam
width). Second, all pairs of parameter changes from the chosen
set, or even all the subsets of this set, are tested, and the best
combination of changes applied to the network. Since the first
stage reduces the number of weights and biases that are good
candidates for updating the whole procedure is computationally
efficient.

The search-based training procedure is an interesting al-
ternative to the gradient-based backpropagation training [61].
Adding some constraints to the optimized cost function can
produce networks easily convertible to crisp logical rules or
fuzzy logical rules with soft trapezoidal membership functions
obtained by subtracting two sigmoidal functions (5). If all
the weights are integers (which is the case when)
and the hidden neuron transfer function is sufficiently steep,
then the resulting network can easily be converted to a set of

-of- rules. The rules are generated by simple analysis of
network parameters. All the input combinations are checked
and if their sum exceeds appropriate bias a logical rule is

DUCH et al.: NEW METHODOLOGY OF EXTRACTION, OPTIMIZATION, AND APPLICATION 287

generated. To obtain small number of conjunctive logical rules
the space of weight values is searched assuming that biases are
always equal to the sum of the incoming weights minus 0.5,
i.e., . In such cases a single neuron is
equivalent to just one logical rule, since only one combination
of inputs gives a sum greater than the bias. For example, if the
only nonzero weights for neuron 1 are , ,
the threshold is and the rule is: IF THEN True.

C. Probability Density Networks

Although constructive C-MLP2LN algorithm and search
based MLP method work very well, especially with the opti-
mization of final rules described in Section VII, in complex
cases FSM network with rectangular functions (or soft rect-
angular functions that are changed into rectangular during
training) may be easier to use. FSM uses efficient clusterization
procedures (based on dendrograms or decision trees) for
initialization, frequently obtaining quite good results without
any training (see [42], [53], [54] papers, where details of the
training algorithm are described). Each network node covers
a cluster of input vectors. The training procedure changes the
node parameters (such as their positions in the input space)
until the error function reaches a minimum. Nodes that cover
only a few training vectors are removed and nodes that cover
many training vectors are optimized.

The node that has the largest output most often when all
training vectors are presented covers the largest number of input
vectors. This node, assigned to a certain class(this is the class
majority of the vectors it covers belong to), corresponds to the
most general logical rule. The interval for the selected
node is adjusted to cover all class vectors that activate it. The
value () is set between the lowest (highest) value of the
belonging to the training vectors of the class covered by this
node and the value of the nearest vector from another class.
Those features that cover the whole input data range are deleted
since their contribution is always constant. For the remaining
features further selection is done by checking the number of er-
rors on vectors belonging to classes other than the class assigned
to a given node. This procedure is repeated for all network nodes
[54].

For radial membership functions, such as Gaussians, one
could also use the RBF networks for extraction of crisp rules,
although we are not aware of any papers in which the transition
from Gaussian-like functions to rectangular function limit [for
example by increasing exponentin function] has
been studied.

D. Rule Generation using Separability Criterion

SSV separability criterion defined in (9) has a natural appli-
cation in construction of decision trees. The simplest method
of building such a tree is to use the best first search method.
The separability of each possible cut point of each continuous
feature, or of each subset of the set of values of each discrete
feature, is evaluated. The best splits are selected and the space
(and dataset as well) is divided into two parts by the first two
branches of the binary tree. The criterion is then applied recur-
sively to each of the resulting parts of the input space (with their

corresponding data subsets). The tree is finished when it classi-
fies the data with maximal accuracy. 100% accuracy is possible
only if there are no contradictory examples in the dataset.

The accuracy of 100% usually means overfitting. To avoid it a
pruning technique is usedto maximize generalizationcapacity
of the resulting tree. Ten-fold crossvalidation for the training set
is performed. In each crossvalidation pass unseen samples are
used to find the best way to prune the tree. Leaves that lead to
overfitting cannot be determined because the final tree may be
quite different than the tree built for the training data available
during crossvalidation (i.e., 90% of the data in ten-fold cross-
validation), since decision trees, as well as most other classi-
fiers, are unstable [62]. Therefore an optimaldegree of pruning
is determined. Pruning with the degree ofmeans cutting off
all the pairs of leaves which reduce the number of errors of their
parent by not more than. In each pass of the crossvalidation the
number of errors counted for the test part of the data is checked.
The optimal degree of pruning is the maximal degree (natural
number) corresponding to the minimal total crossvalidation test
error (sum of all crossvalidation test errors).

Each step of the best first search grows the decision tree by
splitting one of its leaves in two. So after each step we im-
prove (or in the worst case preserve) the classification accu-
racy. It means that the best first search follows a single branch
of the search tree: if at a given stage we choose the best split we
will never try any alternative split although it can finally give
much better (i.e., smaller) tree. To diminish this drawback we
use beam search instead of best first search, capable of finding
better results at a larger computational cost.

The decision tree is easily converted into a set of crisp log-
ical rules (each branch of the tree represents one rule). However,
the rules containing premises describing all the nodes from the
root of the tree to its leaves can be more complex than neces-
sary. Especially in bigger trees it may turn out that the decisions
made at the very beginning are not important for classification of
data vectors which end up in a leaf. They may be important for
a large data set, but not necessarily for smaller, localized sam-
ples. Therefore redundant rule antecedents should be removed.
To find out which premises are spurious they are deleted one by
one and a check of the accuracy is made. If the accuracy is de-
creased the premise should be kept. We will refer to this method
of generating rules as SSV, i.e., using the same name as for the
separability criterion.

VI. EXTRACTION OF RULES—PEDAGOGICAL ILLUSTRATION

For pedagogical purposes we will illustrate the first steps of
our methodology using the Fisher Iris dataset. The data has been
taken from the UCI machine learning repository [7]. The Iris
data has 150 vectors evenly distributed in three classes: iris-
setosa, iris-versicolor, and iris-virginica. Each vector has four
features: sepal length and width , and petal length and
width (all given in centimeters).

The simplest way to obtain linguistic variables, often used in
design of fuzzy systems, is based on division of each feature
data range into a fixed number of parts and use of the triangular
(or similar) membership functions for each part [10]. The same
approach may be used for crisp logic. Dividing the range of each

288 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

Fig. 4. Histograms of the fourx �x Iris features. Thex ; x features (lower
part) allow for better discrimination than the first two features.

feature into three equal parts, called small, medium and
large the feature will be called small if it is in [4.3, 5.5]
range, medium in (5.5, 6.7] and large in (6.7, 7.9]. Thus instead
of four continuous-valued inputs a network with 12 binary in-
puts equal to is constructed. For example, the medium value
of a single feature is coded by three input units .
With this discretization of the input features three vectors of the
iris-versicolor class [coded as , and

] become identical with some iris-virginica vectors
and cannot be classified correctly. Therefore after discretization
the maximum classification accuracy is 98.7%. Indistinguish-
able vectors should be removed from the training sequence.

Although there is no reason why such a procedure should pro-
vide good linguistic units for the Iris example by chance it is not
so bad! The accuracy of classification using logical rules crit-
ically depends on selection of linguistic variables. Using two
variables per feature, small and large, dividing the range of fea-
ture values in the middle, 13 vectors from Iris-setosa class get
mixed with the vectors from two other classes. Using four lin-
guistic variables per feature also decreases classification accu-
racy, mixing 16 Iris-versicolor cases with Iris-virginica. Evi-
dently division into three classes is fortuitous. Analysis of the
histograms of the individual features for each class, shown in
Fig. 4 and Table II, proves that the division into three equal parts
is almost optimal, cutting the histograms into the regions where
values of features are most frequently found in a given class. For
example, Iris-virginica class is more frequent for the value of

above 4.93 and Iris-versicolor are more frequent below this
value. Discretization based on histograms (shown in Table II)
was made by dividing the data range into 15 bins and smoothing
these histograms by counting not only the number of vectors
falling in a given bin, but also adding 0.4 to adjacent bins.

This discretization is quite useful for the initialization of
L-units, although random initialization would, after some
training, also lead to similar intervals. It may also be used
for initialization of the FSM network nodes, although den-
drogram-based methods work quite well. For the Iris case

TABLE II
LINGUISTIC VARIABLES OBTAINED BY ANALYSIS OF HISTOGRAMS

Fig. 5. Final structure of the network for the Iris problem.

dendrogram initialization with Gaussian nodes gives 95%
correct answers without any training of the network or opti-
mization of rules. The network has four nodes corresponding to
four fuzzy rules. FSM initialization with rectangular functions
gives 80% of correct answers and requires short training to
improve the linguistic variable intervals [53].

A single neuron per class was sufficient to train the
C-MLP2LN network, therefore the final network structure
(Fig. 5) has 12 input nodes and three output nodes. Hidden
nodes are only needed when more than one neuron is necessary
to cover all the rules for a given class. The network was trained
for about 1000 epochs and the final weights were within 0.05
from the desired 1 or zero values. The following weights and
thresholds for the three neurons were obtained (only the signs
of the weights are written):

Setosa
Versicolor
Virginica

These weight vectors are so simple that there is no need for
rule extraction. The corresponding rules are:

Iris-setosa if ;
Iris-versicolor if ;
Iris-virginica if .

Only two features, and , are relevant since all weights for
the remaining features become zero. The trained network struc-
ture is shown in Fig. 5. The first rule correctly classifies all sam-
ples from the Iris-setosa class. Together with the other two rules
147 vectors (98%) are correctly classified using only theand

features.
Linguistic variables were not optimized in the example above.

As a result the solution obtained is rather brittle (Fig. 6)—the
decision borders are placed too close to the data.

DUCH et al.: NEW METHODOLOGY OF EXTRACTION, OPTIMIZATION, AND APPLICATION 289

Fig. 6. Iris dataset displayed inx andx coordinates; decision regions (rules)
for the three classes are also shown. Note the three Iris-versicolor cases that are
incorrectly classified using these two features only. The brittleness of rules is
illustrated by decision border that is placed too close to the setosa class.

Using L-R network several solutions with optimized lin-
guistic variables are found, depending on the regularization
parameters . The simplest rules involve only one attribute,
petal length .

: iris-setosa if ;
: iris-virginica if ;
: else iris-versicolor

The first rule is accurate in 100% of cases since the setosa class
is easily separated from the two other classes. The overall accu-
racy is 95.3% (seven errors). Slightly more accurate rules (96%)
are obtained for smaller regularization parameters:

Iris-setosa if ;
Iris-virginica if ;
Iris-versicolor otherwise.

Similar solutions are found with search-based MLPs. All
these rules are more robust than those obtained with linguistic
variables from histograms. SSV criterion has found another
simple set of rules, offering 98% accuracy:

Iris-setosa if ;
Iris-virginica if ;
Iris-versicolor otherwise.

What about more complex solutions? Using and small
value of the following weights and thresholds are found:

Setosa
Versicolor
Virginica

To analyze these vectors note that in MLP2LN or in search-
based MLPs with discretized network parameters rulesim-
plemented by trained neurons are written in the form of logical
conditions by considering contributions of inputs for each lin-
guistic variable. Such variableis represented by a vector

TABLE III
CONTRIBUTIONS OFFEATURES FOR THEFIRST CLASS (IRIS-SETOSA)

Fig. 7. Structure of the network trained with� = 0 on the Iris problem.

and its contribution to the activation is equal to the dot product
of the subset of the weight vector . To find all
rules that are compatible with a given set of weights and thresh-
olds one has to perform a search process, considering com-
binations of all inputs to the activation of the network node.
Since MLP2LN method guarantees that only relevant inputs
have nonzero weights the search space haselements, where

is the number of used features.
For the Iris-setosa vectors the weights for the first feature are

, therefore contribution from is . From
both and , equivalent to , contribution is

. Analysis of other features and weights is summarized
in the Table III and the structure of the network for this case is
shown in Fig. 7.

Using Table III one can easily create a search tree (Fig. 8)
with weights equal to the total contribution of each feature to
the final activation. At the first level there are two branches, at
the second level also two, for it is three and for it is two,
giving a total of 24 leaves. At the first level contribution of
is for or for . For Iris-setosa class only
the leaves with activation equal to or larger than the threshold

should be considered.
Logical rules are read directly from this tree. Changing the

order in which the levels are considered equivalent rules are
obtained. A useful heuristic to find the simplest set of rules is
to start with features that contribute the most to the activation
(features four and three in this case). As shown in Fig. 8, if

the activation is already three and if it is followed by
the activation and the two other features will not reduce
the activation below three (since each may subtract at most one).
Therefore the activation is greater than the threshold

for . In the same way other conditions
consistent with the weights are found, giving a rule with four

290 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

Fig. 8. Tree-based search for rules after network has been trained.

antecedents for class Iris-setosa, one rule for Iris-versicolor and
one for Iris-virginica

IF

THEN iris-setosa

IF THEN iris-versicolor

IF THEN iris-virginica. (15)

These rules allow for correct classification of 147 vectors,
achieving the highest theoretical accuracy (98%) for the
histogram discretization. Comparing them to simpler rules of
the same accuracy presented above it is clear that they are too
complex. Large thresholds may simplify the rule extraction
process, leading to simpler search trees. One could implement
additional conditions in the MLP2LN algorithm to encourage
such large thresholds, but we have not tested this option yet,
although we use it in SSV and search-based MLPs. The validity
of all rules presented here has been confirmed with a Prolog
program, which is also used to search for rules in complex
cases.

Density networks provide logical rules without the need to
check the combination of linguistic features. An FSM node im-
plementing rectangular transfer function has the intervals de-
fined for each relevant feature and is equivalent to a conjunc-
tive rule. Using Gaussian or other soft transfer functions has
direct interpretation in form of fuzzy rules, and the transition
process between fuzzy and crisp rules may be studied by in-
creasing the slopes of sigmoidal functions combined to create
bicentral transfer function (5).

It is impossible to estimate statistical accuracy of the log-
ical rules in cross-validation tests since for each training data
set a different set of rules is obtained. Comparison of accuracy
on datasets with separate training and test parts is done in Sec-
tion X.

VII. OPTIMIZATION AND RELIABILITY OF RULES

Rules obtained from analysis of neural networks or decision
trees may involve spurious conditions, more specific rules may
be contained in general rules or logical expressions may be sim-
plified if written in another form. Therefore an important part of

rule optimization involves simplification and symbolic opera-
tions on rules. We use a Prolog program for such simplifications.
In addition optimal linguistic variables for continuous-valued
features may be found for the sets of rules extracted. These op-
timized linguistic variables may be used to extract better rules in
an iterative process, starting from initial values of linguistic vari-
ables, extracting logical rules, optimizing linguistic variables,
and repeating the whole process with new linguistic variables
until convergence is achieved. Usually two or three iterations
are sufficient to stabilize the sets of rules.

Optimal linguistic variables (intervals) and other adaptive pa-
rameters may be found by maximization of a predictive power of
a rule-based (or any other) classifier. Let be the
confusion matrix, i.e., the number of instances in which class

is predicted when the true class was, given some param-
eters . Then for samples
is the probability of (mis)classification. The best parameters
are selected by maximizing the number (or probability) of cor-
rect predictions (called also the “predictive power” of rules)

(16)

over all parameters , or minimizing the number of wrong pre-
dictions [possibly with some risk matrix]

(17)

Weighted combination of these two terms:

(18)

is bounded by and should be minimized over parameters
without constraints. For discontinuous cost function

this minimization may be performed using simulated annealing
or multisimplex global minimization methods. If is large the
number of errors after minimization may become zero but some
instances may be rejected (i.e., rules will not cover the whole
input space). Thus optimization of the cost function al-
lows to explore theaccuracy-rejection rate tradeoff.

Since rules discriminate between instances of one class and
all other classes one can define a cost function for each rule
separately

(19)

and minimize it over parameters used in the rule only (
means here one of the classes, andmeans all other classes).
The combination is sometimes
called the sensitivity of a rule [75], while
is called the specificity of a rule. Some rule induction methods
optimize such combinations of values.

Estimation of the reliability of rules is very important in
many applications. Tests of classification accuracy should be

DUCH et al.: NEW METHODOLOGY OF EXTRACTION, OPTIMIZATION, AND APPLICATION 291

performed using stratified ten-fold crossvalidation, each time
including rule optimization on the training set. Changing the
value of will produce a series of models with higher and higher
classification accuracy at the expense of growing rejection rate.
A set of rules may classify some cases 100% correctly for all
data partitionings; if some instances are not covered by this set
of rules another set of rules of lower accuracy is used (the accu-
racy of rules is estimated on the training set only). High accuracy
rules should give more confidence that they are reliable.

Most rule extraction procedures give only one set of rules,
assigning to each rule a confidence factor, for example

. This is rather misleading. A rule
that does not make any errors on the training set covers typ-

ical instances and its reliability is close to 100%. If a less accu-
rate rule is given, for example classifying correctly 90% of
instances, the reliability of classification for instances covered
by the first rule is still close to 100% and the reliability of classi-
fication in the border region [cases covered by
but not by] is much less than 90%. Including just these
border cases gives much lower confidence factors and since the
number of such cases is relatively small the estimate itself has
low reliability. A possibility sometimes worth considering is to
use a similarity-based classifier (such as the-NN method or
RBF network) to improve accuracy in the border region. This
may be useful if the optimal classification borders have com-
plex shape that logical rules are not able to approximate.

Logical rules, similarly as any other classification systems,
may becomebrittle if the decision borders are placed too close
to the data vectors instead of being placed between the clusters
(cf. Fig. 6). The brittleness problem is solved either at the opti-
mization stage by selecting the middle values of the intervals for
which best performance is obtained or, in a more general way,
by adding noise to the data. Using the first method one deter-
mines the largest cuboid (in the parameter space) in which the
number of errors is constant, starting from the values of the opti-
mized parameters. The center of this cuboid is taken as the final
estimation of the adaptive parameters. A better method to over-
come the brittleness problem is presented in the next section.

VIII. PROBABILITIES FROM CRISPRULES

Neural systems have good generalization properties because
they are wide margin classifiers. Their decision borders are ob-
tained from the mean square error optimization of smooth func-
tion that extends over larger neighborhood contributing to the
error. This allows for three important improvements: 1) the use
of inexpensive gradient method instead of global minimization;
2) more robust rules with wider classification margins; 3) esti-
mation of class probability, instead of 0–1 decisions.

Input values result usually from observations which are
not quite accurate, therefore instead of the attribute valuea
Gaussian distribution centered around
with dispersion should be given. This distribution may be
treated as a membership function of a fuzzy number. To
compute probabilities a Monte Carlo procedure may
be performed, sampling vectors from Gaussian distributions

defined for all attributes. Analytical evaluation is based on the
cumulative distribution function

erf

(20)

where erf is the error function and makes the
erf function similar to the standard unipolar sigmoidal function
with the accuracy better than 2%. A rule with single crisp
condition is fulfilled by a Gaussian number with
probability

(21)
Taking instead of the erf function a logistic function corre-
sponds to an assumption about the error distribution of
from Gaussian to , approximating Gaussian
distribution with within 3.5%. If the rule involves
closed interval the probability that it is fulfilled by
a sample from the Gaussian distribution representing the data is

(22)

Thus the probability that a given condition is fulfilled is propor-
tional to the value of soft trapezoid function realized by L-unit.
Crisp logical rules with assumption that data has been measured
with finite precision lead to soft L-functions that allow to com-
pute classification probabilities that are no longer binary. In this
way we may either fuzzify the crisp logical rules or obtain fuzzy
rules directly from neural networks. Crisp logical rules with the
assumption of input uncertainties are equivalent to fuzzy rules
with specific membership functions. The ease of interpretation
favors crisp rules, while the accuracy and the possibility of ap-
plication of gradient-based techniques to optimization favors
fuzzy rules: we have the best of both worlds.

It is easy to calculate probabilities for single rule conditions
of the form , or

(23)

Notice that this interpretation does not differentiate between in-
equalities and . To obtain reasonable probabilities rules with
borders such that may be replaced by without loss of accu-
racy are required, i.e., borders should be placed between discrete
values.

292 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

The probability that a vector belongs to a rule
may be defined as the product of the probabilities of
for . Such definition assumes that all

the attributes which occur in rule are mutually independent,
which is usually not the case. However, if a pair of strongly
dependent attributes is used in linguistic variables that appear
in a single rule one of these variables is dropped and the other
reoptimized at the stage of rule simplification. Therefore the
product should be very close to real probability. Obviously the
rule may not contain more than one premise per attribute, but it
is easy to convert the rules appropriately if they do not satisfy
this condition.

Another problem occurs when probability of belonging to
a class described by more than one rule is estimated. Rules usu-
ally overlap because they use only a subset of all attributes and
their conditions do not exclude each other. Summing and nor-
malizing probabilities obtained for different classes may give
results quite different from real Monte Carlo probabilities. To
avoid this problem probabilities are calculated as

(24)

where is the set of the classification rules for class,
is the set of all subsets of rules and is the number of el-
ements in . The probability is calculated as a
product of probabilities for single rule conditions according to
(23) (may be treated as a single conjunctive rule).
This formula takes care of overlapping rule regions, for ex-
ample for two rules for class the probability

is .
Instead of the number of misclassifications the error function

may include a sum over all probabilities

(25)

where
includes intervals defining linguistic vari-
ables;

are Gaussian uncertainties of inputs;

is calculated using (24).

The confusion matrix computed using probabilities instead of
the error counts allows for optimization of (18) using gradient-
based methods. This minimization may be performed directly
or may be presented as a neural network problem with a special
network architecture.

Uncertainties of the values of features are additional adap-
tive parameters that may be optimized. We have used so far a
very simple optimization with all taken as a percentage of
the range of feature to perform one-dimensional minimiza-
tion of the error function independently of other steps.

An alternative possibility that we have considered,1 but not
implemented yet, is to use the renormalized network outputs to
compute probabilities

(26)

with output neurons for class summing the contributions of
rule nodes

(27)

Each of these rule nodes computes normalized products of
L-unit outputs connected to it. Although results will not be
equivalent to Monte Carlo simulations, values behave
like probabilities and may be useful.

This approach to soft optimization may be used with any set
of crisp logical rules to overcome the brittleness problem and to
obtain robust wide margin rule-based classifiers. Wide margins
are desirable to optimize the placement of decision borders from
generalization point of view. If a single parameterscaling all

is used it may be hard to avoid an increase of the number of
classification errors despite the fact that the overall probability
of correct classification will increase. To avoid this problem a
few iterative steps are used: after minimizationis decreased
and minimization repeated until becomes sufficiently small
and probabilities almost binary. In the limit minimization of
MSE becomes equivalent to minimization of the classification
error, but the brittleness problem is solved because the intervals
that are optimally placed for larger input uncertainties do not
change in subsequent minimizations.

IX. OPTIMIZATION AND PROBABILITIES FOR IRIS DATA

In the MLP2LN method and constraint parameters
allow to generate different sets of rules. If the L-R network ar-
chitecture is used iterative optimization of linguistic variables is
possible. The initial rules were derived in Section VI. The cost
function in (18) allows for final optimization of linguistic vari-
ables. Fuzzy rules allow for direct gradient-based optimization.
For crisp rules probabilities should be introduced first, as de-
scribed in Section VIII, or nongradient optimization techniques
should be used. Different values of theand parameters (
is not so important here) lead to a hierarchy of rules with in-
creasing reliability.

This process is illustrated below on the Iris data. In the pre-
vious section the simplest set of rules using only one fea-
ture, , was found. Lowering the final hyperparameterleads
to the following set of rules:

: setosa if
: versicolor if
: virginica if .

The set of rules classifies correctly 147 vectors,
achieving the overall 98.0% accuracy. However, the first two
rules have 100% reliability while all errors are due to the

1We are grateful to N. Jankowski for this idea.

DUCH et al.: NEW METHODOLOGY OF EXTRACTION, OPTIMIZATION, AND APPLICATION 293

third rule, covering 53 cases. Further decrease of constraint
hyperparameters allows to replace one of these rules by
four rules, with a total of three attributes and 11 antecedents,
necessary to classify correctly a single additional vector, a
clear indication that overfitting occurs. One cannot find more
reliable rules this way.

100% reliability of all rules is achieved after optimization of
rules with increasing and minimizing Eq. (18). The

smallest value of for which all rules do not make any errors is
found. For Iris this set of rules leaves 11 vectors, eight virginica
and three versicolor, as unclassified.

: setosa if ()
: versicolor if ()
: virginica if () .

The vectors rejected by rules may be classified by
rules, but the reliability of classification for the vectors in the

border region is rather low: with they
should be assigned to the virginica class and with
to the versicolor class. It is possible to generate more specific
rules, including more features, just for the border region, or to
use in this region similarity-based classification system, such
as -NN, but for this small dataset we do not expect any real
improvement since the true probability distributions of leave’s
sizes for the two classes of iris flowers certainly overlap.

The Iris example is too simple to see the full advantage of ap-
plying the optimization and probabilistic evaluation, since the
number of parameters to optimize is small and optimal accu-
racy (98%) is achieved with crisp rules. For cases near the de-
cision border between Iris virginica and Iris versicolor a more
realistic probabilities are calculated using formula
(23). The natural uncertainties here are , equal to the accu-
racy of measurements. Six vectors near that border have proba-
bilities around 0.5, up to 0.75, the remaining vectors have higher
probabilities. Calculation of probabilities was essential in our
real-life application of rule extraction methods to psychometric
data and NASA shuttle, presented below.

We have used the Iris example for pedagogical reasons only.
Reclassification accuracy (in-sample accuracy for the whole
dataset) of rules derived by several rule extraction systems are
collected in Table IV. Unfortunately the statistical estimation
of accuracy (out-of-sample accuracy) has not been given by
the authors of these methods (such comparison is done on
data with separate test parts). Nevertheless complexity and
reclassification accuracy of rules found by different methods
give some idea about their relative merits. The number of rules
and conditions does not characterize fully the complexity of
the set of rules, since fuzzy rules have additional parameters.
“Else” condition is not counted as a separate rule.

The neurofuzzy NEFCLASS system [70] belongs to the best
of its kind and if it had used context dependent linguistic vari-
ables it would probably achieve better results, but following
the crowd the authors used three equally distributed fuzzy sets
for each feature. The best seven fuzzy rules classified correctly
96.7% of data. The system is not able to reduce the number of
features automatically, but if used with the last two iris features
it will give the same performance using only three best rules
(out of nine possible) with six conditions. Other neurofuzzy sys-

TABLE IV
SUMMARY OF RULE EXTRACTION RESULTS FOR THEIRIS DATASET. F=

FUZZY, C= CRISP, R= ROUGH, W=WEIGHTED

tems, such as FuNe–I [74], give even worse results. Kasabov
[71] has used his neurofuzzy FuNN system partitioning each
feature into five fuzzy linguistic variables, obtaining as a result
104 fuzzy rules with 368 conditions (for 150 data vectors)! In-
stead of compression of information that logical rules should
provide a reverse process occurred. Ishibuchiet al. [66] report
better results by combining several fuzzy systems and using var-
ious voting methods. Jagielskaet al.[65] reports 100% reclassi-
fication accuracy with six genetically optimized weighted rules,
which means that the data is overfitted and the method should
give poor result in crossvalidation tests of classification accu-
racy. Unfortunately the main purpose of building rule-based sys-
tems, i.e., comprehensibility of data description, is lost in both
cases.

Rough sets also do not produce comprehensible description
of this simple data, producing a large number of rules. Gro-
bian [72] uses 118 rules for perfect classification, clearly over-
fitting the data, reaching only 91–92% in ten-fold crossvalida-
tion tests. Earlier application of rough sets to the Iris data [73]
gave very poor results (77% accuracy), probably because four
linguistic attributes per feature were used. This shows again the
importance of optimization and the use of context-dependent
linguistic variables instead ofad hocpartitions of input features.
Thus even such a simple data seems to be difficult to handle for
many rule extraction systems.

X. ILLUSTRATIVE APPLICATIONS

We have analyzed a large number of datasets comparing our
results with the results obtained by other methods whenever pos-
sible. Many results, including explicit logical rules, are collected
at http://www.phys.uni.torun.pl/kmk/projects/rules.html. As we
have already stressed, rules are useful if they are comprehensible
and accurate. Although many sets of rules of various complexity
have been found only the simplest and the most accurate sets of

294 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

rules are given here. They may be used as a reference or bench-
mark for other rule extraction systems.

Crossvalidation is useful as a measure of generalization capa-
bility since classifiers may overfit the training data. Such danger
does not exist if a small number of simple rules is extracted.
Accuracy on the training data should in such cases be similar
as the accuracy on the test data and the differences tell us more
about the statistical representativeness of the training and the
test data than about the classification method itself (cf. results
for larger datasets given below). Statistical tests, such as the
stratified ten-fold crossvalidation or the leave-one-out tests, are
difficult to perform since rules have to be extracted many times.
Moreover, since different rules may be extracted for different
data partitions it is impossible to present a single set of rules or
to compare rules obtained by different methods.

The simplest form of rules is frequently quite stable when
training on 90% of the data. In the mushroom case described
below it is sufficient to use 10% of the data for training to find
the first two rules that cover 99.4% of all the cases. During cross-
validation it may happen that the rare cases, covered by the two
remaining rules, will be missing from the training part and thus
the rules will not be found. Thus the averaged accuracy of the
method will be below 100%, although the method is capable of
finding 100% accurate rules for this data. Crossvalidation may
not be so useful for evaluation of the rule extraction methods.

Quite frequently only the reclassification accuracy (in-sample
or overall accuracy) on the whole dataset for extracted rules is
quoted. This may not be sufficient to estimate statistical accu-
racy of rules, therefore in a few cases crossvalidation results are
also given here. The best comparison of accuracy is offered on
large dataset with the separate test part, such as the hypothyroid
or the NASA shuttle problem. We have analyzed six databases
with such separate test sets, allowing to judge generalization ca-
pability of the methods proposed in this paper.

Rule extraction methods should not be judged only on the
basis of the accuracy of the rules but also on their simplicity and
their comprehensibility. The simplest rules are usually rather
stable in crossvalidation tests and for such rules reclassification
accuracy is close to statistical estimations.

A. Mushrooms

In themushroom problem [1], [7] the database consists of
8124 vectors, each with 22 symbolic attributes with up to 12
different values, equivalent to 118 logical features. 51.8% of
the cases represent edible, and the rest nonedible (mostly poi-
sonous) mushrooms.

A single neuron is capable of learning all the training samples
(the problem is linearly separable), but the resulting network
has many nonzero weights and is difficult to analyze from the
logical point of view. Using the C-MLP2LN algorithm with the
cost function (10) the following disjunctive rules for poisonous
mushrooms have been discovered:

) odor (almond anise none);
) spore-print-color green;
) odor none stalk-surface-below-ring scaly

(stalk-color-above-ring brown);
) habitat leaves cap-color white.

TABLE V
SUMMARY OF RULE EXTRACTION RESULTS FOR THEMUSHROOMDATASET;

RECLASSIFICATION ACCURACY IS GIVEN IN PERCENTS

Rule misses 120 poisonous cases (98.52% accuracy),
adding rule leaves 48 errors (99.41% accuracy), adding
third rule leaves only eight errors (99.90% accuracy), and all
rules to classify all poisonous cases correctly. The first
two rules are realized by one neuron. For large value of the
weight-decay parameter only one rule with odor attribute is
obtained, while for smaller hyperparameter values a second
attribute (spore-print-color) is left. Adding a second neuron
and training it on the remaining cases generates two additional
rules, handling 40 cases and handling only eight cases.
We have also derived the same rules using only 10% of all data
for training, therefore results from crossvalidation should be
identical to the results given in Table V. This is the simplest
systematic logical description of the mushroom dataset that we
know of (some of these rules have probably been also found by
the RULEX and TREX algorithms [1]) and therefore should be
used as a benchmark for other rule extraction methods.

For the mushroom dataset SSV tree has found 100% accurate
solution which can be described as four logical rules using only
five attributes. The first of these is identical as found by the
C-MLP2LN, but next two rules are different, using “gill-size”
instead of stalk and cap related attributes. Since the last two
rules cover only a small percentage of all cases many equivalent
descriptions are possible. SSV rules give perhaps the simplest
set of rules found so far.

: odor (almond anise none);
: spore-print-color green;
: gill-size narrow (stalk-surface-above-ring

(silky scaly) population clustered.

If odor is removed from the list of available features 13 rules
are needed to reach 100% correct classification. This example

DUCH et al.: NEW METHODOLOGY OF EXTRACTION, OPTIMIZATION, AND APPLICATION 295

Fig. 9. The network for the Monk 1 problem. The first two neurons were taught
simultaneously. The other two handle exceptions.

illustrates how important the simplicity of the rules is. Although
neural and other methods may give a perfect solution logical
rules derived here give probably the most comprehensible de-
scription of the data.

B. The Three Monk Problems

The three monk problems are artificial, small problems de-
signed to test machine learning algorithms [67], [1], [76]. Each
of the three monks problems is to determine whether an object
described by six features (shown in Fig. 9) is a monk or not. The
three problems define “being a monk” as having features satis-
fying the following formulae respectively:

1) head shape body shape jacket color red;
2) exactly two of the six features have their first values;
3) (body shape octagon jacket color blue)

(holding sward jacket color green).
There are 432 combinations of the six symbolic attributes.

In the first problem 124 cases were randomly selected for the
training set, in the second problem 169 cases and in the third
problem 122 cases of which 5% were misclassifcations intro-
ducing some noise in the data. Such artificial data may be dif-
ficult to handle. Attempts to train the MLP2LN network with
a single neuron were not successful—convergence was unac-
ceptably slow and therefore the final error was too large. It was
necessary to train two or more neurons in the hidden layer simul-
taneously. The number of neurons trained should be increased
until convergence is fast (the definition of “fast” depends on the
data, but it does not differ from evaluation of the convergence of
standard MLP). After training on the Monk 1 data the weights
for the two neurons were frozen (Fig. 9). This technique has also
been used in the Monk 2 problem where up to four neurons were
trained simultaneously (real data never required more than two
neurons to be simultaneously trained).

Initial rules derived for the Monk problems were too general,
i.e., each rule covered relatively large percentage of cases from
a wrong class. The first two neurons in the Monk 1 problem
classify properly all positive examples accepting some nega-

tive ones. The patterns which are not recognized properly are
treated as exceptions to the general rules extracted from the net-
work. The hidden layer had to be extended adding neurons with
a negative contribution to the output node. After the whole rule
extraction process is finished two separate sets of rules are ob-
tained, one comprising information on positive examples, and
the other describing exceptions, modifying the first set of rules.
Below we will use the word “rules” to mean the rules of the first
set, and the word “exceptions” for the members of the second
set. To classify a pattern correctly, the first condition one ought
to check is whether it is an exception, and then (only if it is not
true) the basic classification rules can be applied to determine if
the pattern belongs to the class.

C-MLP2LN method applied to the Monk 1 problem needed
three passes (one pass, or training stage, is a single process
of training leading to convergence, finished with freezing the
weights of all trained neurons). The two hidden neurons trained
during the first pass recognized all the positive examples and 11
negative ones. In the second training pass one hidden neuron
detected six exceptions and in the third pass another hidden
neuron was taught the remaining five exceptions. Some statis-
tics concerning all the stages of the algorithm for all three Monk
problems is given in Table VI. Successive columns of the table
have the following meaning: the first specifies problems and the
final numbers of generated rules and exceptions, the second enu-
merates particular stages, the third gives the number of neurons
trained simultaneously and fourth says if the aim was searching
for rules or exceptions (to highlight the difference rules are
printed in bold and exceptions in italic). The fifth column con-
tains the numbers of instances classified properly thanks to rules
generated during a given pass. The last column supports our
claim that the method learns the most common rules first. The
isolated cases are being recognized after subsequent stages.

In the Monk-1 problem four rules and two exceptions have
been generated, altogether composed of 14 atomic formulas.
They classify the training data without any errors.

Although the definition of the Monk-2 problem is very
simple, the training process required much more effort. As
shown in Table VI it needed the biggest number of passes of the
algorithm. Each of the three first rule searching stages ended
with some exceptions and thence required additional stages.
Moreover last stages made the impression that the relations
among the training samples were very difficult to detect. Three
passes trained networks with two hidden units, and the last
one required even four units. It is worth to point out that the
four nodes of the network constructed during the last pass are
responsible for correct classification of just five examples.
This shows how the neurons trained in the final passes of our
algorithm can specialize in recognizing patterns which do not
resemble other patterns. Sixteen rules and eight exceptions
were extracted from the resulting network. The number of
atomic formulas which compose them is 132.

The third Monk problem also required one additional pass to
find exceptions. Two neurons gave three rules, and two other
neurons generated four exceptions. The whole logical system
for this case contains 33 atomic formulas. Although the data has
been deliberately contaminated with 5% noise it is well known
[67] that rules giving 100% accuracy may be found.

296 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

TABLE VI
TRAINING STAGES IN THE 3 MONK PROBLEMS

FSM fuzzy rules obtained with Gaussian membership func-
tions were not so good as the crisp rules from C-MLP2LN. For
the Monk 1 problem 16 rules were generated, giving 97.9% ac-
curacy on the training and 94.5% accuracy on the test set. For
Monk 2 the number of generated rules was 32, and the accu-
racy was 94% on training and only 79.3% on the test set. Fif-
teen rules generated for Monk 3 gives 96.7% on the training and
95.5% on the test set. Soft decision borders are not appropriate
for this problem, therefore fuzzy methods will not be as accurate
as crisp rule extraction. Results obtained with many machine
learning rule-based systems described in the original paper on
the three monk problems [67] are compared in Table VII.

C. The Appendicitis Data

The appendicitis data contains only 106 cases, with eight at-
tributes (results of medical tests), and two classes: 88 cases with
acute appendicitis and 18 cases with other problems. For this
small dataset very simple classification rules have been found
by Weiss and Kapouleas [80] using their predictive value maxi-
mization (PVM) approach. Since PVM makes exhaustive search
testing all possible simple rules we may be sure that this is in-
deed the simplest solution. Using histograms for the two classes
initial linguistic variables were found. Initially two simple rules
have been found [81]

MNEA MBAP (28)

The overall accuracy of these rules is 91.5%. Since these are
essentially the same rules as found by Weiss and Kapouleas [80]
using their PVM approach the leave-one-out accuracy should
also be close to 89.6%. Rules are rather robust and do not change
much if a single vector is removed from the training set in the
leave-one-out procedure. Although we have improved classifi-
cation accuracy by generating two more rules (adding a second
neuron) the first of these rules covers just two cases and the
second just one case. Such rules are more likely due to the noise

TABLE VII
COMPARISON OFRESULTS FOR THE3 MONK DATASETS, ACCURACY

ON THE TEST SET IN %

in the data then to a highly specific and rare case of interest to
an expert. Using L-units and random MLP initialization another
set of rules giving 89.6% of accuracy has been found

WBC1 MBAP (29)

with the confusion matrix . Here column labels are
of the true class and row labels of the assigned class, i.e., one
real appendicitis case was classified as “other problem” and ten
“other problems” as appendicitis. For comparison [75]-NN in
the leave-one out test gives 82.1% and with optimization of dis-
tance function and accuracy is about 89%, MLP reaches about
86% and Bayes rule 83%. C4.5 decision tree gives three rules
correctly covering 91.5% of all cases. For this case we would
expect about the same accuracy in the leave-one-out tests from
our C-MLP2LN rules, PVM rules and CART or C4.5 decision
trees since these methods consistently generate similar rules for
this dataset. Twelve fuzzy rules from FSM achieve 84.5% accu-
racy in the leave-one-out test, and in the ten-fold crossvalidation
accuracy is only slightly lower, 84.3%.

DUCH et al.: NEW METHODOLOGY OF EXTRACTION, OPTIMIZATION, AND APPLICATION 297

TABLE VIII
RESULTS FOR THEAPPENDICITISDATASET; RECLASSIFICATION AND THE

LEAVE-ONE-OUT ACCURACY ARE GIVEN IN PERCENTS

The decision tree built with SSV converted into logical rules
gives just two rules per class. Because there are no “don’t know”
answers, only the rules for one of the cases need to be presented,
the other class can be summarized using the ELSE condition.
The first rule obtained using separability criterion gives 91.5%
accuracy. The second one is already unreliable, covering only
three additional data vectors and increasing the accuracy of re-
classification to 94.3%.

: HNEA MBAP ;
: HNEA (9543.5, 9997.5).

Statistical accuracy is of course lower. In the leave-one-out
test rules differ only slightly for different runs, achieving 89.6%
of accuracy. In the 10-fold crossvalidation tests (repeated ten
times) SSV rules achieve on average 86.3% accuracy (best re-
sults 2.6% and worst 1.1%). In Table VIII results of different
methods for this dataset are compared. Twelve fuzzy rules from
FSM were derived using Gaussian membership functions. We
have not made the leave-one-out test with the more complex
C-MLP2LN rules, but the results should be close to 89.6% ob-
tained with a single neuron and with SSV rules.

D. Hepatitis

This is another small medical database from UCI [7],
containing only 155 samples belonging to two different classes
(32 “die” cases, 123 “live” cases). There are 19 attributes, 13
binary, and six attributes with six to eight discrete values. This
data is quite “dangerous” to use, since it contains many missing
values—for some features almost half of the vectors have
missing values. Using averages of these missing values leads to
very good, but quite useless results. For example, using L-units
to generate linguistic variables we were able to find one rule
for the “die” class, achieving overall 96.1% of accuracy

age sex male fatigue no protime (30)

The confusion matrix (live, die) is now: .
This single rule is very accurate but it uses variable “protime”

which is missing in almost half of the cases. Rules discovered

TABLE IX
RESULTS FROM THE10-FOLD CROSSVALIDATION FOR THEHEPATITIS DATASET

using the C-MLP2LN method do not contain such misleading
attributes [81]

age bilirubin

histology yes ascites no age

These rules classify correctly 14 of the 32 vectors rep-
resenting the “die” class, giving 88.4% accuracy for the
reclassifcation of the whole dataset. Further efforts to add new
neurons to classify the remaining data lead to a large number
of rules which is a clear indication of data overfitting.

The highest accuracy, 90.2 0.7% was obtained using
-nearest neighbors method, with only slightly lower accuracy

of 89.7% obtained from FSM generating fuzzy rules, using
Gaussian membership functions and allowing for rotation.
Other classification methods give slightly lower accuracy, for
example CART decision tree giving only 82.7%,-NN 85.5%
(for) and linear discriminants analysis 86.4%. A majority
classifier is correct in 79.4% of cases.

Considering that -NN has rather small variance of 0.7% the
differences between the two best methods and the rest are sig-
nificant. The two best methods provide quite complex decision
borders, perhaps indicating that classification using simple rules
cannot be accurate in this case. One may still argue that logical
rules are a reasonable way to approach such small datasets. Al-
though statistical accuracy offered is lower rules give at least
some guidance and allow for validation of the classification
model by experts. Table IX shows the results from the 10-fold
crossvalidation of the dataset.

E. The Ljubliana Cancer Data

The Ljubliana cancer data [7] contains 286 cases, of
which 201 are no-recurrence-events (70.3%) and 85 are

298 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

recurrence-events (29.7%). There are nine attributes, with
two to 13 different values each. A single logical rule for the
recurrence-events

involved nodes Degree-malignant

with ELSE condition for the second class, gives over 77% accu-
racy in crossvalidation tests. Such simple rule cannot overfit the
data and is found on any crossvalidation partition. Therefore the
10-CV accuracy is identical to reclassification accuracy. This
rule is easy to interpret: recurrence is expected if the number of
involved nodes is bigger than two and the cells are highly ma-
lignant. More accurate optimized rules:

: Degree malignant breast left node caps
yes;

: (Degree malignant breast left) age
[30–49] tumor size [35–54].

give slightly higher reclassification accuracy, but no increase in
crossvalidation. Since the dataset is small many different sets
of rules may give similar accuracy. Using the separability split
values (SSV) to generate linguistic variables one rule for the
class of recurrence-events is obtained

involved nodes Degree-malignant

achieving 76.2% accuracy in reclassification of the data. More
complex set of three rules obtained using SSV gives 77.6% ac-
curacy and in the ten-fold crossvalidation tests an average of
73.5% (worst result 0.8%, best 1.0%), i.e., only a few per-
cent above the default value, indicating that rules are already too
complex and overfit the data. Several machine learning methods
give results below the default, as shown in Table X.

It would be hard to improve upon result of these simple rules,
which are easily understood by anyone. We doubt that there is
any more information in this dataset. Most methods give sig-
nificantly lower accuracy using more complex models. For ex-
ample, FSM with 33 fuzzy rules gives results that are only in-
significantly better than the default accuracy. LERS [78], a ma-
chine learning technique based on rough sets, gave after opti-
mization almost 100 “certain” rules and about the same number
of “possible” rules, achieving accuracy that is below the ma-
jority rate. Although it may not be the limit of accuracy for
rough set systems the number of rules produced by such sys-
tems is usually quite large, and thus the insight into the knowl-
edge hidden in the data is lost. FSM generates 33 rules with
Gaussian membership functions, achieving 71.4% accuracy on
the test part and 85.4% accuracy on the training part. CART de-
cision tree gave the best results, 77.1% in the crossvalidation
tests. Since CART reclassification results are not much better
little difference between reclassification and crossvalidation ac-
curacy of the MLP2LN and SSV rules should be expected.

F. The Cleveland Heart Disease Data

The Cleveland heart disease dataset [7] (collected at V.A.
Medical Center, Long Beach and Cleveland Clinic Foundation
by R. Detrano) contains 303 instances, with 164 healthy (54.1%)
instances, the rest are heart disease instances of various severity.

TABLE X
10-FOLD CROSSVALIDATION AND RECLASSIFCATIONACCURACY IN % FOR THE

LJUBLIANA CANCER DATASET

While the database has 76 raw attributes, only 13 of them are
actually used in machine learning tests, including six contin-
uous features and four nominal values. There are many missing
values of the attributes. Results obtained with various methods
for this data set are collected in Table XI.

After some simplifications rules derived by the C-MLP2LN
approach are

: (thal thal) ca ;
: (thal ca) cp 2 .

These rules give 85.5% correct answers on the whole set and
compare favorable with the accuracy of other classifiers. Three
rules describing the Cleveland heart data obtained using SSV
method are 85.8% accurate (the first rule containing alternative
is counted as two rules)

: ca (thal exang);
: cp slope .

These rules are quite similar to rules generated by
C-MLP2LN. Ten-fold crossvalidation using SSV method
gives an average of 81.0 0.8% accuracy and the leave one
out results are about 1% better. Twenty four fuzzy rules were
generated by FSM, achieving 93.4% on the training and 82.5

1.6% on the test part. These results are lower than those
discriminant analysis, perhaps indicating the need to provide
rotated sharp decision borders.

G. Wisconsin Breast Cancer Data

The Wisconsin cancer dataset [68] contains 699 instances,
with 458 benign (65.5%) and 241 (34.5%) malignant cases.
Each instance is described by the case number, nine attributes
with integer value in the range 1–10 (for example, featureis
“clump thickness” and is “bland chromatin”) and a binary

DUCH et al.: NEW METHODOLOGY OF EXTRACTION, OPTIMIZATION, AND APPLICATION 299

TABLE XI
RESULTS FROM THE10-FOLD CROSSVALIDATION FOR THECLEVELAND

HEART DISEASEDATASET

class label. For 16 instances one attribute is missing (it was re-
placed by an average value). This data has been analyzed in a
number of papers (Table XII).

The simplest rules obtained for the malignant class using
C-MLP2LN are

These rules cover 215 malignant cases and ten benign cases,
achieving overall accuracy (including the ELSE condition) of
94.9%. More complex network gave five disjunctive rules for
the malignant cases, with benign cases covered by the ELSE
condition:

: ;
: ;
: ;
: ;
: .

The first four rules achieve 100% accuracy (i.e., they cover
cases of malignant class only), the last rule covers only 39 cases,
36 malignant and three benign. The confusion matrix is:

, i.e., there are three benign cases wrongly classified as
malignant and 25 malignant cases wrongly classified as benign,
giving overall accuracy of 96%. Optimization of this set of rules
[(18)] gives

: ;
: ;
: ;
: ;
: .

These rules classify only one benign vector as malignant (
and , the same vector), and the ELSE condition for the be-
nign class makes six errors, giving 99.0% overall accuracy. In
all cases features and (both related to the cell size) were
not important and with were the most important.

TABLE XII
RESULTSFROM THE TEN-FOLD CROSSVALIDATION AND RECLASSIFICATION FOR

THE WISCONSINBREAST CANCER DATASET

Using L-units four more accurate rules for the malignant class
are created (their reliability is in parenthesis):

: ;
: ;
: ;
: .

Including the ELSE condition they give 97.7% overall ac-
curacy. The confusion matrix (benign, malignant) is .
Only five malignant cases are misclassified as benign. Fuzzified
rules predict with almost 100% confidence that these vectors be-
long to the wrong class, indicating that the data is slightly noisy.

Minimization of (18) allows to enforce 100% reliability of all
rules. Eight rules were obtained, rejecting 51 cases (7.3% of all
vectors). For malignant class these rules are

) ;
) ;
) ;
) .

For the benign cases initial rules are obtained by negation of
the above rules; after optimization the rule becomes:

, where

) ;
) ;
) ;
) .

300 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

TABLE XIII
RESULTS FROM THETEN-FOLD CROSSVALIDATION AND RECLASSIFICATION FOR

THE DIABETES DATASET, ACCURACY IN %

For the Wisconsin breast cancer data SSV generates a very
simple set of three rules for the second class, achieving 97.4%
of reclassification accuracy. In the 10-fold crossvalidation test
SSV rules give on average 96.3% (worst %, best %)
accuracy.

: ;
: ;
: .

The NEFCLASS neurofuzzy system has also been applied to
this data [70], removing 16 cases with missing values. The
system was initialized with fuzzy clustering method and used
three trapezoidal membership functions per input feature.
Reclassification error using three rules (eight conditions each,
since one feature has been deleted) gave 92.7% correct answers.
Using four rules and the “best per class” rule learning results
gave only 80.4% correct answers, showing the usefulness
of prior knowledge from initial clusterization. If only two
membership functions per feature are used better reclassifi-
cation accuracy of 96.5% is obtained using four fuzzy rules.
FSM generated 12 rules with Gaussian membership functions,

providing 97.8% on the training and 96.5% on the test part in
10-fold crossvalidation tests. Thus crisp rules seem to offer
simpler and more accurate description of this dataset.

H. Diabetes

The “Pima Indian diabetes” dataset is stored in the UCI repos-
itory [7] and is frequently used as benchmark data. All patients
were females at least 21 years old, of Pima Indian heritage. The
data contains two classes, eight attributes, 768 instances, 500
(65.1%) healthy and 268 (34.9%) diabetes cases. Our first at-
tempts at extracting rules for this dataset were not successful
because histograms do not provide a useful starting point here.
L-units and separability criterion provided good linguistic vari-
ables. This dataset was used in the Statlog project [8], with the
best 10-fold crossvalidation accuracy around 77.7% obtained by
logistic discriminant analysis. One simple rule for the healthy
cases achieving 75% accuracy is

(31)

where is the “plasma glucose concentration” andthe body
mass index [weight in kg/(height in m)]. The confusion ma-
trix (healthy, diabetes) is . FSM neurofuzzy system
with Gaussian functions generates 50 rules and achieves in the
ten-fold crossvalidation 85.3% accuracy on the training part and
only 73.8% on the test part. Since better results are achieved
using linear discrimination sharp and rotated decision borders
may be needed for optimal classification of this data. Table XIII
shows the results from the 10-fold crossvalidation and reclassi-
fication for this dataset.

I. Hepatobiliary Disorders

This data, used previously in [91], contains medical records
of 536 patients admitted to a university affiliated Tokyo-based
hospital, with four types of hepatobiliary disorders: alcoholic
liver damage, primary hepatoma, liver cirrhosis and cholelithi-
asis. The records included results of nine biochemical tests and
sex of the patient. The same 163 cases as in [91] were used as
the test data. In the previous work three fuzzy sets per each input
were assigned using recommendation of the medical experts. A
fuzzy neural network was constructed and trained until 100%
correct answers were obtained on the training set. The accuracy
on the test set varied from less than 60% to a peak of 75.5%. Al-
though we quote this result in the Table XIV below it seems im-
possible to find good criteria that will predict when the training
on the test set should be stopped. Fuzzy rules equivalent to the
fuzzy network were derived but their accuracy on the test set
was not given. This data has also been analyzed by Mitraet al.
[92] using a knowledge-based fuzzy MLP system with results
on the test set in the range from 33% to 66.3%, depending on
the actual fuzzy model used.

For this dataset crisp rules were not too successful. The initial
49 rules obtained by C-MLP2LN procedure gave 83.5% on the
training and 63.2% on the test set. Optimization did not improve
these results significantly. On the other hand fuzzy rules derived
using the FSM network, with Gaussian as well as with triangular
functions, gave similar accuracy of 75.6–75.8%. Fuzzy neural

DUCH et al.: NEW METHODOLOGY OF EXTRACTION, OPTIMIZATION, AND APPLICATION 301

TABLE XIV
RESULTS FOR THEHEPATOBILIARY DISORDERS. ACCURACY ON THETRAINING

AND TEST SETS, IN %, ALL CALCULATIONS ARE OURS

network used over 100 neurons to achieve 75.5% accuracy, in-
dicating that good decision borders in this case are quite com-
plex and many logical rules will be required. Various results for
this dataset are summarized in Table XIV.

FSM gives about 60 Gaussian or triangular membership func-
tions achieving accuracy of 75.5–75.8%. Rotation of these func-
tions (i.e., introducing linear combination of inputs to the rules)
does not improve this accuracy. We have also made 10-fold
crossvalidation tests on the mixed data (training plus test data),
achieving similar results. Many methods give rather poor results
on this dataset, including various variants of the instance-based
learning (IB2-IB4, except for the IB1c, which is specifically de-
signed to work with continuous input data), statistical methods
(Bayes, LDA) and pattern recognition methods (LVQ). The best
results were obtained with the method based on algorithmic
complexity optimization, giving 78.5% on the test set, andNN
with Manhattan distance function, with selection of fea-
tures, giving 80.4% accuracy (for details, see [6]).

J. The Hypothyroid Data

This is a somewhat larger dataset [7], with 3772 cases for
training, 3428 cases for testing, 22 attributes (15 binary, six con-
tinuous), and three classes: primary hypothyroid, compensated

TABLE XV
RESULTS FOR THEHYPOTHYROID DATASET

hypothyroid, and normal (no hypothyroid). The class distribu-
tion in the training set is 93, 191, 3488 vectors and in the test
set 73, 177, 3178. Initially four rules were found, with 99.68%
accuracy on the training set and 99.07% accuracy on the test set.
For the first class two rules are sufficient (all values of contin-
uous features are multiplied here by 1000)

: FTI TSH ;
: FTI TSH T3 .

For the second class one rule is created

: FTI TSH on thyroxine no
surgery no

and the third class is covered by the ELSE condition. With these
rules we get 99.68% accuracy on the training set and 99.07%
error on the test set. Optimization of these rules leads to slightly
more accurate set of rules

: TSH FTI ;
: TSH FTI T3 ;

: TSH FTI TT4
on thyroxine no surgery no .

The ELSE condition has 100% reliability on the training set.
These rules make only four errors on the training set (99.89%)
and 22 errors on the test set (99.36%). They are similar to
those found using heuristic version of PVM method by Weiss
and Kapouleas [80]. The differences among PVM, CART
and C-MLP2LN are for this dataset rather small (Table XV),
but other methods, such as well-optimized MLP (including
genetic optimization of network architecture [89]) or cascade
correlation classifiers, give results that are significantly worse.
Poor results of -NN are especially worth noting, showing
that in this case, despite large amount of reference vectors,
similarity-based methods are not competitive. Ten fuzzy rules
obtained using FSM with Gaussian membership functions are
also less accurate than the three crisp rules.

The C-MLP2LN solution seems to be close to optimal [77].
Similar rules were obtained from the SSV separability criterion:

: TSH FTI thyroid-surgery no;
: TSH FTI TT4 thyroid-

surgery no on-thyroxine no.

302 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

TABLE XVI
SUMMARY OF RESULTS FOR THENASA SHUTTLE DATASET

These rules match our best results and have been found with
fully automatic rule extraction approach. Results are summa-
rized in Table XV. It is worth noting that the error of the best
neural network classifiers is still twice as large (1.5%) as the
error made by these simple rules. Excellent results of rule-based
classifiers for this dataset show the need to provide sharp deci-
sion borders instead of soft borders provided by the fuzzy and
neural systems. This may be an artefact of providing sharp di-
vision into three output classes.

K. NASA Shuttle

The Shuttle dataset from NASA contains nine continuous
numerical attributes related to the positions of radiators in the
Space Shuttle. There are 43 500 training vectors and 14 500 test
vectors, divided into seven classes in a very uneven way: about
80% from class 1 and only six examples from class 6 in the
training set. This data has been used in the Stalog project [8],
therefore accuracy of our rules may be compared with many
other classification systems (Table XVI).

We have used the FSM network with rectangular membership
functions and SSV criterion here. Initialization of the network
gives seven nodes achieving already 88% accuracy. Increasing
accuracy (using constructive learning algorithm) on the training
set to 94%, 96%, and 98% leads to a total of 15, 18, and 25 nodes
and accuracies on the test set of 95.5%, 97.8%, and 98.5%.
Backpropagation network reached an accuracy of 95.5% on the
training set. -NN is very slow in this case, requiring all 43 500
training vectors as reference for computing distances, reaching
on the test set 99.56% but with feature selection improving to
99.95%. Optimization of the FSM rules generated 15 logical
rules. For example, for the third class rules are

The set of 17 rules makes only three errors on the training set
(99.99% accuracy), leaving eight vectors unclassified, and no er-
rorson the test set but leavingnine vectorsunclassified (99.94%).
After Gaussian fuzzification of inputs (very small, 0.05%) only
three errors and five unclassified vectors are obtained for the

training and three vectors are unclassified and one error is made
(with the probability of correct class for this case close to 50%)
for the test set. Rules from SSV gave even better results: 100%
correct on the training and only one error on the test set.

These results are much better than those obtained from the
MLP or RBF networks (as reported in the Stalog project [8])
and comparable with the results of the best decision trees which
work very well for this problem. It is interesting to note that
in the Stalog project the NewID tree (descendant of the ID3
tree), which gave the best results here, has not been among the
first 3 best methods for any other of the 22 datasets analyzed.
Results of the C4.5 decision tree are already significantly worse.
Our rule extraction approach has consistently been giving top
results. Logical rules provide highly accurate and quite simple
description of Shuttle dataset.

L. Psychometric Data

Our methodology of extraction and optimization of logical
rules has been used by us in several real-life projects. One of
these projects concerns the psychometric data collected in the
Academic Psychological Clinic of our University. Minnesota
Multiphasic Personality Inventory (MMPI) test was used, con-
sisting of 550 questions with three possible answers (yes, no,
don’t know) each. MMPI evaluates psychological characteris-
tics reflecting social and personal maladjustment, including psy-
chological dysfunction. Hundreds of books and papers were
written on the interpretation of this test (cf. review [93]). Many
computerized versions of the MMPI test exist to assist in infor-
mation acquisition, but evaluation of results is still done by an
experienced clinical psychologist. Our goal is to provide auto-
matic psychological diagnosis.

The raw MMPI data is used to compute 14 real-valued coef-
ficients (this corresponds to manual aggregation of input data),
called “psychometric scales.” These coefficients are often dis-
played as a histogram (called “a psychogram”) allowing skilled
psychologists to diagnose specific problems, such as neurosis,
drug addiction or criminal tendencies. First four coefficients
are just the control scales (measuring consistency of answers,
allowing to find malingerers, etc.), with the rest forming clinical
scales. These scales were developed to measure tendencies to-
wardhypochondria,depression,hysteria,psychopathy,paranoia,
schizophrenia, etc. A large number of simplification schemes
has been developed to make the interpretation of psychograms
easier. They may range from rule-based systems derived from
observations of characteristic shapes of psychograms, Fisher
discrimination functions, or systems using a small number of
coefficients, such as the three Goldberg coefficients. Unfortu-
nately there is no comparison of these different schemes and
their relative merits have not been tested statistically. Our goal
was to provide an automatic psychological diagnosis.

Rule based system is most desirable because a detailed inter-
pretation, including description of personality type, may be as-
signed to each diagnosis. We have worked with two datasets, one
for woman, with 1027 cases belonging to 27 classes (normal,
neurotic,drugaddicts,schizophrenic,psychopaths,organicprob-
lems, malingerers etc.) determined by expert psychologists, and
the second for man, with 1167 cases and 28 classes. Rules were
generatedusingC4.5classification tree [83]and theFSMsystem.

DUCH et al.: NEW METHODOLOGY OF EXTRACTION, OPTIMIZATION, AND APPLICATION 303

For the firstdatasetC4.5created55rules,achieving93.0%ofcor-
rect responses. Assuming about 1% inaccuracy of measurements
improves results to 93.7%. FSM (with rectangular membership
functions) generated 69 rules agreeing in 95.4% with diagnosis
byhumanexperts.Gaussian fuzzificationat the levelof1.1–1.5%
increases accuracy to 97.6%. For the second dataset C4.5 created
61rulesgiving92.5%accuracy (93.1%after fuzzification),while
FSM generated 98 rules giving 95.9% accuracy and after fuzzifi-
cation96.9%.Somerulescoveronly fewcases fromthedatabase,
therefore further pruning and re-optimization is desirable.

Rules involve from two to nine attributes. For most classes
there were only a few errors and it is quite probable that they are
due to the psychologists interpreting the psychogram data. Two
classes, organic problems and schizophrenia, are difficult since
their symptoms are easily confused with symptoms belonging
to other classes. Each rule has detailed interpretation associated
with it by psychologists. Fuzzification leads to additional adjec-
tives in verbal interpretation, like “strong tendencies,” or “typ-
ical.” An expert system using these rules should be evaluated
by clinical psychologist in the near future. A typical rule has
the form:

If

Then Paranoia

where is the hysteria scale, etc. An example of a psychogram
with rule conditions shown as vertical bars is shown in Fig. 10.
The rule has five conditions and the actual case is accepted by
that rule with 71.8% probability, calculated with assumption of
Gaussian uncertainties shown on the vertical bars for each con-
ditions. The rule condition for the Ps (psychostenia) scale fits
with only 72.2% to the measured value, which means that the
value is close to the interval boundary. An expert system based
on our logical rules is under evaluation by clinical psycholo-
gists.

XI. SUMMARY AND CONCLUSION

Methodology of extraction of crisp and fuzzy logical rules
from data and black box classifiers (such as neural networks)
has been described. This methodology includes:

1) determination and optimization of linguistic variables;
2) initial generation of rules of different complexity using

constrained MLP networks, search-based MLP’s, FSM
networks or separability criterion;

3) optimization of rules and exploration of the rejection/ac-
curacy tradeoff;

4) calculation of probabilities, enabling also estimation of
reliability of classification, gradient optimization of large
sets of rules, creating more robust logical rules and pro-
viding additional adaptive parameters.

Extraction of crisp logical rules is advantageous indepen-
dently of the final classifier used. First, in our tests logical rules
proved to be highly accurate; second, they are easily understand-
able by experts in a given domain; third, they may expose prob-
lems with the data itself. This became evident in the analysis of a
real-world medical datasets we were involved in. Some research
groups reported very good results using this data, but after ex-

Fig. 10. Psychogram with rule conditions and fuzzified input displayed.

traction of logical rules it became clear that missing features in
the data were replaced by their averages for a given class. Cross-
validation tests on such data are quite accurate but in a real ap-
plication averages for a given class can be added only after, not
before the diagnosis.

From geometrical point of view crisp logic rules correspond
to a division of the feature space with hyperplanes perpendic-
ular to the axes, into areas with symbolic names (corresponding
to class and rule numbers). If the classes in the input space
are correctly separated with such hyperplanes accurate logical
description of the data is possible and worthwhile. Otherwise
accuracy of logical description of the data may increase slowly
with the number of linguistic variables and generalization
ability of a rule-based system (measured by crossvalidation
tests) may even decrease. If the number of logical rules is
too high or the accuracy of classification is too low, other
classification methods should be attempted. Fuzzy logic may
offer better approximation with smaller number of rules,
including simple piecewise linear approximation rules and
more complex membership functions. However, fuzzy rules
based on triangular or Gaussian membership functions provide
oval decision borders that do not approximate correctly sharp
decision boundaries necessary for description of data with
inherent logical structure. Complex membership functions are
provided by neurofuzzy systems, such as the FSM network
[42]. As long as separable transfer functions are used network
nodes are equivalent to fuzzy rules. Although fuzzy rules are
symbolic their comprehensibility is lower than crisp rules.
Finding a global optimum of the error function for sophisticated
classification systems is usually more difficult than for sets of
crisp rules. Therefore a good strategy is to start with extraction
of crisp rules first and use fuzzy rules only if the results are not
satisfactory.

The problem of determination of linguistic variables is not
separable from the rule extraction itself. An iterative algorithm
has been proposed, improving in turns linguistic variables and
then rules based on these variables. We have stressed the im-
portance of context-dependent linguistic variables since an un-
warranted assumption that the whole range of attribute values
should be partitioned into intervals corresponding to linguistic
variables is frequently used. Histograms are helpful to deter-
mine initial linguistic variables only in simple cases. Good lin-
guistic variables are found using probability density networks,
special neural linguistic units, or separability criterion.

304 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

Four groups of methods for extraction of logical rules have
been introduced in this paper. MLP2LN method of converting
the MLP into a network performing logical operations has been
quite successful. The constructive C-MLP2LN version, with
L-R structure of the MLP network, composed of linguistic
units and rule units (with possible addition of aggregation
units) is quite fast. A search-based MLP algorithm as an
alternative to backpropagation training is particularly easy to
implement and analyze, giving a single logical rule per neuron.
MLP2LN methods in complex cases require an additional rule
extraction step, with search for combination of inputs that lead
to activations exceeding the thresholds. Feature space mapping
(FSM) probability density networks are used for fuzzy rule
extraction, creating also crisp rules if a transition to rectangular
membership function is made. SSV separability criterion com-
bined with the beam search techniques finds optimal separation
values for interacting features, creating decision trees that are
easily converted to sets of logical rules. The last two methods
allow to extract rules by inspection of network or tree nodes.

After extraction of rules modified predictive power cost func-
tion for additional optimization of linguistic variables is used,
creating hierarchical sets of logical rules with different relia-
bility-rejection rate. A great advantage of fuzzy logic is the soft
evaluation of probabilities of different classes, instead of bi-
nary yes or no crisp logic answers. Gaussian fuzzification of the
input values may give the same probabilities as the Monte Carlo
procedure performed for input vectors distributed around mea-
sured values. Thus simple interpretation of crisp logical rules
is preserved, accuracy is improved by using additional param-
eters for estimation of measurement uncertainties, and gradient
procedures instead of costly global minimization may be used.
Gaussian uncertainties are equivalent to “soft trapezoid” fuzzi-
fication of the rectangular crisp membership functions. Sets of
crisp logical rules may then be used to calculate probabilities.
Novel vectors that would either be rejected or assigned to the
default class are assigned to the most probable class. Applica-
tion to psychometric data analysis combines comprehensibility
of data description, allowing for verbal interpretation, with high
accuracy and soft probabilities of different diagnoses.

Using this methodology we have analyzed many medical and
technical datasets obtaining simple and accurate logical rules.
For several benchmark problems simplest logical description
known so far was obtained. For some problems, such as the hy-
pothyroid or NASA Shuttle, logical rules are more accurate than
any other classification method [6], including neural networks.
Possible explanations of this empirical observation are

1) the inability of soft transfer functions (sigmoidal or
Gaussian) to represent sharp, rectangular edges that may
be necessary to separate two classes defined by a crisp
logical rule;

2) the problem of finding globally optimal solution of the
nonlinear optimization problem for neural classifiers—in
some cases we have used a global optimization method
to improve our rules, in other optimization of linguistic
variables and optimization of rules has been separated,
leading to better solutions than gradient-based neural
classifiers were able to find;

3) the problem of finding an optimal balance between the
flexibility of adaptive models and the danger of over-
fitting the data. Bayesian regularization based on priors
leading to weight decay [58] helps in case of some neural
and statistical classification models, but it has an adverse
effect if sharp decision borders are needed. Sharp decision
borders require large weights and thresholds while regu-
larization terms decrease all weights. Logical rules give
much better control over the complexity of the data rep-
resentation and elimination of outliers—rules that cover
only a few new data vectors are easily identified and re-
moved;

4) for medical data labeling the cases “sick” or “healthy”
introduces implicitly crisp logical rules. Forced to make
yes–no diagnosis human experts may fit the results of
tests to specific intervals.

Although we are pleased with the results obtained so far
several challenges still remain: aggregation of large number of
input features (some data mining problems we work on have
more than 1000 features and less than 1000 cases), construction
of hierarchical systems when a large number of features contain
missing data, automatization of the whole process of logical
data description and creation of expert systems, going beyond
prepositional logic and simple linguistic variables. We are sure
that neural networks will play an important role in this field.

Please note that many papers of our group are available at
http://www.phys.uni.torun.pl/kmk/publications.html.

REFERENCES

[1] R. Andrews, J. Diederich, and A. B. Tickle, “A survey and critique of
techniques for extracting rules from trained artificial neural networks,”
Knowledge-Based Syst., vol. 8, pp. 373–389, 1995.

[2] R. Michalski, “A theory and methodology of inductive learning,”Arti-
ficial Intell., vol. 20, pp. 111–161, 1983.

[3] R. Schalkoff,Pattern Recognition. Statistical, Structural and Neural Ap-
proaches. New York: Wiley, 1992.

[4] T. Mitchell, Machine Learning. New York: McGraw Hill, 1997.
[5] W. Duch, R. Adamczak, K. Gra¸bczewski, and G.̇Zal, “Hybrid neural-

global minimization logical rule extraction method for medical diag-
nosis support,” inIntelligent Information Systems VII, Malbork, Poland,
1998, 15-19.06, pp. 85–94.

[6] W. Duch, R. Adamczak, K. Gra¸bczewski, G.Żal, and Y. Hayashi,
“Fuzzy and crisp logical rule extraction methods in application to med-
ical data,” in Computational Intelligence and Applications. Springer
Studies in Fuzziness and Soft Computing, P. S. Szczepaniak, Ed., 1999,
vol. 23.

[7] UCI repository of machine learning databases, C. J. Mertz and P.
M. Murphy. [Online]. Available: http://www.ics.uci.edu/pub/ma-
chine-learning-data-bases

[8] D. Michie, D. J. Spiegelhalter, and C. C. Taylor,Machine Learning,
Neural and Statistical Classification. London, U.K.: Ellis Horwood,
1994.

[9] B. Kosko,Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1992.

[10] N. Kasabov,Foundations of Neural Networks, Fuzzy Systems and
Knowledge Engineering. Cambridge, MA: MIT Press, 1996.

[11] Z. Pawlak, Rough Sets—Theoretical Aspects of Reasoning About
Data. Boston, MA: Kluwer, 1991.

[12] S. K. Pal and A. Skowron,Rough Fuzzy Hybridization A New Trend in
Decision-Making: Springer-Verlag, 1999.

[13] A. B. Tickle, R. Andrews, M. Golea, and J. Diederich, “The truth will
come to light: Directions and challenges in extracting the knowledge
embedded within trained artificial neural networks,”IEEE Trans. Neural
Networks, vol. 9, pp. 1057–1068, 1998.

[14] K. Saito and R. Nakano, “Medical diagnostic expert system based on
PDP model,” inProc. IEEE Int. Conf. Neural Networks, vol. 1, San
Diego, CA, 1988, pp. 255–262.

DUCH et al.: NEW METHODOLOGY OF EXTRACTION, OPTIMIZATION, AND APPLICATION 305

[15] S. Gallant,Neural Network Learning and Expert Systems. Cambridge,
MA: MIT Press, 1993.

[16] S. Thrun, “Extracting rules from artificial neural networks with dis-
tributed representations,” inAdvances in Neural Information Processing
Systems 7, G. Tesauro, D.S. Touretzky, and T. Leen, Eds. Cambridge,
MA: MIT Press, 1995.

[17] L. M. Fu, “Rule learning by searching on adapted nets,” inProc. 9th Nat.
Conf. Artificial Intell., Anaheim, CA, 1991, pp. 590–595.

[18] , “Knowledge-based connectionism for revising domain theories,”
IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 173–182, 1993.

[19] , Neural Networks in Computer Intelligence. New York: McGraw
Hill, 1994.

[20] , “Rule generation from neural networks,”IEEE Trans. Syst., Man,
Cybern., vol. 28, pp. 1114–1124, 1994.

[21] I. K. Sethi and J. H. Yoo, “Symbolic approximation of feedforward
neural networks,” inPattern Recognition in Practice, E. S. Gelsema and
L. N. Kanal, Eds. New York: North-Holland, 1994, vol. 4.

[22] G. Towel and J. Shavlik, “Extracting refined rules from knowledge-
based neural networks,”Machine Learning, vol. 13, pp. 71–101, 1993.

[23] Y. Hayashi, “A neural expert system with automated extraction of fuzzy
if-then rules,” inAdvances in Neural Information Processing Systems, R.
Lippmann, J. Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan
Kaufmann, 1991, vol. 3.

[24] G. Towell and J. Shavlik, “Knowledge-based artificial neural networks,”
Artificial Intell. , vol. 70, pp. 119–165, 1994.

[25] C. McMillan, M. C. Mozer, and P. Smolensky, “Rule induction through
integrated symbolic and subsymbolic processing,” inAdvances in
Neural Processing Systems, J. Moody, S. Hanson, and R. Lippmann,
Eds. San Mateo, CA: Morgan Kaufmann, 1992, vol. 4.

[26] J. A. Alexander and M. C. Mozer, “Template-based algorithms
for connectionist rule extraction,” inAdvances in Neural Informa-
tion Processing Systems, G. Tesauro, D. Touretzky, and T. Leen,
Eds. Cambridge, MA: MIT Press, 1995, vol. 7.

[27] R. Setiono and H. Liu, “Understanding neural networks via rule extrac-
tion,” in Proc. 14th Int. Joint Conf. Artificial Intell. San Mateo, CA:
Morgan Kaufmann, 1995, pp. 480–485.

[28] M. Ishikawa, “Rule extraction by successive regularization,” inProc.
1996 IEEE Int. Conf. Neural Networks, Washington, DC, 1996, pp.
1139–1143.

[29] P. Geczy and S. Usui, “Rule extraction from trained neural networks,” in
Int. Conf. Neural Inform. Processing, vol. 2, New Zealand, Nov. 1997,
pp. 835–838.

[30] W. Duch, R. Adamczak, and K. Gra¸bczewski, “Extraction of log-
ical rules from training data using backpropagation networks,”
in Proc. 1st Online Workshop Soft Comput., Aug. 19–30, 1996,
http://www.bioele.nuee.nagoya-u.ac.jp/wsc1/, pp. 25–30.

[31] M. W. Craven and J. W. Shavlik, “Using sampling and queries to extract
rules from trained neural networks,” inProc. 11th Int. Conf. Machine
Learning. New Brunswick, NJ: Morgan Kaufmann, 1994, pp. 37–45.

[32] E. Pop, R. Hayward, and J. Diederich, “RULENEG: Extracting rules
from a trained ANN by stepwise negation,”, QUT NRC technical report,
December 1994.

[33] S. Sestito and T. Dillon,Automated Knowledge Acquisition, Australia:
Prentice Hall, 1994.

[34] M. J. Healy and T. P. Caudell, “Acquiring rule sets as a product of
learning in a logical neural architecture,”IEEE Trans. Neural Networks,
vol. 8, pp. 461–474, 1997.

[35] A.-H. Tan, “Rule learning and extraction with self-organizing
neural networks,” in Proc. 1993 Connectionist Models Summer
School. Hillsdale, NJ: Lawrence Erlbaum, 1994, pp. 192–199.

[36] A. Ultsch, “Knowledge extraction from self-organizing neural net-
works,” in Information and Classification, O. Opitz, B. Lausen, and R.
Klar, Eds. Berlin: Springer, 1993, pp. 301–306.

[37] A. B. Tickle, M. Orlowski, and J. Diederich, “DEDEC: Decision detec-
tion by rule extraction from neural networks,”, QUT NRC Tech. Rep.,
Sept. 1994.

[38] M. W. Craven and J. W. Shavlik, “Extracting tree-structured repre-
sentations of trained networks,” inAdvances in Neural Information
Processing Systems, D. Touretzky, M. Mozer, and M. Hasselmo,
Eds. Cambridge, MA: MIT Press, 1996, vol. 8.

[39] J.-S. R. Jang and C. T. Sun, “Functional equivalence between radial basis
function neural networks and fuzzy inference systems,”IEEE Trans.
Neural Networks, vol. 4, no. 1, pp. 156–158, 1993.

[40] V. Tresp, J. Hollatz, and S. Ahmad, “Network structuring and training
using rule-based knowledge,” inAdvances in Neural Information Pro-
cessing Systems, J. Moody, S. Hanson, and R. Lippmann, Eds. San
Mateo, CA: Morgan Kaufmann, 1992, vol. 4.

[41] W. Duch, “Floating Gaussian mapping: A new model of adaptive sys-
tems,”Neural Network World, vol. 4, pp. 645–654, 1994.

[42] W. Duch and G. H. F. Diercksen, “Feature space mapping as a uni-
versal adaptive system,”Computer Physics Communication, vol. 87, pp.
341–371, 1995.

[43] R. Andrews and S. Geva, “Rules and local function networks,” in
Rules and Networks, Proc. Rule Extraction From Trained Artificial
Neural Networks Workshop—AISB96, R. Andrews and J. Diederich,
Eds. Brighton, U.K., April 1996.

[44] , “Rule extraction from a constrained error backpropagation MLP,”
in Proc. 5th Australian Conference on Neural Networks, Brisbane, Aus-
tralia, 1994, pp. 9–12.

[45] J. J. Mahoney and R. J. Mooney, “Combining neural and symbolic
learning to revise probabilistic rule bases,” inAdvances in Neural
Inform. Processing Syst., S. J. Hanson, J. D. Cowan, and C. L. Giles,
Eds. San Mateo, CA: Morgan Kaufmann, 1993, vol. 5, pp. 107–114.

[46] D. Nauck, F. Klawonn, and R. Kruse,Foundations Neuro-Fuzzy
Syst.. New York: Wiley, 1997.

[47] D. Nauck, U. Nauck, and R. Kruse, “Generating classification rules with
the neuro-fuzzy system NEFCLASS,” inProc. Biennial Conf. North
Amer. Fuzzy Inform. Processing Soc. (NAFIPS’96), Berkeley, CA, 1996.

[48] S. K. Halgamuge and M. Glesner, “Neural networks in designing fuzzy
systems for real-world applications,”Fuzzy Sets Syst., vol. 65, pp. 1–12,
1994.

[49] J. M. Żurada and A. Łozowski, “Generating linguistic rules from data
using neuro-fuzzy framework,” inProc. 4th Int. Conf. Soft Comput.,
IIZUKA’96, vol. 2, Iizuka, Japan, 1996, pp. 618–621.

[50] N. Kasabov, R. Kozma, and W. Duch, “Rule extraction from linguistic
rule networks and from fuzzy neural networks: Prepositional versus
fuzzy rules,” inProf. 4th Int. Conf. Neural Networks Applicat., Mar-
seille, France, March 11–13, 1998, pp. 403–406.

[51] W. Duch, R. Adamczak, and K. Gra¸bczewski, “Neural optimization of
linguistic variables and membership functions,” inInt. Conf. Neural In-
form. Processing, vol. 2, Perth, Australia, Nov. 1999, pp. 616–621.

[52] K. Gra̧bczewski and W. Duch, “A general purpose separability crite-
rion for classification systems,” inProc. 4th Conf. Neural Networks Ap-
plicat., Zakopane, May 1999, pp. 203–208.

[53] W. Duch, R. Adamczak, and N. Jankowski, “Initialization of adaptive
parameters in density networks,” inProc. 3rd Conf. Neural Networks,
Kule, Oct. 1997, pp. 99–104.

[54] , “New developments in the feature space mapping model,” in3rd
Conf. Neural Networks, Kule, Poland, Oct. 1997, pp. 65–70.

[55] W. Duch and N. Jankowski, “Bi-radial transfer functions,” inProc. 2nd
Conf. Neural Networks Applicat., vol. I, Orle Gniazdo, Poland, 1996,
pp. 131–137.

[56] W. Duch, R. Adamczak, and K. Gra¸bczewski, “Extraction of logical
rules from backpropagation networks,”Neural Processing Lett., vol. 7,
pp. 1–9, 1998.

[57] J. M. Żurada,Introduction to Artificial Neural Systems. St Paul, MN:
West, 1992.

[58] D. J. MacKay, “A practical Bayesian framework for backpropagation
networks,”Neural Comput., vol. 4, pp. 448–472, 1992.

[59] C. Bishop,Neural Networks for Pattern Recognition. Oxford, U.K.:
Clarendon, 1995.

[60] L. Kanal and V. Kumar, Eds.,Search in Artificial Intelligence: Springer-
Verlag, 1988.

[61] W. Duch and K. Gra¸bczewski, “Searching for optimal MLP,” inProc.
4th Conf. Neural Networks Applicat., Zakopane, May 1999, pp. 65–70.

[62] L. Breiman, “Bias-Variance, regularization, instability and stabiliza-
tion,” in Neural Networks and Machine Learning, C. Bishop, Ed. New
York: Springer-Verlag, 1998.

[63] W. Duch, R. Adamczak, and K. Gra¸bczewski, “Optimization of logical
rules derived by neural procedures” (in Paper 741), in Proc. Int. Joint
Conf. Neural Networks, Washington, DC, June 10–16, 1999, to be pub-
lished.

[64] A. Łozowski, T. J. Cholewo, and J. M.̇Zurada, “Crisp rule extraction
from perceptron network classifiers,” inProc. IEEE Int. Conf. Neural
Networks, Washington, DC, 1996, pp. 94–99.

[65] I. Jagielska, C. Matthews, and T. Whitfort, “The application of neural
networks, fuzzy logic, genetic algorithms and rough sets to automated
knowledge acquisition,” inProc. 4th Int. Conf. Soft Computing,
IIZUKA’96, vol. 2, Iizuka, Japan, 1996, pp. 565–569.

[66] H. Ishibuchi, T. Morisawa, and T. Nakashima, “Combining multiple
fuzzy-rule-based classification systems,” inProc. 4th Int. Conf. Soft
Comput., IIZUKA’96, vol. 2, Iizuka, Japan, 1996, pp. 822–825.

306 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

[67] S. B. Thrunet al., “The MONK’s problems: A performance comparison
of different learning algorithms,” Carnegie Mellon Univ., Pittsburgh, PA,
CMU-CS-91-197, Dec. 1991.

[68] K. P. Bennett and O. L. Mangasarian, “Robust linear programming dis-
crimination of two linearly inseparable sets,”Optimization Methods and
Software, vol. 1, pp. 23–34, 1992.

[69] N. Jankowski and V. Kadirkamanathan, “Statistical control of RBF-like
networks for classification,” inProc. 7th Int. Conf. Artificial Neural Net-
works, Lausanne, Switzerland, 1997, pp. 385–390.

[70] D. Nauck, U. Nauck, and R. Kruse, “Generating classification rules with
the neuro-fuzzy system NEFCLASS,” inProc. Biennial Conf. North
Amer. Fuzzy Inform. Processing Soc. (NAFIPS’96), Berkeley, CA, 1996.

[71] N. Kasabov, “Connectionist methods for fuzzy rules extraction,
reasoning and adaptation,” inProc. Int. Conf. Fuzzy Syst., Neural
Networks, and Soft Comput.. Iizuka, Japan: World Scientific, 1996,
pp. 74–77.

[72] C. Browne, I. Düntsch, and G. Gediga, “IRIS revisited: A com-
parison of discriminant and enhanced rough set data analysis,” in
Rough Sets in Knowledge Discovery, L. Polkowski and A. Skowron,
Eds. Heidelberg, Germany: Physica Verlag, 1998, vol. 2, pp. 345–368.

[73] J. Teghem and M. Benjelloun, “Some experiments to compare rough
sets theory and ordinal statistical methods,” inIntelligent Decision
Support: Handbook of Applications and Advances of Rough Set Theory,
R. Slowinski, Ed. Dordrecht, The Netherlands: Kluwer, 1992, vol.
11, System Theory, Knowledge Engineering and Problem Solving, pp.
267–284.

[74] S. K. Halgamuge and M. Glesner, “Neural networks in designing fuzzy
systems for real world applications,”Fuzzy Sets Syst., vol. 65, pp. 1–12,
1994.

[75] S. M. Weiss and C. A. Kulikowski,Computer Systems That Learn. San
Mateo, CA: Morgan Kauffman, 1990.

[76] W. Duch, R. Adamczak, and K. Gra¸bczewski, “Extraction of crisp
logical rules using constrained backpropagation networks,” inInt.
Conf. Artificial Neural Networks (ICNN’97), Houston, 1997, 9-12.6,
pp. 2384–2389.

[77] W. Duch, R. Adamczak, K. Gra¸bczewski, and G.̇Zal, “Hybrid neural-
global minimization method of logical rule extraction,” Int. J. Advanced
Comput. Intell., to be published.

[78] J. W. Grzymała-Busse and T. Soe, “Inducing simpler rules from reduced
data,” inIntell. Inform. Syst. VII, Malbork, Poland, 1998, 15-19.06, pp.
371–378.

[79] N. Shang and L. Breiman, “Distribution based trees are more accurate,”
in Int. Conf. Neural Inform. Processing, vol. 1, Hong Kong, 1996, pp.
133–138.

[80] S. M. Weiss and I. Kapouleas, “An empirical comparison of pattern
recognition, neural nets and machine learning classification methods,”
in Readings in Machine Learning, J. W. Shavlik and T. G. Dietterich,
Eds, CA: Morgan Kaufmann, 1990.

[81] W. Duch, R. Adamczak, and K. Gra¸bczewski, “Constraint MLP and den-
sity estimation for extraction of crisp logical rules from data,” inInt.
Conf. Neural Inform. Processing, vol. 2, New Zealand, Nov. 1997, pp.
831–834.

[82] , “Constrained backpropagation for feature selection and extraction
of logical rules,” inProc. ‘Colloquia in AI’, Łódź, Poland, 1996, pp.
163–170.

[83] J. R. Quinlan,C4.5: Programs for Machine Learning. San Mateo:
Morgan Kaufman, 1993.

[84] W. Duch and N. Jankowski, “New neural transfer functions,”Appl.
Math. Comp. Sci., vol. 7, pp. 639–658, 1997.

[85] G. Cestnik, I. Konenenko, and I. Bratko, “Assistant-86: A knowl-
edge-elicitation tool for sophisticated users,” inProgress in Machine
Learning, I. Bratko and N. Lavrac, Eds. Wilmslow, U.K.: Sigma,
1987, pp. 31–45.

[86] R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac, “The multipurpose
incremental learning system AQ15 and its testing application to three
medical domains,” inProc. 5th Nat. Conf. AI. San Mateo, CA: Morgan
Kaufmann, 1986, pp. 1041–1045.

[87] M. Tan and L. Eshelman, “Using weighted networks to represent classi-
fication knowledge in noisy domains,” inProc. 5th Int. Conf. Machine
Learning, Ann Arbor, MI, 1988, pp. 121–134.

[88] B. Ster and A. Dobnikar, “Neural networks in medical diagnosis: Com-
parison with other methods,” inProc. Int. Conf. EANN’96, A. Bulsari,
Ed., 1996, pp. 427–430.

[89] W. Schiffman, M. Joost, and R. Werner, “Comparison of optimized back-
propagation algorithms,” inProc. Europ. Symp. Artificial Neural Net-
works. Brussels, Belgium: De facto, 1993, pp. 97–104.

[90] W. Duch, R. Adamczak, K. Gra¸bczewski, M. Ishikawa, and H. Ueda,
“Extraction of crisp logical rules using constrained backpropagation net-
works—Comparison of two new approaches,” inProc. Europ. Symp. Ar-
tificial Neural Networks (ESANN’97), Bruge, Belgium, 1997, 16-18.4.,
pp. 109–114.

[91] Y. Hayashi, A. Imura, and K. Yoshida, “Fuzzy neural expert system and
its application to medical diagnosis,” inProc. 8th Int. Congr. Cybern.
Syst., New York, 1990, pp. 54–61.

[92] S. Mitra, R. De, and S. Pal, “Knowledge based fuzzy MLP for classifi-
cation and rule generation,”IEEE Trans. Neural Networks, vol. 8, pp.
1338–1350, 1997.

[93] J. N. Butcher and S. V. Rouse, “Personality: Individual differences and
clinical assessment,”Annu. Rev. Psychol., vol. 47, p. 87, 1996.

[94] R. Hayward, C. Ho-Stuart, J. Diederich, and E. Pop, “RULENEG: Ex-
tracting rules from a trained ANN by stepwise negation,”, QUT NRC
Tech. Rep., Jan. 1996.

[95] R. Andrews and S. Geva, “Refining expert knowledge with an artificial
neural network,” inInt. Conf. Neural Inform. Processing, vol. 2, New
Zealand, Nov. 1997, pp. 847–850.

[96] D. Nauck and R. Kruse, “Designing neuro-fuzzy systems through back-
propagation,” inFuzzy Modeling: Paradigms and Practice, W. Pedrycz,
Ed. Boston, MA: Kluwer, 1996, pp. 203–228.

Włodzisław Duch (M’96) received the M.Sc. degree
in physics in 1977 and the Ph.D. degree in quantum
chemistry in 1980 from Nicholas Copernicus Univer-
sity, Toruń, Poland.

He worked as a Postdoctoral Fellow at the Uni-
versity of Southern California (USC), Los Angeles,
from 1980 to 1982. From 1985 to 1987, he was an
Alexander von Humboldt Fellow in the Max Planck
Institute of Astrophysics, Munich, Germany, an in-
stitute which he visits every year for a few months.
He wrote a monographGraphical Representation of

Model Spaces(New York: Springer-Verlag, 1986) that was the basis of his ha-
bilitation thesis (D.Sc.). He was an Associate Professor at the Nicholas Coper-
nicus University, Torun´, Poland, and in 1997 he was granted the title of a Full
Professor. He was a “Visiting Professor” in Japan, Canada, Germany, France,
and the United States. He is currently the Head of the Department of Computer
Methods, an independent, interdisciplinary unit within the Faculty of Physics
and Astronomy of Nicholas Copernicus University. His scientific interest moved
from computational methods of physics and chemistry (he is still on the Editor’s
board ofComputer Physics Communicationjournal), through foundations of
physics, to artificial intelligence, neural networks and cognitive science (he has
co-founded and is the Head Scientific Editor of the PolishCognitive Science
journal). He has written three books, coauthored and edited four books, and
written about 200 scientific papers.

Rafał Adamczak received the M.Sc. degree in
physics from Nicholas Copernicus University,
Toruń, Poland, in 1995 and is currently pursuing
the Ph.D. degree in the Department of Computer
Methods at the same university.

His main interests include artificial intelligence,
neural networks, machine learning, and applications
of computational intelligence methods to various
problems.

Krzysztof Gra̧bczewski received the M.Sc. degree
in mathematics from Nicholas Copernicus Univer-
sity, Toruń, Poland, in 1994.

He spent ten months in 1994 to 1995 at the Uni-
versity of Cambridge, U.K., working on automated
theorem proving. Since 1995 he is a Research and
Teaching Assistant in the Department of Computer
Methods, Nicholas Copernicus University. His main
interests include artificial intelligence, data mining,
machine learning, and understanding data through
logical, rule-based description.

