
Problems and Solutions of Visualizing and Analysing

Multidimensional Output from MLP Networks - Barycentric

Projections.

Filip Piekniewski & Leszek Rybicki

20 November 2003

Abstract

Understanding the process of neural network learn-
ing is an important issue in todays cognitive science.
The main problem in this field is that the networks’
input and output are usually multidimensional. Be-
cause of our natural limitation to see (and think) in
three-dimensions at most, the analysis of a learning
process with a 4-, 10- or 28-dimensional output is dif-
ficult, as we can only see sequences of numbers and we
don’t really know what is happening. That is where
visualisation may be of use.

The aim of this paper is to present a very simple
idea of visualizing the learning process of a MLP net-
work using projections into a polygon. We will also
try to establish differences between several variants of
barycentric visualization and between networks based
on different activation functions, with different learn-
ing algorithms.

1 Introduction

Artificial Neural Networks have become very popu-
lar in a wide range of applications including scientific
research, military equiptment, household appliances
and many other fields that require pattern recog-
nition, data classification and separation. Altough
many learning algorithms have been implemented,
and the whole theory of neural networks seems to
be quite developed, unsolved problems and questions
still exist.

One of those problems is to find a good measure,
or a method of determining if the network is well
trained and ready to solve ”real life” problems, or if
there are singularities that could render the network
useless. The backprop algorithm (and other learning
algorithms) minimises a well defined error function
(usually MSE1). One might ask, since we know the
value of the error function, what else do we need?

In fact, mean square error (and other error func-
tions) provides just a piece of statistical information
about the learning process, while most important is-
sues are lost. Two different neural networks can have
the same MSE value for the same data sets, but have
different generalisation abbilities or specialise in dif-
ferent cathegories of data. One of them could have
a glitch causing less typical patterns to be classified
badly, while perfectly classifying other patterns of the
same cathegory. Neither the MSE is nor any other
single dimensional real number measure is sufficient
to investigate such issues.

To get more information about the learning pro-
cess, it would be necessary to analyze the whole out-
put data, find out which vectors are problematic,
which of them separate well and which don’t. Obvi-
ously, analyzing thousands of numbers is not a good
idea. Economy, biology and physics has a common
solution to that - plotting.

1Mean Square Error

1



2 VISUALIZATION 2

2 Visualization

From now on, we will focus on MLP networks, used
for classification. The problem can be defined as fol-
lows:

• Input consists of n vectors E(i) ∈ Rs, each of
them is assigned to one of k cathegories. Vector
E(i) is assigned to cathegory Cat(i)

• Network consists of two layers. There are s in-
puts, some number h of hidden neurons, and k
output neurons.

• If the input vector E(i) is assigned to cathegory
t, then we train the nework to activate the t− th
output neuron, while others should not be acti-
vated. The desired output vector corresponding
to the i-th cathegory will be denoted by

−−−−→
Cat(i)

as opposed to the actual network output O(i).

That way, each cathegory is mapped to a nonzero
vertex of a k-dimensional simplex (simplest polyhe-
dron in k-dimensional space). For example, if there
are two cathegories, then output is two dimensional,
and cathegories are mapped on to vertices (1, 0) and
(0, 1) of a triangle that contains also point (0, 0).
The whole space of possible activations is then a k-
dimensional cube, where the (0, ..., 0) vertex stands
for no activation, and the (1, ..., 1) vertex stands for
full activation. For cathegorisation, we expect the
data patterns to cluster around vertices that belong
to a diagonal hyperplane ((0, ..., 1, ..0), etc.).

Obviously, if there are two or three cathegories, vi-
sualization is not a big problem. The real problem
occurs when there are more than four cathegories. In
such (common) situations ”1 to 1” plots are impos-
sible to create. There are, however, many ways of
projecting information into less dimensional space,
some of them we will use.

First of all, let’s review the problem, pointing out
important issues:

• We have n vectors (outputs of a neural net)
which lay inside a k-dimensional cube.

• We map the cathegories into diagonal vertices.

• The learning process will cause most of the data
to gather around these vertices.

• The vertices are in a k-dimensional hyperspace
(k ≥ 4), but they all belong to a diagonal hyper-
plane

This way, the most effective method of visualization
seems to be some kind of a projection.

Now, what interest us most about each vector O(i)

is:

• Is it well classified (in other words, if the distance
between O(i) and

−−−−→
Cat(i) is the smallest among

the cathegories)?

• Is it far or near of its assigned cathegory, or does
it tend to move towards another cathegory?

• Is it alone or are there any other vactors in its
vicinity?

Let’s consider a mapping system, as follows. Each
of the cathegories is a centre of a Gaussian radial
function

G(a, σ)(x) = e
(x−a)
2σ2

which will be used for scaling. Categories will be
mapped into the corners of a polygon, one to each.
Let’s say we have k cathegories. Inside a k-gon, we
will project each output vector O(i) as:

O(i)
x =

1
δ

k∑
l=1

G(0, σ)(
∥∥∥O(i) −

−−−−→
Cat(l)

∥∥∥) ·
−−−−→
Cat(l)x

O(i)
y =

1
δ

k∑
l=1

G(0, σ)(
∥∥∥O(i) −

−−−−→
Cat(l)

∥∥∥) ·
−−−−→
Cat(l)y

(1)

Where δ =
∑k

l=1 G(0, σ)(
∥∥∥O(i) −

−−−−→
Cat(l)

∥∥∥) is a nor-

malization factor, (O(i)
x , O

(i)
y ) is a coordinate of i− th

output’s projection, (
−−−−→
Cat(l)x,

−−−−→
Cat(l)y) is a coordi-

nate of l − th cathegory projection (l − th vertex of
k-gon), ‖‖ is an euclidian norm i k-dimensional space.

A sample plot can be seen in 1. To make the plot
more useful, we add some extra information coded as
color, like where the sample belongs, and how was



2 VISUALIZATION 3

Figure 1: A sample plot, with six cathegories and some data.
It visualizes the output of a sigmoidal MLP network with a
MSE of 0.214. The plot was scaled by σ = 0.35. Each dot
represents one output vector. The color of the dot represents
the class to which it belongs. If a dot is marked with an X, the
color of the mark is the cathegory, to which the sample was
mistakenly assigned by the network. One glimpse on this plot
gives information that cathegories violet, cyan and blue are
quite well separeted, while cathegories yellow, red and green
mix.

it classified. Further in the paper we will see some
other add-ons like network dynamics, and convex hull
around each data cluster.

Since the plot mechanism described above is just
a projection, some information is lost. Two dots dis-
played as close to each other can be quite distant
in the activation space. If we see dots from different
cathegories mix up in the plot, it doesn’t always mean
they mix in the activation space. These are obvious
faults of plotting multidimensional data onto two di-
mensions. One way to compensate for these faults is
to see different plots, and choose the one that gives
the best view. This can be done by permuting the
vertices of the polygon (which corespond to cathe-
gory centers). Unfortunately it’s rather difficult to
numerically choose an optimal (most suitable for a
human) permutation, so the problem of choosing the
best permutation is left to the plot reviewer (user).
Permuting cathegories is just one of many methods

to make such plots more useful. We introduced some
other self-adapting optimizations, that might make

Figure 2: Two plots, showing exactly the same data (sigmoidal
MPL output, MSE 0.1, scaled by a factor σ = 0.7), but with
different permutations of cathegory vertices. By looking only
at the left picture one might think that violet and cyan vectors
mix up. This is not true though, as we can see on the second
picture (to the right) where these vectors are well separated.

the plot just a bit better. As we have seen in for-
mula (1), each vector is scaled by a Gaussian func-
tion localized in the centre of its cathegory. The σ
parameter, responsible for dispersion, if constant for
all cathegories and data samples. What if we make σ
dependent upon some parameters unique for a cathe-
gory? Lets assume that

σ(l) = σ0 max
i∈N,Cat(i)=l

∥∥∥O(i) −
−−−−→
Cat(l)

∥∥∥ (2)

In this case, the Gaussian dispersion depends on the
maximal distance between the centre of cathegory
l, and any vector assigned to the cathegory. If the
vectors of cathegory l are spread widely all over ac-
tivation space, the coresponding Gaussian function
will have a big dispersion. A big dispersion means
that the cathegory will attract other vectors stronger.
What consequences does it have for our plot? Since
a ”wide” cathegory is a stronger attractor, this scal-
ing will reveal the border regions in activation space,
while most vectors from the l − th cathegory will be
projected close to the polygon corners. This kind of
projection is good for analyzing border regions of net-
works that are already trained, and is rather useles
for fresh networks.

Another variant of adaptive, cathegory dependent
scaling is done by making σ depend on the avarage
distance of a vector from its assigned cathegory. This



3 ADDITIONAL VISUAL GUIDES 4

Figure 3: An example of three plots created using the same
data (iris data parsed by a MLP network, MSE=0.086) but
with different scaling options. The one on the left is scaled
with σ = 2.0, constant for all cathegories (1), the one in the
middle is scaled using the maximum formula (2) with σ0 set
to 2.0 , third one was scaled using average formula (3) again
with σ0 = 2.0.

can be done as follows:

σ(l) = σ0

 1
M

∑
Cat(i)=l

∥∥∥O(i) −
−−−−→
Cat(l)

∥∥∥
 (3)

As opposed to the previous method, let’s suppose,
that most vectors are properly classified around their
common cathegory, and a few are not. The average
distance between a sample and the cathegory cen-
tre is small, and so the σ parameter is small. It’s
as if we treated those wrongly classified vectors as
data errors, rather than network errors. This gives a
slightly different projection, that displays badly clas-
sified samples.

3 Additional visual guides

Adaptive scaling methods and vertex permutations
are helpful when it comes to enhancing the informa-
tional value of the plot. We suggest a couple more
enhancements.

It’s not uncommon for a single data sample to float
away from its cathegory. The network would keep the
MSE low by keeping the rest of the samples close to
their proper cathegories. While this might be sat-
isfactory from a statistical point of view, the conse-
quences might be catastrophical in real life applica-
tions. Imagine a patient with very uncommon symp-
toms (for genetic reasons for example) being cathe-
gorised to (and treated for) a different disease.

Figure 4: The dynamics of a network’s output in early stages
of the learning process (backprop algorithm with momentum),
Hayashi data set, MSE=0.3, scaled adaptively (avarage) σ0 =
0.5.

A renegade sample could not be noticed as its cor-
responding dot could be covered by other dots on the
plot. To resolve this, as well as provide a certain
per-cathegory measure of data similarity, we suggest
completing the plot with convex hulls marking the
borders of each cathegory. If a data sample happens
to stand out, the hull will expand to contain it, mak-
ing it clear that the cathegory does mix with another
one.

Figure 5: The green cathegory is well separated... or is it?

From a not-overtrained, well-generalizing neural
net, we expect the convex hull of a given cathegory to
remain within a vicinity of the cathegory’s vertex. If



4 IMPLEMENTATION AND RESULTS 5

two convex hulls overlap, it suggests that their cathe-
gories might be confused by the network (but not
certainly). If the convex hull is stretched away from
the cathegory vertex, but the samples remain tucked
tight, it means that the net has trouble separating
the cathegory and its architecture and/or teaching
process has to be reviewed.

To provide extra information about the overlap-
ping of cathegories, we have added simple voronoi
border capability to the plot. The borders separate
only the cathegory centers, but give a good view of
relations between cathegories. One thing has to be
set straight though. The fact that a sample is not in
its assigned voronoi segment, doesn’t mean it’s not
classified properly. The position of a sample in the
plot depends on multiple factors, including relative
weights of the output synapse, adaptive scaling (σ
parameters),

Therefore we decided to mark the badly classified
samples with an X. The color of the X represents
the color of the cathegory it was (mis)assigned to.
Within the plotting program, the user can hover the
mouse over any dot to chceck it’s input values and
sequence number in the input data source. This gives
extra information about misleading data or patterns
misassigned in the process of data preparation. The
X mark is independent of scaling, because its color
is the color of the vertex the dot approaches when σ
approaches one.

All enhancements and visual guides described so
far are meant to emphasize certain qualities of
trained networks or compensate for the limitations of
dimension-reducing projection. To research the dy-
namic aspects of the teaching process, the reviewer
has to either watch the changing plot during train-
ing, or look at multiple plots representing the states
of the network in subsequent stages of the process.
Since training a big network with a large portion of
data can be a process of slow changes over a long
time, watching the dots move can be boring, tire-
some or even (you can trust us on that) put you to
sleep. Displaying multiple plots requires additional
space and doesn’t provide any visual clue on how far
a given dot has moved (or if it has moved at all).

It’s not a very good idea to print a sequence of plots
either.

Our solution to that is rather simple. We mark the
movement of a dot between a cetrain (user-defined)
number of training epochs as a line ending with the
dot. This might not say much about an individual
dot, but the whole plot seems to be enriched by an-
other dimension: time. Extra information given by
such a plot is of multiple sort. We know that the
teaching process is going well if the dots are moving
towards their assigned cathegories, but that would
be a pretty optymistic situation and doesn’t really
happen throughout most of the process.

The network is separating well if a group of dots
belonging to the same cathegory is moving simultan-
iously. Any dot described as a ”renegade” before,
or a dot that is to become a ”renegade” would most
certainly move in a different direction. In some situ-
ations you see that all cathegories seem to be moving
towards one that DOesn’t move much. That means
that the network has trouble separating that cathe-
gory and tends to erradicate the mSE by warping
the whole output in that direction. A situation like
that suggests that maybe crossvalidation or data pre-
separation might be required. The network might be
too small or a comitee of networks would solve the
problem.

4 Implementation and Results

The basic idea of visualisation doesn’t depend on
any specific network architecture. To the visualiser,
the neural network is the proverbial black box, from
which it expects as much and as little as to have an
output of a certain dimension and to learn in epochs.
In our case the neural network can even run on a
remote server.

Our implementation consists of the visualiser mod-
ule (of course) and an example of a black-box neural
network teaching module based on JOONE2 imple-
mented in Java, for portability reasons. The choice
of JOONE as the back-end was also dictated by an

2Java Object Oriented Neural Engine



4 IMPLEMENTATION AND RESULTS 6

extensive choice of varoius transfer functions imple-
mented and the ease of implementing new ones. This
way a network can have an arbitrary number of lay-
ers of different sizes with di erent transfer functions,
all controlled by a single backprop algorithm.

A layer is a set of neurons implementing a common
transfer function. The following example focuses on
three transfer functions - linear, sigmoid and semi-
quadratic. A linear neuron s output is the sum of
its inputs. A multilayer network based solely on lin-
ear neurons is obsolete, as it could be replaced by a
single layer. Another limitation of the linear transfer
function is the infamous linear separability problem
that slowed down research for some time.

The sigmoid function is defined as

f(x) =
1

1 + egx

where g ∈ R is a parameter responsible for the in-
clination of the function’s plot in the vicinity of 0.
Sigmoid functions are not linear (thus solving the
separability problem) and have other great proper-
ties, such as an easy to implement rep- resentation of
differential.

The semi-quadratic function is designed to have
certain desired properties of the sigmoid function plus
an even easier implementation of its differential. A
simple example of such a function (one implemented
in out back-end network runner) is defined as:

f(x) =


0 ; x ≤ −1
1+x(x+2)

2 ;−1 ≤ x ≤ 0
1−x(x−2)

2 ; 0 ≤ x ≤ 1
1 ; 1 ≤ x

The differential function of a semi-quadratic function
is partialy linear, wich should improve training speed.

It has to be mentioned that there are two equipon-
derant ways of defining activation functions. Either
the activation varies from −1 to 1 or from 0 to 1. The
[−1, 1] equivalent of the sigmoid function is the hy-
perbolic tangent (tanh) function. The semiquadratic

functions could obviously be easily redefined to match
the [−1, 1] activation. The question is which activa-
tion function should one use? The anwser is not obvi-
ous. In our case, we would like most of the activations
to be zero, and since tanh is a bit more linear in the
proximity of zero than a typical sigmoid (a defined
above) then that could be an argument for [−1, 1]
activations. Though changing the activation range
could cause perfomance problems in some cases, it
doesn’t affect the computational power of a neural
net. We decided to use the [0, 1] activations, but our
neural engine supports any range.

The basic question we want to ask is wether the
network architecture affects visualisation. The sim-
ple answer is yes. Figure 6 shows the same dataset
fed to three networks differing only in transfer func-
tions. The networks were trained for a given amount
of epochs and stopped, showing different results in
MSE. The datafile is glass.dat. Previous experiments
show that cathegory 5 (green) is the hardest to sep-
arate from cathegory 6 (yellow) using sigmoid net-
works. Cathegory 4 (cyan) on the other hand, seems
to be immediately secognised and separated by the
network.

If we change the hidden layer to semiquadratic, not
much happens (not worth showing in the figure) un-
til we change the output layer to linear. A 9-10-6
network with a sigmoid input layer, a semiquadratic
hidden layer and a linear output seems to solve the
problem immediately, with MSE dropping to 0.17 in
the first training epochs. A suggestion that the ef-
fect might be caused by the linear layer alone (which
tends to train easily on liearly separable problems)
turns out to be false, as shown by the plot on the left
- a sigmoid-linear network has worse results than an
all-sigmoid network.

The efficiency of the three networks is different, as
we can see by MSE alone, but that’s not the only
difference. Please note what happens to the previ-
ously mentioned cathegory represented as green - the
sigmoid-sigmoid-linear network doesn’t seem to sep-
arate it from yellow at all. The all-sigmoid network,
given more time, separates it, but not cleanly. The
sigmoid-semiquadratic-linear network, on the other



REFERENCES 7

Figure 6: Three different networks were trained to separate
the same data set for a given amount of epochs (all in their
early training). All three networks have three layers sized 9,
10 and 6. The plot on the left is produced by a network with a
linear last layer, others sigmoid, MSE is 0.25. The middle plot
is produced by a sigmoid-only network, MSE=0.18. The plot
on the right represents a network with its first layer sigmoid
second semiquadratic, third - linear, MSE=0.16. Dispersion is
set to average in all cases.

hand, has no problems separating this troublesome
cathegory, having more problems with the cathegory
marked as cyan.

As it was mentioned many times before - some ap-
plications require a neural network to separate the
data cleanly, without renegade samples. Visualising
outputs os networks of different archtectures and/or
transfer functions can help decide on the best network
for the job or suggest a different solution - a set of
networks specialised in different cathegories, assigned
by their plots. Sometimes one cathegory requires a
different approach than the others.

It’s important to mention that these particular
architectures give the described results for the one
dataset and the test was done solely to demonstrate
a practical use for visualisation. A different dataset
could favorise a different set of transfer functions. A
different set of functions sould give better results in
this case. The three networks were chosen mostly due
to the clearly visible differences in the plots.

5 Acknowledgements

We thank our mentor, proffessor W”lodzis”law Duch,
who had suggested us to take on this project. Great
thanks goes to dr Norbert Jankowski, who pro-
vided us with practical information about the imple-
mentation of the visualisation module. Dr Tomasz

Schreiber gained our gratitude by helping with vari-
ous theoretical issues and helping us solve optimalisa-
tion problems. This project would never have worked
without the help from Paolo Marrone, author of the
Java Object Oriented Neural Network Engine, key
component to the back-end of our experimental soft-
ware.

References

[1] W. Duch Uncertainty of data, fuzzy membership
functions, and multi-layer perceptrons

[2] W. Duch Hidden secrets of feedforward neural
networks

[3] Paolo Marrone Java object oriented neural en-
gine www.joone.org

[4] Stanis law Osowski Sieci neuronowe do
przetwarzania informacji

[5] J. Korbicz, A. Obuchowicz, D. Uciński Sztuczne
sieci neuronowe, Podstawy i zastosowania

[6] Robert A. Kosiński Sztuczne sieci neuronowe,
Dynamika nieliniowa i chaos

[7] Stanis law Osowski Sieci neuronowe w ujȩciu al-
gorytmicznym

[8] W. Duch, J. Korbicz, L. Rutkowski, R.
Tadeusiewicz Biocybernetyka i in”rynieria biom-
edyczna 2000 - tom 6 Sieci neuronowe Aka-
demicka oficyna wydawnicza Exit, Warszawa
2000.


