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Significant progress has recently been made in de novo protein structure prediction. The
Rosetta method by Baker and colleagues, which is based on the idea of assembling putative
models from a library of k-mer fragments derived from known three-dimensional protein
structures, proved to be particularly successful. Critical components of the Rosetta approach
are various sequence-dependent as well as sequence-independent measures that are used to
rank alternative models and to enhance sampling of native-like conformations. In the present
work we revisit several sequence-independent filters that have been used to enhance the
discrimination of native and native-like structures from misfolded structures, such as the
overall compactness of the structure and its contact order. We also propose a novel sequence-
independent filter, based on the shape of the mean inter-residue radial distribution function.
Using the Rosetta, Park–Levitt and CASP4 sets of decoys it is shown that sequence-
independent filters are in fact more successful in distinguishing native structures in Rosetta
and CASP4 tests than commonly used knowledge-based pairwise potentials. The latter are
typically designed to distinguish native structures in a population of well-folded alternatives,
and they fail to discriminate between native-like and non-physically packed misfolded
structures from Rosetta simulations. Moreover, a rigorous attempt to optimize pairwise
potentials for recognition of homologous structures in threading by using a linear program-
ming approach leads to further deterioration of performance in terms of recognition of native
structures from the Rosetta set. These findings shed light onto the success of tailored scoring
functions used in the Rosetta protocol and provide support for explicit inclusion of both
sequence dependent and sequence independent measures in the design of scoring functions. A
Web server that enables ranking of decoy structures according to sequence independent filters
considered here is available at http://sift.chmcc.org.
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1. Introduction

While predicting the three-dimensional structure of a
protein from its amino acid sequence remains one of the
central challenges in computational biology, significant
progress has been made in protein structure prediction
in the last several years. Reliable predictions for distant
homologs have become possible due to the progress in
fold recognition methods (with the parallel growth of
the sequence and structural databases), whereas de novo
folding simulations proved to be increasingly reliable for
independent domains and relatively small proteins [1–7].

The fold recognition approach relies on the fact
that numerous native protein folds have already
been determined. Given an appropriate scoring func-
tion (also referred to as folding potentials throughout
the paper) these methods ‘simply’ find the best (i.e. the
most compatible) template from the library of known
folds. The scoring functions for fold recognition typically
incorporate some measures of sequence-to-structure
fitness, helping to find distant homologs that share the
same fold without detectable sequence similarity.

On the other hand, in de novo (or ab initio) fold-
ing simulations one attempts (at least in principle) to
reproduce the actual physical folding process by sampling
the conformational space without restriction to known
protein structures. The unique three-dimensional struc-
ture of a protein is postulated to correspond to a global
minimum of the free energy function, which may be
approximated by a simplified folding potential. In prac-*Author for correspondence: e-mail: jmeller@chmcc.org
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tice, mixed protocols that utilize similarity to known
proteins in order to constrain the expensive search in the
space of all possible conformations are often applied.
The Rosetta protocol by Baker and colleagues [8] is a
particularly successful example of the latter approach.
The success of the Rosetta and other protocols for

protein structure prediction is critically dependent on
the quality of scoring functions, which are used for con-
formational search and to rank the resulting putative
structures. For example, the Rosetta protocol combines
tailored sequence-independent and sequence-dependent
measures in order to identify native-like structures
(meaning structures close to the native structure in terms
of RMSD or any other conveniently chosen measure of
structural similarity) among large samples of putative
models [8]. In this paper, we revisit the role of sequence
independent filters in protein folding simulations and
in the design of improved scoring functions for protein
structure prediction. We also consider the problem of
selecting appropriate decoy structures (i.e. misfolded
models of a protein) for the design of folding potentials.
Park and Levitt have raised the importance of a

proper choice of decoy structures for design and
evaluation of folding potential before [9]. They argued
that only structures with overall protein characteristics
need to be included in studies on scoring functions since
‘non-physical’ decoys could be, in principle, recognized
by simpler (e.g. sequence-independent) tests. The ques-
tion remains, however, which features are critical and
consequently which measures are more effective in
filtering out ‘non-physical’ structures depending on the
particular technique used to generate the decoy set. It is
also not clear to what extent different decoy sets should
be utilized to develop scoring functions for discrimina-
tion of native-like structures in folding simulations and
fold recognition.
While all-atom or intermediate united atom models

[10–13] may be more appropriate for conformational
search in structure refinement and protein folding
simulations, we focus here on simple contact models
for structure recognition. The rationale for this choice
lies in the conceptual and practical importance of simple
models in protein folding studies [1, 15]. For example,
inter-residue pairwise potentials have been widely used
in computational protein structure prediction to distin-
guish native-like from misfolded conformations [16–21].
In principle, the reduced representation of protein
structures, with one interaction centre per residue and
pair specific interaction strength, proved to be insuffi-
cient for perfect recognition of all native structures in
demanding sets of decoys [22–26]. However, an approxi-
mate ranking of native and misfolded conformations
is often sufficient for successful applications in fold recog-
nition [21] or threading (by which we mean a fold recog-

nition technique that relies on sequence-to-structure
matching with contact potentials) [27].

In threading the task is to distinguish between opti-
mal and non-optimal effective inter-residue interactions
imposed by an alignment of the sequence of interest
with a known structure. In this case, relevant sequence
dependent features are relatively well captured by the
simple inter-residue pairwise model. However, a sig-
nificant fraction of decoy structures generated in de novo
folding simulations may be characterized by ‘non-
physical’ packing. Packing of 3D structures is defined
here specifically in terms of inter-residue radial distribu-
tion function, as discussed in detail in the subsequent
sections of the paper. Knowledge based pairwise
potentials that are derived from known protein struc-
tures fail to discriminate between structures with physi-
cal and non-physical packing. Therefore, one may be
able to design improved folding potentials for recog-
nition of native-like conformations by first applying
sequence independent filters in order to separate
physical models from non-physical ones.

Here, we use linear programming (LP) and the
maximum feasibility (MaxF) heuristic for infeasible LP
problems [25] in order to demonstrate that pairwise
potentials optimized to perform well on the Rosetta
set of decoys perform poorly on decoys generated by
using threading and vice versa. This apparent lack of
transferability of parameters between threading and
folding potentials, together with the observation of
relatively good performance of a simple filter based on
the number of contacts for Rosetta decoys, indicates
very different characteristics of the two types of decoy
structures.

Starting from the above observation, we revisit
several sequence-independent filters, including the con-
tact order filter [29] and the contact number filter, which
may be regarded as a simplified version of compactness
filters used by Park and Levitt [9] and by Simons et al.
[8], for instance. We also propose a novel sequence-
independent filter that uses the shape of the inter-residue
radial distribution function in order to discriminate
the protein-like from non-physical packing. We next
demonstrate, using the Rosetta, CASP4 and Park and
Levitt sets of decoys, that combinations of different
filters may be advantageous in terms of discrimination
of native and native-like from misfolded structures.
We also suggest how this new filter may be used to
define convergence criteria for folding simulations.

The paper is organized as follows. In the following
section we briefly revisit the LP and MaxF approaches
to optimization of folding and threading potentials.
Next, we define the new sequence-independent filter
based on the shape of pair distribution functions as well
as describe the various data sets of native and decoy
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structures used in the paper. In section 3 we discuss to
what extent parameters for folding and threading
potentials are interchangeable and the implications for
the design of improved potentials for both folding and
threading. We also present the results of the contact
number, contact order and the new pair distribution
function based filters using different set of decoys,
followed by conclusions.

2. Methods

2.1. Maximum feasibility protocol for optimization of
folding potentials

An ideal folding potential, which will be represented
throughout the paper as an effective energy function
E, would be expected to distinguish all native-like from
non-native conformations. Such discrimination may
be achieved by imposing that for each pair of native
and misfolded structures the following constraints are
satisfied:

�Emis, nat¼Emisfolded�Enative � " ð1Þ

Here, Enative � EðXnat; zÞ and Emisfolded � EðXmis; zÞ are
the energies of the native, Xnat, and misfolded, Xmis,
structures, respectively, whereas z is the vector of
parameters and " is a positive constant. Assuming that
dependence on the parameters z is linear, the require-
ment that energies of native structures be lower than
the energies of misfolded structures allows one to apply
linear programming techniques to design and optimize
folding and threading potentials [30, 22–27].
Let us consider widely used inter-residue folding

potentials. In contact pairwise models [16–20] the energy
of the protein with sequence S and a structure X is a sum
of pair energies from all pairs of interacting amino acids:

EðS,X; zÞ ¼
X

z�n�ðS,XÞ ð2Þ

The summation index, � � ��, runs over 210 different
contact types, where � and � denote the types of amino
acids at certain sites i and j, and n�(S,X) denotes the
number of contacts of a specific type found in X. Sites
i and j are said to be in contact, if their distance rij is
sufficiently small. In this work we consider an earlier
model [27], with geometric side chain centres as inter-
action sites that are assumed to be in contact if their
distance satisfies: 1.0< rij<6.4 Å. We also consider an
alternative model, in which short-range contacts are
excluded, 4.0< rij<6.4 Å. Pairs of residues that are
separated by fewer than four virtual bonds are excluded,
i.e. |i�j| 5 4.
The parameters z�� z�� are the target for LP

optimization. Given a set of native and misfolded

structures and the resulting frequency of different
types of contacts in native and non-native structures,
one obtains the corresponding set of linear inequalities:

EðSn,Xjn ; zÞ � EðSn,Xn; zÞ

¼
X
�

z� ðn�ðSn,Xjn Þ�n�ðSn,XnÞÞ � " 8ð jn, nÞ

ð3Þ

Here, the index jn runs over the misfolded structures for
protein sequence Sn and n runs over the native structures
in the training set. The goal is to find a set of effective
pair energies z�� satisfying the inequality constraints (3).
If the problem is feasible, then the set of inequalities (3)
may be solved efficiently for z by using LP solvers,
otherwise an indication of infeasibility is obtained.

The LP approach has been applied before to the design
of pairwise potentials for protein folding and protein
threading [30, 22, 27]. In particular, pairwise models were
found to be insufficient for perfect recognition of native
protein structures [22, 25–27]. In other words, the set of
inequalities (3) proves infeasible for a sufficiently large
sample of native and misfolded structures when using
pairwise contact models. As discussed in the next section,
this is also the case for the Rosetta and threading sets of
decoys considered in this work.

The recently introduced ‘maximum feasibility’
(MaxF) [25] heuristic may be used in such a case to
find an approximate solution, which satisfies a possibly
large subset of an infeasible set of inequalities. Using
MaxF allows one to go beyond the simple feasibility test
when assessing the quality of a given model (note that
including just few special cases in the training may
result in infeasibility [25]). It also provides a simple way
to improve potentials that are not explicitly optimized to
satisfy inequality constraints in (1), as for example the
commonly used statistical pairwise potentials [25, 26].

The MaxF procedure is based on a special property of
‘interior point’ algorithms for LP [31–33]. Without a
function to optimize the interior point algorithm places
the solution at the ‘maximally feasible’ point, which is
away from any individual constraint. The idea behind
MaxF heuristic is that the ‘maximally feasible’ partial
solution is likely to satisfy more constraints than an off-
centred guess. The MaxF heuristic starts from a certain
initial guess and then a series of ‘maximally feasible’
approximations is computed. The (feasible) subset of all
the inequalities satisfied by the previous approximation,
is solved using an interior point method and the new
solution becomes our next approximation that satisfies at
least as many constraints as the previous partial solution.
If no further constraints are satisfied the procedure stops
[25]. The pPCx package by M. Wagner [26] was used to
obtain results presented in this paper.
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The choice of the initial guess of the solution is criti-
cal for the success of the MaxF heuristic. The problem
of finding the largest feasible subset of an infeasible
set of inequalities is NP-hard [34, 35] and obtaining a
satisfactory approximation cannot be guaranteed. How-
ever, in practice we observe significant improvement
with respect to initial approximate solutions, provided
that they are carefully chosen using a priori knowl-
edge [25, 26]. For example, the statistical potentials
have been demonstrated before to provide reasonable
initial approximations that may be improved using
MaxF [26].
We would like to comment that another way to obtain

an appropriate initial guess could be to solve an ‘elastic’
(or soft) LP problem, with positive slack variables added
to constraints in equation (1). Such a problem is always
feasible and, by adding the sum of slack variables as
the objective function, allows one to find approximate
solutions of the original infeasible problem [36, 37].
Although coupling MaxF with an elastic LP may
provide solutions with a smaller total number of vio-
lated inequalities [38], we attempt to improve here
well characterized threading and folding potentials
from the literature. Since the final solution satisfies all
the constraints that are not violated by the starting
guess, the MaxF potentials tend to preserve the general
characteristics of the initial potential. This may, in turn,
be used to limit the overfitting, which is important for
the analysis of transferability between potentials opti-
mized for threading or Rosetta.

2.2. Sequence-independent filters
In order to enhance the performance of Rosetta

simulations, Baker and colleagues incorporated a
number of sequence independent measures into their
scoring functions [8, 29, 39]. Moreover, additional filters
were used to eliminate non protein-like structures and
to bias the Rosetta simulations towards structures
with desired characteristics. For example, sequence-
independent terms monitor strand–strand pairing and
beta sheet formation as well as helix–strand interactions
[8]. Another filter that proved to be important for
enhancing the performance of Rosetta simulations was
based on the notion of the contact order. For a structure
consisting of L amino acid residues the contact order
is defined as follows:

CO ¼
1

L
�Sij ¼

1

LN

X
i< j

�Sij ð4Þ

where �Sij denotes the sequence separation of residues
i and j in contact, the summation runs over all contacts
and N is the total number of contacts. The larger
the average separation of residues in contact, �Sij,

the higher the contact order. As observed experimentally
[29], structures with higher contact order tend to fold
slower due to non-local contacts. This may be accounted
for in the simulation by biasing towards structures with
higher contact order.

We assume here that two residues are in contact if
they are not immediate neighbors along the sequence
(i.e. |i� j| 5 2) and the distance between their side chain
centers satisfies 1.0< rij<6.4 Å. Thus, in accord with
the paper by Plaxco et al. [29] (and contrary to that used
in section 2.1), short-range contacts due to local helical
structures will be included, decreasing the overall con-
tact order for helical proteins. Consequently, filtering
out conformations with relatively low values of contact
order for mostly helical proteins might favor incorrectly
folded decoys with high beta strand content. This
problem may be addressed using the overall consistency
with the predicted secondary structures as additional
filter.

The packing of amino acid residues may be char-
acterized in terms of the pair correlation function, also
called the radial distribution function (RDF). For the
spherically symmetric inter-residue interactions consid-
ered here, the pair correlation function, g��(r), for a pair
of residues of type � and �, located at a distance r � �r
from each other is proportional to the number of pairs
[�,�] found at this separation, N��(r). Following the
definition adopted by Bahar and Jernigan [20], the
normalized RDF may be expressed as follows:

g��ðrÞ ¼
g��ðrÞP
r g��ðrÞ

ð5Þ

g��ðrÞ ¼
N��ðrÞ
4pr2

, N��ðrÞ ¼
X
i< j

�ðjr�i � r�jj � rÞ ð6Þ

where r�i is the position vector of the ith residue of type
�, �(x) indicates the Kronecker delta and the summation
runs over all pairs of type [�,�]. The number of pairs
at a given separation (and thus RDF) is computed for
40 discrete bins on the 1.0 4 rij 4 11 Å interval. Since
the interactions between the nearest neighbors are
strongly influenced by chain connectivity, only pairs of
residues that are separated by six or more virtual bonds
(i.e. |i� j| 5 6) are included here.

There is a close relationship between potentials of
mean force, and statistical pairwise potentials in particu-
lar, and RDFs. The effective distance dependent inter-
action energy between residues of type � and � relative to
the average interactions zXX(r) may be expressed as:

�z��ðrÞ ¼ z��ðrÞ � zXXðrÞ ¼ �RT ln ½g��ðrÞ=gXXðrÞ�, ð7Þ
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where gXX ðrÞ is the mean inter-residue radial distribu-
tion function [16]. Thus, effective pairwise potentials
(including also here, approximate stepwise potentials)
discriminate between contact type specific variations in
the shape of the pair correlation function. Since the
reference gXX ðrÞ is derived from a set of well-packed,
native protein structures (see figure 1), such potentials
may fail to discriminate between physical (‘protein-like’)
and unphysical structures.
The average (reference) RDF is defined here using the

representative native structures from the Pfam database
as shown in figure 1. Note that there is a pronounced
maximum corresponding to the first contact shell, as
well as a minimum between the first and second contact
shells. Note also that CASP4 structures contain on
average more disulphide bridges, manifesting by an
increased probability of observing two residues at a
separation of about 3 Å. On the other hand, individual
structures j from protein folding simulations may result
in RDFs gjXX ðrÞ that deviate significantly from the ideal
shape (see figure 2). In order to capture those deviations
and to filter out putative structures characterized by
non-native packing we introduce the following distance
measure:

dsðg
j
XXðrÞ, f ðrÞÞ ¼

Z b

a
jf ðrÞ � gjXXðrÞjdr; ð8Þ

f ðrÞ ¼
1

2
max
r2½a, c�

gjXXðrÞ þ min
r2½c, b�

gjXXðrÞ
� �

ð9Þ

Thus ds estimates how strongly the first contact shell
peak and the minimum between the first and the second
contact shells of gjXX ðrÞ are pronounced, with the [a, b]
interval chosen to include these two features. After some
experimentation the interval [a, b] was set as [3.5, 8.5] Å
(the choice of c is discussed below). However, instead
of measuring the surface area between the structure spe-
cific and the ideal (average) RDF, for example derived
from the Pfam set of structures, the surface above and
below the central horizontal line defined in equation (9)
is computed (see also figure 3). The latter measure
discriminates better between protein-like and unphysical
structures because of shifts in the position of the
maximum of gjXX ðrÞ for individual structures and
because of the need to apply smoothing, as described
below.

Individual structures may contain only few contacts,
resulting in noisy RDFs. Therefore, we applied Gaussian
smoothing that introduces an uncertainty as to the exact
position of the residues in contact: each contact at a
separation r is replaced by a Gaussian density centred
at r, with the standard deviation that may be varied
in order to tune the level of smoothing. Here we use
�¼ 0.25Å. Despite the smoothing, some structures with
very low number of contacts may still result in rapidly
changing (noisy) RDFs. Therefore, the definition of
ds was adjusted: only the surface above the central line
f (r) on the interval [3.5, 6.0] Å and only the surface
below the central line on the interval [6.5, 8.5] Å,
respectively, is taken into account.

Figure 1. Normalized mean inter-residue radial distribution function (also known as the pair correlation function), gXX(r),
computed using equation (5) and averaged over the native structures from Pfam, Rosetta, PKLS (referred to as Park–Levitt)
and CASP4 databases, respectively.
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Since the alternative conformations are compared in
terms of the shape of the contact type (and thus sequence)
independent mean inter-residue RDF, gjXX ðrÞ, the new
filter could be better suited to distinguish structures with
non-physical packing than sequence dependent mean
field potentials of equation (7). The performance of the

contact order, contact number and RDF based filters is
discussed in the Results section. We would like to remark
that these results are not sensitive to small changes in cut
off distances, interaction centers (e.g. side chain centres
vs C� carbons provided that cutoff distances are adjusted
accordingly) or extent of nearest neighbor exclusions.

Figure 2. Mean radial distribution functions (RDF) for individual structures from the Rosetta set of decoys: mean RDFs for the
native structure (denoted by circles) and for a randomly selected subset of non-native structures are shown.
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2.3. Decoy sets
In our analysis of the performance of pairwise poten-

tials and sequence independent filters we use Rosetta [5],
CASP4 [1] and Park–Levitt [9] sets of decoys. The
Rosetta set of decoys was developed by Simons et al. [5]
using their protocol for assembling protein tertiary
structures from a library of short fragments [8]. A set
of 92 families of structures, consisting of the native state
and approximately one thousand decoy structures that
were generated by the Rosetta simulation protocol, was
first converted to contact representation. The linear
inequalities in (3) were then generated for each family,
resulting in a set of approximately 93 thousand
constraints. This set of decoys and native structures as
well as the resulting set of inequalities will be simply
referred to as the Rosetta set throughout the paper.
The second set of decoys that we used consists of a

subset of 25 non-homology CASP4 targets [1], for which
the native structures were available, and the correspond-
ing models submitted by the predictors. On average,
about 120 models (decoy structures) per target were
included (alignment based and backbone only models
were excluded). Structures with a wide range of RMSD
with respect to native conformations are present in the
set of CASP4 models. We will refer to this set of decoys
and native structures as CASP4 set.
In order to further sample different types of decoys

we also considered several sets of decoys developed by
Levitt and colleagues [9], and used before to design and
evaluate various folding potentials [40]. The following
decoy sets were merged to obtain a more representative
sample of misfolded structures: the actual Park–Levitt
set of decoys for seven small proteins, the local minima
decoy set for 10 proteins derived by Kesar and Levitt

and decoy sets for 12 proteins designed by Simons et al.
using fragment assembly and optimization with the
Charmm force field [41]. The resulting decoy set consists
of 29 families and on the average about 380 decoy
structures for each family, representing a wide range of
deviations from the experimental structures. This set of
decoys will be referred to as the PKLS (Park–Kesar–
Levitt–Simons et al.) set.

In addition to the above sets of decoys from the
literature, we also developed a new set of threading
decoys for design and optimization of improved thread-
ing potentials. A subset of the Protein Families (Pfam)
database (version 6.6) [31] covering known protein
domains was used. Starting from 3071 protein families,
of which about 45% had known three-dimensional
structures in the PDB as of Jan. 2002, and removing all
the problematic PDBfiles, families with just one structure
known and membrane proteins, a subset of 773 families
was obtained. This subset was then used to construct a
set of homology based pseudo-native structures for each
family, as described below.

The Pfam alignments of homologous structures
belonging to the same family were used to define a
number of native-like structures by overlaying the homo-
logous sequences (instead of the native one) with the
actual native structures. Up to ten such pseudo-native
structures were constructed for each family and com-
pared with populations of non-native structures. The
latter were generated using the so-called gapless thread-
ing protocol [27], i.e. by threading (without gaps) the
sequences of pseudo-native structures through structures
of non-homologous proteins from the database. The
resulting set of about 9.945 million decoys (on the
average about 13 thousand per family) and the corre-

Figure 3. Pictorial representation of the ds measure defined in equation (8) used in this work to capture deviations of individual
radial distribution functions from the ideal RDF shape (see text for details).
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sponding inequalities will be referred to as the Pfam set.
The Pfam test is geared towards threading: perfect
recognition of a family means here that not only the
native but also homologous structures are recognized as
native-like. Improving pairwise potentials by imposing
that as many as possible native-like structures should be
recognized with respect to populations of structurally
unrelated conformations (decoy structures) is expected
to result in threading potentials that perform better in
threading and homologous structure recognition [43].
The contact representations of the structures from

the respective databases as well as the linear constraints
of equation (3) in terms of sequence dependent pairwise
models were derived using the Loopp program [44]. The
lists of proteins and decoy structures in each database
and the resulting potentials optimized using them are
available on-line at http://sift.chmcc.org.

3. Results and discussion

3.1. Transferability between folding and threading
potentials

The summary of results for several potentials opti-
mized here for recognition of native structures in Rosetta
or Pfam sets as well as some potentials from the literature,
including the HP model [14], Miyazawa–Jerningan (MJ)
[19] and Tobi–Elber (TE) [24] potentials, are presented
in table 1. The number of native structures ranked best,
Nnat (perfect recognition), and as one of the best five,
Ncasp (CASP criterion) as well as the average number of
decoys that are ranked higher than the native structures,
Nmis (misclassified decoys), are reported for the set of 92
families of Rosetta decoys in the second column. The
results for the Pfam set, with up to ten pseudo-native
structures per family (see section 2), are reported in
the third column. The number of families for which all of
the homology derived pseudo-native structures were
ranked higher than any misfolded structure, Nnat, and
the number of misclassified decoys (in thousands, out
of about 9,945 thousand), Nmis, are given.
As can be seen from table 1, all the pairwise potentials

included in our analysis reach very limited accuracy
in terms of ranking of native vs. non-native structures

in the Rosetta test. Let us consider first the simple
HP model that rewards any contact between hydro-
phobic residues while neglecting contacts involving
polar residues (we adopted here the convention from
[27] to classify each of the 20 amino acids as either
hydrophobic or polar). Thus, the HP model reduces to
a simple counting of contacts between hydrophobic
residues. For reasons that will become apparent when
we analyse the contact number filter, the HP potential
performs relatively well compared to pairwise potentials
with 210 parameters, recognizing correctly 16 (or 28
according to CASP criteria) out of 92 native structures.
On the other hand, the HP model performs significantly
worse than the Miyazawa–Jernigan (MJ) [19] and Tobi–
Elber (TE) [24] potentials in the Pfam test, misclassi-
fying 251 thousand decoys and recognizing perfectly
564 families. The statistical MJ potential or the LP
optimized TE potential for large-scale threading self-
recognition misclassify 128 and 118 thousand decoys,
respectively, and recognize all the homologs from 675
(656) families.

We next attempted to further improve pairwise
potentials for Rosetta simulations and for threading
by using the MaxF heuristic described in section 2.1.
First, the threading optimized TE potential is used as
the initial guess for further refinement with the MaxF
approach. Starting from the subset of Pfam con-
straints that are satisfied by the TE potential, or
in other words including initially only those pairs of
native-like and decoy structures that are correctly
ranked, three MaxF iterations suffice to obtain a
potential that violates only 35 thousand (as opposed
to the initial 118 thousand) constraints and recognizes
perfectly 672 (as opposed to initial 656) families on the
training set. The new potential is referred to as MaxF
TE–T, where TE denotes the starting guess and T
denotes threading optimized. While yielding an
improved recognition of homologs with respect to self-
recognition trained TE potential, the threading opti-
mized MaxF TE–T potential performs much worse than
the original TE potential in the Rosetta test, however.
Namely, the MaxF TE–T potential misclassifies on the

Table 1. Performance of pairwise folding potentials on Rosetta [5] and threading (Pfam) sets
of decoys (see text for details).

Potential

Rosetta

Nnat (Ncasp)/Nmis

Pfam

Nnat/Nmis

HP 16 (28)/211 564/251

MJ 19 (26)/216 675/128

TE 14 (22)/188 656/118

MaxF TE–T 4 (13)/313 672/35

MaxF TE–R 28 (43)/70 254/616

MaxF HP210–R 45 (60)/32 160/975
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average 313 decoys per family, compared with 188 for
the TE potential.
The TE potential was next refined in order to

recognize more decoys in the Rosetta set. Starting
from the subset of constraints satisfied by the original
TE, one obtains after three MaxF iterations potential
referred to as MaxF TE–R (with R denoting Rosetta
optimized), which misclassifies on the average only 70
decoys per family in the Rosetta training set. However,
MaxF TE–R potential violates as many as 616 thousand
inequalities from the Pfam set (which plays a role of the
control set in this case), recognizing perfectly only 254
families in this test.
The last potential we consider here was optimized to

further improve recognition of native structures in
the Rosetta set. The initial feasible subset of constraints
was obtained this time by considering only those
decoys that are recognized as non-native by the HP
potential. However, short-range contacts from the
interval 1.0< rij<4.5 Å were excluded. Such modified
HP contact potential ranks 27 native structures as
best (and 34 as one of the best five) in the Rosetta test
and it is further improved by three MaxF iterations
in the space of 210 parameters corresponding to the
full pairwise model. In other words, the initial energy
term is equal to�1 for each pair of hydrophobic residues
and 0 for any pair involving a polar residue, respectively.
However, all the 210 pair energies are varied independ-
ently during the optimization procedure. The resulting
potential is referred to as MaxF HP210–R to indicate
that the initial solution is that of HPmodel projected into
the space of 210 types of contacts and that it was
optimized for recognition of Rosetta decoys as non-
native structures. As can be seen from table 1, the MaxF
HP210–R potential performs best in the Rosetta test
(recognizing using the CASP criteria as many as 60
native structures) and, on the other hand, much worse
than any other potential on the Pfam test set.
We would like to comment that poor performance

observed on the Pfam test indicates a certain degree of
overfitting for the potentials optimized using the Rosetta
set as training. It is not our goal here to find the best
folding potential for Rosetta simulation, but rather to
illustrate the increased deterioration of the performance
on the Pfam control set for potentials achieving an
improved recognition for Rosetta decoys. On the other
hand, however, the number of training vectors is still
much larger than the number of parameters to be
optimized and, additionally, the effect of overfitting is
further reduced by the use of MaxF. All the Rosetta
decoys recognized initially by the original TE potentials
must also be recognized in the subsequent iterations,
constraining the optimization to a specific region in the
parametric space. Therefore, the clear trend observed

here is likely to indicate the very different nature of the
two sets of decoys.

The results of MaxF optimization of potentials for
threading and Rosetta decoys are also consistent with
previous observation suggesting very specific character-
istics of the decoys generated by Rosetta simulations
[5, 8, 28, 40]. In particular, the relatively good per-
formance of the simple HP potential in the Rosetta test
may be explained by the fact that many of the Rosetta
decoys are not compact enough. Indeed, 34 out 92
native structures have larger number of contacts than
any decoy, suggesting that a simple sequence-independ-
ent filter based on the number of contacts (discussed
in detail in the next section) may play a useful role.

On the other hand, one can significantly improve
upon the HP (or, in fact, simple contact counting) model
by using MaxF in the space of the full contact model
with 210 parameters, indicating a sequence dependent
structure in the packing of Rosetta decoys, which is
exploited by the optimization protocol. This structure
appears to be, however, very different compared to the
packing of threading decoys. As a result, Rosetta
optimized potentials (such as the MaxF HP210–R
potential) fail in the Pfam test, whereas the threading
optimized potentials perform poorly in the Rosetta test.

In light of the above, further analysis of packing
and other characteristics of decoys generated using
different protocols may help identify the nature of those
differences. This in turn may allow one to select appro-
priate set of decoys to train enhanced potentials for
folding simulations and for recognition by threading on
one hand, and to facilitate folding simulations by
additional measures that filter out non physical struc-
tures on the other hand.

3.2. Sequence-independent filters
The first sequence-independent filter that we consider

here is the simple contact number filter. The presump-
tion is that correctly folded structures are more likely to
achieve denser packing, while structures with relatively
low number of contacts may be discarded as unphysical.
In fact, one may recognize about one third of native
structures in the Rosetta set by simple counting of
contacts (in the first contact shell) because none of the
alternative structures is packed densely enough.

Several examples of distributions of the number of
contacts for structures from the Rosetta simulations are
included in figure 4. The solid and dashed vertical lines
indicate the number of contacts in the native structure
and the average number of contacts in the decoy
structures, respectively. In addition, subsets of native-
like and grossly misfolded structures are defined for
each family of decoys. We define these subsets in
terms of the fraction of native contacts measure, Q.
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Namely, structures that have the value of Q larger than
the average plus one standard deviation, Q>Qþ �,
measured for the distribution of Q values in a given
family of decoys, are regarded as native-like. On the
other hand, decoys that have very few native contacts,
Q < Q� �, are regarded as grossly misfolded. The
distributions of native-like structures are shown in figure
5 using shaded bars.
There are only four structures in the Rosetta set

(1 hsn, 1 res, 1 tih and 2 bds) that have fewer contacts
in the native conformation than the average number
of contacts in the decoy conformations. On average,
86% of the native-like structures per family have more
contacts than the average number of contacts observed
in this family, as opposed to only 15% of the grossly
misfolded structures. This suggests a simple filter that
enriches the population of putative conformations in
native-like structures for globular proteins by removing
those structures that have a less than average number of
contacts in the first contact shell.
The contact order and the radial distribution function

shape scores are less successful in the Rosetta test than

the contact number score. The performance of RDF
based score is similar to that of the MJ pairwise
potential, which performed somewhat better than
other potentials from the literature in our tests (see
table 2). Examples of histograms for values of ds
measure of the RDF shape are included in figure 5.
Using the RDF based filter, i.e. filtering out structures
with ds value smaller than the mean, retains on average
only about 53% of the native-like structures per family.

Nevertheless, as can be seen from figures 4 and 5, for
some families the RDF filter works better than contact
filter, suggesting that combination of different filters
might be advantageous. Note, for example, that 1 hsn
native structure, which is a relatively open DNA
binding protein, is not filtered out by the RDF filter,
although it was removed by the contact number filter.
The opposite happens for the native structure of the
actin binding protein 1 ksr. The latter results in an
usual RDF with the second contact shell maximum
shifted into the region of the expcted minimum between
the first and second contact shell (see also discussion of
the results for CASP4 decoys below).

Figure 4. Performance of the contact number filter for Rosetta decoys, as illustrated by histograms for the number of decoy
structures with a given number of contacts in the first contact shell for four families of Rosetta decoys. Solid vertical lines
indicate the number of contacts in the native conformation and the dashed vertical line shows the position of the mean for each
distribution. Shaded bars are used to illustrate the distribution of native-like structures as defined in the text.
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Figure 5. Examples of distributions for the values of the RDF shape measure ds for families of Rosetta decoys included in
figure 4 (Panel A). Further examples of the mean RDFs for the native structures and samples of decoy structures are included
in Panel B.
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While clearly successful in Rosetta test, contact
number and other compactness filters must be applied
with care. For example, the contact number filter should
not be applied to extended (‘open’) structures with
relatively only few contacts. On the other hand,
however, when the structure is known (or is predicted)
to be relatively compact it may be useful to exploit the
premise that native-like structures from folding simula-
tions can be simply recognized by their relatively dense
packing.
The Rosetta decoys considered here were obtained

using a scoring function that favors compact structures
[8, 39]. The overall compactness is measured in terms
of a ‘density’ term, Pdensity, which is a function of the
observed number of inter-residue contacts in the first
and second contact shells, and in terms of the radius
of gyration, which is defined as the square root of
the averaged squares of inter-residue distances. Thus,
structures with higher number of residue pairs at close
separation (contacts in the first contact shell) will
generally have a favourable ‘density’ and a lower radius
of gyration. Relatively open structures, on the other
hand, should be eliminated in the course of simulations.
Nevertheless, a significant fraction of structures with
relatively sparse packing is included in the Rosetta set
and the number of contacts filter turns out to be useful
in filtering out such decoys. It is plausible that the simple
contact number score could enhance convergence of
Rosetta simulations in combination with other recent
improvements in Rosetta, which are based on global
measures of hydrophobic core formation and implicitly
account for compactness [45].
While the contact number score is clearly more

successful than other sequence-independent or sequence
dependent scores for recognition of native structures
from the Rosetta set, this is not the case for the PKLS
and CASP4 decoys (see table 2). The native structures
from the PKLS set are best ranked by the MJ pairwise
potentials. However, contact filter is still successful in
enriching decoy populations in native-like structures.

For example, on average about 70% of native-like
and only about 30% of grossly misfolded structures
per family contain more contacts than the mean num-
ber of contacts in the family. On the other hand, the
performance of contact order filter is poor, which is
consistent with the fact that relatively large fraction of
short, helical proteins are included in the PKLS set.

For CASP4 decoys using a combination of the
contact score and the RDF shape score performs better
than individual scores (including the pairwise MJ
potential). Some CASP models with very few contacts
lead to an articially pronounced first contact shell peak
of individual RDFs. As a result, spuriously large values
of ds may be obtained. Therefore, for CASP4 we report
results of the RDF filter in combination with the
contact filter, which is first applied in order to remove
structures with few contacts. In fact, the results of the
RDF shape filter may also be improved by removing
structures with a low number of contacts in the case of
Rosetta and PKLS decoys. For example, using such a
combination for ranking of decoys in the PKLS set, 18
native structures are retained in the top 100 structures,
as opposed to 16 with just the RDF shape filter or 15
with the contact number score. Note that the star
symbol (*) is used in table 2 to indicate when the RDF
shape filter was combined with the contact number
filter.

The improvement of the results due to combination
of RDF and contact number filters is, however, more
significant in the case of CASP4 decoys. When the RDF
based filter is applied independently, it ranks (similarly
to contact number filter) only 11 native structures as one
of the best ten structures. On the other hand, as can be
seen from table 2, the RDF filter combined with initial
filtering out of structures that have fewer than the mean
number of contacts ranks 10 native structures as best
and 18 (out of 25) as one of the best five models,
significantly outperforming other scores, including
sequence-dependent MJ potential. Thus, more than
70% of native structures in the CASP4 set can be

Table 2. Recognition of native structures in Rosetta, PKLS (Park–Levitt set of decoys merged with some other sets as
described in the text) and CASP4 sets of decoys by sequence-independent filters: contact number, contact order
and the radial distribution function (RDF) shape. For each filter the number of native structures ranked as the top,
top five and top hundred (ten for CASP4) structures is reported.

Decoy set: Rosetta PKLS CASP4

Results for top N structures: 1 5 100 1 5 100 1 5 10

MJ pairwise potential 19 26 52 10 14 22 8 14 18

Contact number filter 33 48 70 7 8 15 2 10 12

Contact order filter 7 21 57 0 1 9 2 6 11

RDF shape filter 21 28 52 1 4 16 10* 18* 19*
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recognized using the CASP criterion by a simple
sequence-independent measure.
The analysis of ranking of native-like structures is

included below and in figure 6. We regard here as native-
like all models that obtained non-zero scores in
Murzin’s evaluation of CASP4 predictions [3], including
partially correct models. The distributions for ‘native-
like’ structures are shown using shaded bars. For a sub-
set of 15 difficult targets (T0097–98, T0102, T0105–106,
T0114, T0089, T0094, T0100–101, T0107–109, T0120–
121), at least one native-like structure was scored as
one of the top five models for eight targets. As can be
seen from the examples included in figure 6, however,
many native-like models are in fact characterized by
values of ds which are much lower than those for the
respective native structure (often in accord with low
Murzin scores for such models). While similar values of
ds do not necessarily imply similar packing, structures
close to the native conformation should result in similar
values of ds measure (as is the case for several models for
target T0120, for instance).
It is worth noting that the new filter based on the

shape of RDF may be used to indicate if a given set of

decoys contains native-like structure even when the
actual native structure is unknown. Decoys character-
ized by non-physical packing may lead by chance (e.g.
because of very few contacts at a specific separation)
to the values of ds similar to that of native structure.
However, it is unlikely that the actual RDF would be
similar. Therefore, clusters of similar structures (either
in terms of RMSD or overall RDF shape) with large
values of ds are likely to reveal populations of native-like
structures. Testing this hypothesis remains the target for
future work.

4. Conclusions

Protein structures obtained in de novo folding
simulations, such as Rosetta decoys or CASP models,
are often packed in a non-physical way. This non-
physical packing may manifest itself by non-compact-
ness of the decoy, low contact order or unphysical shape
of the inter-residue radial distribution functions.
Therefore, pairwise threading potentials that are trained
to recognize native structures against other folded
conformations fail when presented with populations of
decoys generated in folding simulations.

Figure 6. Distributions of the RDF shape measure, ds, for several families of difficult CASP4 models (the histograms are smoothed
by averaging over neighboring bars). The RDF shape filter is combined here with a weak contact number filter (see text for
details).
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Using linear programming, coupled with our maxi-
mum feasibility approach, we showed that pairwise
potentials optimized for threading perform significantly
worse on the Rosetta set of decoys. The reverse is also
true, i.e. potentials optimized for Rosetta perform much
worse in threading, indicating the lack of transferability
between potentials for folding simulations and fold
recognition. Even though our analysis is limited to
pairwise potentials, it suggests that separate strategies
for the design of folding and threading potentials are
required. Namely, rather than attempting to improve
the accuracy of folding and threading potentials by
including both types of decoys in the training, separate
potentials and filters should be developed for different
tasks. Moreover, if decoys generated by folding simula-
tions, such as Rosetta, are to be used in the design and
optimization of improved potentials for protein folding,
then structures that do not achieve protein-like packing
should be first filtered out.
The sequence-independent filters considered here,

including a novel filter based on the shape of inter-
residue pair correlation function, achieve surprisingly
good performance not only in filtering out non-physical
structures but also in terms of ranking of native and, to
a lesser degree, native-like structures. In light of the
above, one may observe that the relative success of the
Rosetta approach by Baker and colleagues lies, to a
large extent, in the development of tailored scoring func-
tions. Moreover, successful recognition of native struc-
tures in CASP4 test by simple sequence-independent
filters exposes obvious weaknesses of many models
submitted to the CASP4 competition. Applying some of
these simple filters might have prevented some groups
from submitting incorrect models.
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available to us and to Dr Aleksey Porollo for technical
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