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Abstract 
 

A novel strategy to optimize consensus classifiers for 

large classification problems is proposed, based on 

Linear Programming (LP) techniques and the recently 

introduced Maximum Feasibility (MaxF) heuristic for 

solving infeasible LP problems. For a set of classifiers 

and their normalized class dependent scores one 

postulates that the consensus score is a linear 

combination of individual scores. We require this 

consensus score to satisfy a set of linear constraints, 

imposing that the consensus score for the true class be 

higher than for any other classes.. Additional constraints 

may be added in order to impose that the margin of 

separation (difference between the true class score and 

false classes scores) for the consensus classifier be 

larger than that of the best individual classifier. Since LP 

problems defined this way are typically infeasible, 

approximate solutions with good generalization 

properties are found using interior point methods for LP 

in conjunction with the MaxF heuristic. The new 

technique has been applied to a number of classification 

problems relevant for protein structure prediction.  

 
1. Introduction 
 
Ensemble classifiers are an active area of research in the 

field of machine learning [1,2]. Many strategies, such as 

simple voting, linear combination based methods or 

boosting [3-6], have been proposed to find an improved 

consensus classifier, given a number of individual 

classifiers. Consensus classifiers are often able to 

improve significantly on the classification accuracy. 

Some important and relevant in bioinformatics examples 

include applications of neural network based classifiers 

for protein secondary structure prediction [7] or 

combining various individual scores into a consensus 

score for gene prediction [8].  

Here, we introduce a novel strategy to optimize 

consensus classifiers for large problems, using LP 

techniques and the Maximum Feasibility heuristic for 

solving infeasible LP problems [9,10]. For a set of 

classifiers and their normalized class dependent scores 

one postulates that the consensus score is a linear 

combination of individual scores. Such defined total 

score is required to satisfy a set of linear constraints, 

imposing that the consensus score for the true class is 

higher than for any other class for each data point in the 

training.  

The resulting LP problems are infeasible for 

classification problems that are not linearly separable in 

the feature space of individual classifiers scores. Our 

strategy to find an approximate solution is to identify a 

possibly large subset of inequalities that can be satisfied. 

In other words, we identify a subset of data points that 

can be classified using linear decision boundaries, with 

points difficult to classify excluded from the training. 

Such approximate solutions that achieve high accuracy 

and have good generalization properties may be found 



efficiently using interior point methods for LP in 

conjunction with the MaxF heuristic.  

Here, we briefly revisit the MaxF heuristic and then 

formally introduce the new approach for finding linear 

combination based classifiers and discuss strategies for 

solving the resulting infeasible LP problems (Methods 

section). The new technique is then applied to a number 

of classification problems relevant for protein structure 

prediction, including secondary structure and membrane 

domains prediction (Results section).  

The protein folding problem, which is one of the 

central challenges in computational biology, consists of 

predicting the three-dimensional structure of a protein 

from its amino acid sequence. The methodology and 

modeling aspects of protein folding have been vastly 

discussed in the literature [11]. For the sake of 

completeness it suffice to say here that predicting 

secondary structures, i.e. locally ordered conformations 

taking shape of helices or beta strands, greatly facilitates 

fold recognition and functional annotations. The same 

concerns membrane domains prediction. 

 

2.  Methods 
 

2.1. Maximum Feasibility Heuristic 
 

The Maximum Feasibility (MaxF) [9,10] heuristic aims 

at finding an approximate solution, which satisfies a 

possibly large subset of an infeasible set of inequalities. 

The MaxF procedure is based on a special property of 

interior point algorithms for LP. Without a function to 

optimize the interior point algorithm places the solution 

at the “maximally feasible” point, which is away from 

any individual constraint. For problems with bound 

feasible polyhedra interior point algorithms converge to 

the so-called analytic center, when no objective function 

is used [12]. The idea behind MaxF heuristic is that the 

“maximally feasible” partial solution is likely to satisfy 

more constraints than an off-centered guess.  

The MaxF heuristic starts from a certain initial guess 

of the solution and the subset of all the constraints that 

are satisfied by this initial guess. A series of “maximally 

feasible” approximations is then computed. The subset of 

all the inequalities satisfied by the previous 

approximation, which defines a feasible polyhedron, is 

solved using an interior point method. The new solution 

becomes our next “maximally feasible” approximation 

and satisfies at least as many constraints as the previous 

partial solution. If no further constraints are satisfied the 

procedure stops.  

The choice of the initial guess of the solution is 

critical for the success of the MaxF heuristic. Finding the 

largest feasible subset of an infeasible problem is a NP-

hard problem [13] and obtaining a good approximation 

cannot be guaranteed. However, in practice we observe 

significant improvement with respect to initial 

approximate solutions that are carefully chosen using a 

priori knowledge [9,10]. 

 Another way to obtain an appropriate initial guess is 

to solve an elastic LP (eLP) problem, with a positive 

slack variable added to each constraint:  
i

z 

 0  ,0    ,  subject to  min ≥>≥+∑ zzAα εεiz .  (1) 

Here,  denotes the vector of unknowns that are target 

of optimization and A denotes the constraint matrix. The 

LP problem defined in (1) is always feasible and, by 

adding the sum of slack variables as the objective 

function, allows one to find approximate solutions of the 

original infeasible problem. We applied here the latter 

strategy.  

α

The eLP finds a solution that effectively minimizes 

the misclassification error (sum of slacks), and might be 

influenced by outliers. Nevertheless, we observe in 

practice that it provides good initial approximations for 



the problems considered here. These initial solutions are 

then improved in terms of margin of separation by 

subsequent MaxF iterations. Starting from a subset of 

separable data points, for which the slack variables are 

equal to zero, MaxF places the separating hyperplanes 

away from all the data points that are correctly classified 

by the initial guess. 

 The pPCx package by one of us (MW), which is a 

parallel interior point LP solver, was used to obtain 

results presented in this paper. We would like to 

comment that interior point methods for LP have 

superior, polynomial complexity and are very efficient. 

Problems with millions of constraints and hundreds of 

variables may be solved, e.g., in a few minutes on a 

cluster of  Xeon CPU’s, using the pPCx package [10]. 

 
2.2. MaxF based consensus classifiers 
 
Let us consider a supervised classification problem with 

N real vectors from a certain feature space X, divided 

into K classes. A discrete set of class labels, conveniently 

chosen as , will be referred to as Y. A classifier 

Q is then a mapping from X to Y. For clarity of notation 

the kth class will be alternatively labelled as -

K,,1 K

kC X∈x  

is classified as belonging to class , if kC kQ =)(x .  

Consider now a number of individual models, , 

, that provide estimates for conditional 

probabilities of class  given the model and a vector in 

the feature space, . For each model we 

define an individual classifier  as: 

iM

pi ,,1 K=
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In other words, a data point x is assigned to the class 

with the highest probability. The goal is then to combine 

the individual models into a mixture (consensus) model.  

We define a consensus classifier in the form of a 

linear combination of individual classifiers: 

);|(1)c;|( iMkCPi
p
iMkCP xx α∑ == . (3) 

Note that the coefficients of the linear combination, 

which will be a target for optimization, are class 

independent here (as opposed to more general models 

with class dependent coefficients – see Results section). 

Linear decision boundaries for the consensus classifier 

are defined using again the simple rule: 

)c;|(  
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Q xx
K=

= . (4)
 

In supervised classification problem each training 

vector is assigned to its “true” class, which will also be 

called its “native” state in the context of applications to 

protein structure prediction. The true (or native) class 

will be referred to as , where nC nQ =)(* x  is the true 

classifier (with the implicit dependence of index n on x).  

In order to impose correct consensus predictions in 

the training, the following inequality constraints (with 

one inequality per data point) are used: 

∑ = ∑ ≠≥∑ =
p
i nk kCiPi

p
i nCiPi 1 )(1 )( αα , (5) 

where coefficients  of the 

constraint matrix are obtained by applying individual 

classifiers. Thus, for each data point an inequality as 

defined in (5) is used to impose that consensus classifier 

of equation (3) assigns the highest (and larger than 0.5) 

probability to the true class of that point. A solution to 

the set of inequalities defined in (5) provides the 

coefficients , and thus, a linear combination based 

classifier as defined in (3).  
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i
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If the problem is feasible, i.e. when the data is 

linearly separable, the set of inequalities in (5) may be 

solved efficiently using LP techniques. Typically 

however, the problem is infeasible and heuristic 

approaches, such as combination of the elastic LP and 



MaxF need to be applied. MaxF was shown before, in 

the context of protein structure recognition, to effectively 

filter out outliers that make impossible to separate 

exactly data points belonging to different classes [9]. 

The basic idea here is similar. By finding an 

approximate solution to an infeasible problem defined in 

(4) we identify points that are difficult to classify. 

Subsequent iterations of MaxF include only those data 

points that can be classified correctly (i.e. points that 

result in inequalities that are satisfied by current guess of 

the solution). Thus, the linear decision boundaries are 

optimized for a subset of data points that are separable. 

In addition, due to the “central” properties of interior 

point methods, discussed in the Introduction, the 

solutions that we obtain are away from any individual 

constraint, providing (at least in principle) a wide margin 

of separation and a good generalization. 

Formulating the problem in terms of linear 

optimization with constraints opens a way for flexible 

generalizations.  For example, one may impose that the 

margin of separation between the true and other classes 

should be at least as wide for the consensus classifier as 

for the individual classifier, which achieves best 

separation for a given point. This can be achieved by 

imposing (again for each vector in the training) 

additional inequalities of the following form: 

)]()([
,1

max)(
c

)(
c kC

i
PnC

i
P

pikCPnCP −
=

≥− . (6) 

Moreover, instead of considering positive and 

normalized conditional probabilities one may introduce a 

generalized classification problem in terms of real 

scores. One may also weaken the condition of equation 

(5) by decoupling inequalities for classes other than 

native. Replacing conditional probabilities for the i-th 

model by the corresponding score, , and introducing 

one inequality for each non-native state we obtain the 

following set of inequalities: 

iS

xxx ∀≠∀∑ =≥∑ =      1 ),(1 ),( nkp
i kCiSi

p
i nCiSi αα . (7) 

The decision is made as previously: the class with the 

highest score is assigned to each data point. 

 
3. Results 
 
Preliminary results obtained using the new eLP/MaxF-

based approach for protein membrane domain and 

secondary structure prediction are summarized in Table 1 

and Tables 2 and 3, respectively. A set of inequalities 

defined in equation (7) is solved for each problem using 

the approach defined in section 2.1. The results are 

compared to that of several machine learning techniques, 

including decision trees (SSV [14] and C4.5), k-Nearest 

Neighbors, adaptable radial basis functions Neural 

Networks (FSM) [14], Support Vector Machines (SVMs) 

[15] and Linear Discriminat Analysis (LDA) [16].  

Method Training Control Software 

Majority 72.1% 67.0% - 

kNN k=10 86.8% 71.8% Tooldiag 

SSV D. tree 85.4% 70.5% GhostMiner 

FSM 85.1% 71.1% GhostMiner 

SVM 86.7% 74.0% SVMLight 

LDA 83.8% (CV) 74.0% Tooldiag 

eLP/MaxF 86.7 (86.1)% 73.1 (72.8)% pPCx 

Table 1. Accuracy for membrane domain prediction. 

For membrane domain prediction we used as the 

training set a curated set of 68 proteins that contained 

membrane domains and an additional set of 25 proteins 

as control. Out of the total number of 19,404 residues in 

the training, 7,704 were in membrane domains. The goal 

of the prediction is to assign to each amino acid residue 

one of the two states: membrane or non-membrane. We 

used as individual weak classifiers (or rather features in 

this case) twelve statistical scores, each of them 

assigning a score to a different type of profile (e.g. triplet 

of residues around the central residue) according to 



observed frequency of this profile in a given class in the 

training set. These individual scores have low prediction 

accuracy (worse than the baseline). Nevertheless, as can 

be seen from Table 1, linear discrimination methods 

(linear SVM, LDA and eLP/MaxF) perform relatively 

well. Despite the fact that finding a large feasible subset 

could be potentially hindered by the low quality of 

individual “classifiers” (features), the LP based approach 

finds a solution close to that of LDA in terms of accuracy 

(73.1% when using 24 class dependent coefficients of 

linear expansion (7) and 72.8 with only 12 class 

independent coefficients). By combining predictions for 

adjacent residue the accuracy may be further elevated by 

about 10%, making this kind of simple predictor an 

attractive component of a more accurate membrane 

domain prediction system. 

Method Training:Pfam Control:S174 Software 

Majority 68.3% 67.5% - 

kNN k=10 71.8% (CV) 69.5% Tooldiag 

C4.5 D. tree 95.3% 64.3% C4.5 

LDA 73.5% (CV) 71.0% Tooldiag 

eLP/MaxF 78.8 (73.2)% 70.3 (69.7)% pPCx 

Table 2. Accuracy for coil vs. non-coil prediction. 

The second problem that we consider is 

considerably larger. The training was derived from the 

Protein Families (Pfam) database and consists of 174,792 

residues, which are divided into two classes: coil (no 

regular secondary structures) and non-coil (helices, beta 

strands). The feature space consists of 22 different 

statistical profiles, derived similarly to those for 

membrane proteins. Despite the still rather moderate size 

of the problem, we were unable to use either SVMLight 

or GhostMiner. Again, despite the fact that individual 

scores have low predictive power, their eLP/MaxF-

optimized linear combination achieves accuracy close to 

that of LDA on the control set of 174 proteins with no 

homology to proteins in the training. 
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Figure 1. Distribution of differences between consensus 
scores for native and highest scoring non-native states.  

The third problem deals with a consensus of 19 

well-trained, NN-based classifiers for the three state 

(coil, helix, beta strand) secondary structure prediction. 

These individual predictors achieve accuracy between 71 

and 74% in terms of the Q3 measure (three-state per 

residue accuracy), as opposed to about 78% for the state 

of the art PsiPRED method, which is itself a consensus 

of several classifiers [19]. Figure 1 shows the distribution 

of margins of separation between the native and the 

highest scoring non-native state for the eLP/MaxF 

consensus classifier obtained by solving a set of 

inequalities defined by equations (5) and (6). The use of 

constraints defined in (6) helps to provide solutions with 

wide separation margins. Indeed, most of the correctly 

predicted points (i.e. those with positive margin) are 

away from the decision boundary with a median 

separation of about 7. Therefore, by combining the 

eLP/MaxF consensus with a weighted majority voting 

for points with a small margin between the two highest 

scoring classes, we were able to obtain highly accurate 

predictions (that became part of our SABLE system: 

http://sable.cchmc.org), as shown in Table 3. 

Control sets : CASP S174 S189 
PsiPRED 80.4% 79.4% 78.7% 
eLP/MaxF 81.0% 77.5% 78.8% 

Table 3. Accuracy of the secondary structure prediction 
system obtained using LP-based consensus. 

 



4. Conclusions 
 

A new approach to optimize linear combination based 

classifiers is introduced. The Maximum Feasibility 

heuristic for finding approximate solutions to infeasible 

LP problems is applied to eliminate points that are 

difficult to classify from the training and to obtain a 

separating hyperplane for a feasible subset of the data. 

This approach can be applied to large classification 

problems with millions of data points and hundreds of 

variables. In particular, it may advantageous for 

optimizing consensus classifiers that are postulated as a 

linear combination of well-trained individual classifiers, 

while preserving the margin of separation for best 

classifier in a given region of the feature space. Using 

this novel strategy we were able to obtain highly accurate 

consensus classifiers for secondary structure predictions. 

In light of the above, the proposed method appears 

to provide a general and flexible approach to large-scale, 

multiclass supervised classification problem. Compared 

to linear perceptron approach, which also produces 

separating hyperplanes but does not converge for 

infeasible problems, the present algorithm will efficiently 

find an approximate solution. Other linear discriminant 

methods, such as linear regression or LDA focus on 

centroids of the classes. MaxF based classifiers, similarly 

to SVM, focus on points close to decision boundaries. 

Contrary to SVM, though, points that are difficult to 

classify are first removed from the training. It is worth 

noting, however, that our strategy is consistent with 

attempts to achieve a better accuracy by using SVM 

iteratively, with separating hyperplanes computed for 

subsets of data points that may result in more robust 

decision boundaries [15,17]. 

It is also worth noticing that the standard 

formulation of the SVM algorithm involves solving a 

Quadratic Programming (QP) problem [17], which is 

numerically more expensive than LP.  Moreover, 

multiclass generalizations of SVM are cumbersome 

[1,17] and the present approach may be an efficient 

alternative as long as linear discrimination is sufficient. 

While we present only few examples in the present work, 

we would expect that linear separation is sufficient in 

most cases when considering a consensus of well-trained 

individual classifiers. 
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