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Abstract

A new determinant specific, effective change (’dressing’) of the norm of the
Multireference Configuration Interaction (MRCI) wavefunction is proposed in
order to achieve the size-consistency of the MRCI method. The new approach
provides a unifying framework for analysis of size-consistent extentions of the
MRCI method that are based on the Coupled Pair Functional (CPF) strat-
egy and lead to simplified computations of the analytical gradients. Using the
new framework, a generalized Multireference Full Coupled Pair Functional (MR-
FCPF) method is introduced. The MR-FCPF method may be viewed as a func-
tional counterpart of the recently proposed generalized (’full’) Coupled Electron
Pair Approximation (CEPA), referred to as the Size-consistent Self-consistent
CI ((SC)2CI) method. A straightforward extension of the MR-FCPF method
leads to a pseudo-functional form of the Coupled Cluster (CC) type formalisms.
Therefore, the new approach may be used to introduce a simple alternative to

existing CC-type gradient techniques. The new procedure is formally derived
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and compared with similar methods from the literature. Model systems calcu-
lations (H2O, LiF, CHJ) are further used to demonstrate the effect of various

approximations and to elucidate the hierarchy of functional MR-CEPA schemes.



1 Introduction

The non-dynamical (or valence) correlation effects, manifesting in large contributions
of a number of configurations to the electronic wavefunctions, have to be first taken
into account when dealing with the chemical reactivity, dissociation processes, excited
states, some open shell systems etc. The above observation has led to an impressive
development of multiconfigurational ab initio approaches to the electron correlation
problem, most notably the Multi-Reference Configuration Interaction (MRCI) ap-
proaches.

The MRCI method had been the most popular tool in molecular spectroscopy
during a long time, due to its conceptual simplicity and robustness guaranteed by
the variational principle [1]. On the other hand, however, the CI method is slowly
convergent in terms of the length of its linear expansion. Truncation of the full CI
expansion leads, in turn, to physically incorrect scaling with the number of parti-
cles in the system. Throughout this paper we shall adopt the Pople’s definition of
size-consistency in terms of proper separability [24], leaving the term size-extensivity
as denoting the lack of unlinked diagrams in MBPT theories. Truncated CI is nei-
ther size-extensive nor size-consistent, which makes it inadequate for description of
extended systems.

The alternative Coupled Cluster (CC) approach is in principle superior to CI.
The exponential form of the CC wavefunction insures that although the method
is not variational, it is highly accurate and extensive when truncated at a given
level of excitations [2]. However, the MRCC generalizations are rather complex and
numerically expensive [3] [4].

Having this in mind, various simplified schemes of the multireference Coupled
Electron Pair Approximation (CEPA) type, which are less expensive computationally
and effectively extensive, may be regarded as a pragmatic choice [5]. Reliability of
such procedures for the description of conformational changes and excited states
has been demonstrated in a number of studies (for a recent review see ref. [6]).

When formulated in terms of the configuration space rather than in the many body,



integral based language, they may be seen as size-extensive modifications of the MRCI
method.

However, many such developments aim primarily at the computation of the wave-
functions and the corresponding energies. Due to additional complexity, the corre-
sponding energy gradient methods lag somewhat behind, although their significance
can hardly be overestimated. Many important molecular properties are related to
the derivatives (changes) of the energy with respect to some external perturbation,
for example external electric field in case of polarizabilities or the change of the nuclei
geometry in case of the geometry optimization. With the growing demand for reliable
structural predictions, the latter case is of special importance.

The analytical energy gradients may be expressed and evaluated in a relatively
simple form when the wavefunction is obtained as a result of energy functional mini-
mization. In such a case, the derivatives with respect to the wavefunction parameters
to be optimized are, by definition, equal to zero. The importance of a functional form
was raised in the pioneering work of Pulay [12].

The analytical gradients are routinely available for MRCI [7] [8] and for single
reference CC methods [9] [10]. Recently, analytical CC gradient methods became also
available for the excited states, within the closely related Equation of Motion (EOM)
CC and Symmetry Adapted Cluster (SAC) CI schemes [11]. To the best of our
knowledge, there are no other practical examples of analytical gradient procedures
for non-functional multireference schemes.

In the CI method, the energy functional is usually optimized only with respect to
the configuration coefficients, but not with respect to the LCAO coefficients. There-
fore, the Coupled Perturbed Hartree—Fock (CPHF) equations have to be solved, in
order to evaluate the changes in molecular orbitals caused by the perturbation (e.g.
change in the nuclei position) [8]. Fortunately, the so-called Z-matrix technique due
to Handy and Schaefer [13] allows one to avoid the repeated solving of CPHF equa-
tions and significantly reduces the numerical cost.

The situation is more complicated in the case of non-variational methods that



do not have a functional form, such as CC method, because the number of non-
variational parameters dramatically increases. Although using the Z-matrix tech-
nique again proves a powerful tool, the functional methods are nevertheless more
efficient in this regard [8]. An interesting formal solution, which enables to reformu-
late various types of the CC method in a functional form, have been proposed by
Szalay [14]. Unfortunately, this procedure seems to be quite expensive numerically.

Functional generalization of simplified single reference CEPA methods were con-
sidered already by Pulay [15]. They were based on an effective change of the norm of
the wavefunction in the CI functional, cancelling to a large extent its unlinked terms.
The Coupled Pair Functional (CPF) of Alrichs et. al. [16] and its multireference gen-
eralization - the Averaged Coupled Pair Functional (ACPF) of Gdanitz and Alrichs
[17] followed the same strategy. The more recent Average Quadratic Coupled Cluster
(AQCC) functional of Szalay and Bartlett [18] attempts to remove some drawbacks
of its predecessors. In this work we present the hierarchy of approximate MR-CEPA
type functionals using the new framework of the CI overlap matrix dressing.

As demonstrated recently, one may reformulate various CEPA type approxima-
tions and the CC method itself in terms of a modified (‘dressed’) CI problem [19].
In this approach, the non-linear terms are taken into account through an iterative
dressing of the corresponding CI matrix. The new perspective proved to be very
fruitful, giving rise to a number of new promising alternatives to the existing MR-
CEPA and MRCC methods. The (SC)2CI method, which in the single reference case
may be regarded as an exact (or full) CEPA method [20], new state specific and state
universal MRCC [21] procedures have been proposed.

The above algorithms are based on an effective change of the CI Hamiltonian
matrix. Equivalently, the norm of the determinants i.e. the CI overlap matrix can be
modified. If the actual form of the dressing contains the unlinked non-linear terms
only, it leads to a size-consistent modification of the CI method. The advantage
of the new approach is that, in analogy with CPF-like computational schemes, one

may define an approximate, functional form of the method in order to facilitate com-



putation of the analytical gradients and properties. In particular, the present paper
introduces functional counterparts of the (SC)2CI method and its multireference gen-
eralization MR(SC)2CT [22], which will be referred to as Multireference Full Coupled
Pair Functional (MR-FCPF).

The paper is organized as follows. In the next section the new method is for-
mally introduced. Then its content is discussed and compared to other functional
size-consistent methods. The CPF, ACPF and AQCC functionals are shown to be
approximations with respect to the new MR-FCPF method. It is also suggested that
through a dressing of the norms one can achieve an approximate functional form for
the CC method, provided that the linked effects are also included in the dressing pro-
cedure. This enables one to formulate a simple alternative to existing CC gradient
schemes, applicable to multireference, ground and excited states approaches. In the
last section, numerical results for well understood model systems are used to gain

further insights into the relationships between different MR-CEPA type functionals.

2 Theory

In the following we shall consider a MRCI expansion defined in the configuration
space chosen as the union S @ s (with the associated projector 155@ s), where S stands
for a reference space spanned by reference determinants I and s for a space of ex-
cited determinants i e.g. single and double substitutions with respect to reference

determinants.

A) Size-consistent dressing of the CI overlap matrix

We shall first briefly recall the concept of self-consistent state-specific Intermediate
Hamiltonian, which has been recently used to introduce the (SC)?CI method (and
similar dressed CI schemes). The reader is referred to reference [23] for a more

detailed presentation.



The Schroédinger equation reads:
Eihpnﬁ ::lZnPynJa (1)

where |¥,,) and E,, are the exact eigenstates and eigenvalues. Using decomposition
of the full space into orthogonal subspaces, we may write for a given state |¥,,)

(ground or excited state) its exact expansion in terms of orthonormalized N-electron

basis {|I), |i), |a)}1es, ies, agsms:
| W) = [T505) 4 [T2). (2)

The projections onto the MRCI space and outer space are defined as follows:

[U52%) = Pogs|Tm) = > CTI) + > i), (3)
IeS 1€s
T2) = (1= Psgs)|[Um) = > ci|a). (4)
agS®s

Now, identifying the MRCI configuration space with the model space in the sense
of effective Hamiltonian theory, we would like to define an intermediate effective

Hamiltonian Pg@s(ﬁ + Am)ﬁs@s, where A™ is a dressing operator, such that
PS@S(ﬂ + Am)PSGBS‘\I’m) = EmPSGBS‘\I’m>- (5)

As usually for effective Hamiltonians, we require the exact energy when acting on the
projection of the exact eigenvector onto the model space. However, contrary to the
effective Hamiltonians that are required to reproduce all the roots in the model space,
the state-specific intermediate Hamiltonians are only required to give one exact root
(one-dimensional main model space) [23].

In order to satisfy eq. (5) the outer space summation has to be transformed into
a proper matrix element of a dressing operator in the model space. This may be
easily verified by writing down explicitly the algebraic form of the exact equation (1)
for the ¢ amplitude. A diagonal dressing [23]:

A = (> Hiach)(c") 6 (6)
agSds



is one of the possible forms of introducing an effective Hamiltonian that satisfies eq.
(5) exactly. The concept of such defined dressing scheme opens a way for systematic
modifications of the original CI problem [23], as described in the next paragraph.

The MRCI configuration space is S @ s. We do not know the outer space determi-
nants coeflicients ¢}’ and we approximate them using cluster theorem, as products of
the lower excitations coefficients (see for example eq. (14)), following the CC strategy.
This leads to an iterative, self-consistent scheme of solving pseudo-eigenvalue prob-
lem. In the first iteration, properly decomposed CI coefficients provide the starting
guess of the CC amplitudes, from which one may calculate the non-linear contribu-
tions (dressing) to be added to the CI matrix. Next diagonalization (or iteration of
a diagonalization algorithm) provides new estimates and the iterations are continued
until self-consistency is achieved. As a result one may restore the size-consistency
of CI (when dressing by unlinked effects only) or reproduce CC solutions (when the
linked terms are also included).

We have been assuming so far that the dressing concerns the Hamiltonian matrix.
Introducing a generalized eigenvalue problem one may, however, redefine the problem
in terms of a dressing of the overlap matrix. While the idea of a dressing procedure
as an actual realization of the intermediate Hamiltonian theory [25] may not apply
anymore, the general strategy of taking into account some outer space contributions
remains the same. As discussed in the remaining parts of the paper, adding the
non-linear terms to the overlap matrix, which is equivalent to an effective change of
the norm of the MRCI wavefunctions, opens new possibilities from both: formal and
practical point of view.

Let us consider a generalized pseudo-eigenvalue problem:
Hc = ESIc, (7)
where S¢T is an effective state-specific, diagonal overlap matrix:

S = 1= ( Y Hiacd)/(End"). (8)
agS®s



One may easily verify that the above definition reproduces the mth exact (full CI)

solution. Indeed, the explicit equation for the ¢ coefficient (ith row in eq. (7) reads:

ST HCP + Y Hyjel — Ep SET) e = 0. (9)
IeS JjEs
i

Since the outer space summation is completely taken into account via S, the above
equation is equivalent to that of the exact eigenproblem (1). Certainly, in analogy to
the state-specific intermediate Hamiltonians, all the other roots of eq. (7) are formally
not correct, though they may still be useful (see discussion in the next section).

Notice, that using the definition of the diagonal dressing A, one is led to the

(VR
following, energy and outer space determinants coeflicients dependent form of a de-

terminant specific dressing of the wavefunction norm:

m’LZ

S —1—AT/E,,. (10)

So far the dressing A7} remains unspecified and may take different forms, for example,
single or multireference, CEPA or CC type. The iterative character of a procedure
based on the above expression is clear again. However, a ratio of two quantities
changing with the iterations in a correlated way appears in eq. (10), as opposed to
eq. (6).

It is also worth remarking that one may reformulate the general eigenvalue prob-
lem of eq. (7) in the form of an expectation value expression. In order to establish a
link with functional methods considered in the subsequent sections of the paper we
define a state-specific operator:

= D gT NI+ Y g li)il. (11)

IeS 1€s

Acting on the left hand side of the exact eigenequation (1) with (I5®%| one gets after

trivial manipulation that:

B <\DS@S|HA'|\IJS€BS>
B = ST — (1) B (U5 AT (2




The contributions due to a given determinant 7 in the denominator of the last equation

are (c)? and —cY", ¢™H;o/Ey,. Defining the g quantities of G™ as gm = gt

7 m,t
and grouping together contributions due to a given determinant one may write:
(S |wSe)

<Q%@S|Gm‘\p%@s>

m

(13)

If the references are not dressed, then the g7* coefficients will be equal to one. Other-
wise, one may define them in a similar way as g7* = Sf;:f’ 77- The above reformulation
allows one to introduce for a specific form of the dressing its functional counterpart
that offers an important advantage, namely the simplicity of analytical gradient cal-
culations. In that regard, the present approach is an extension of the closely related
CPF strategy.

Finally, we would like to reiterate that even though the scheme considered here is
not restricted to the ground state only, it remains a one-state formalism i.e. for each
state the whole procedure has to be in principle applied separately. Unfortunately
generalizations to many states formalisms are not straightforward. However, an ap-
proximate reformulation of multistate dressings of the Hamiltonian matrix [21] in
terms of the overlap matrix dressing may be achieved, for example, by averaging the
energy over all the states considered in the dressing (in analogy to MCSCF procedure

for an average of the reference states).

B) The (SC)?CI and MR(SC)%CI methods revisited

The new MR-FCPF method may be seen as a functional reformulation of the self-
consistent size-consistent dressing of the MRCI matrix employed in the (SC)2CI
method [20]. Therefore, the latter method is briefly described below. Strictly speak-
ing, the (SC)2CI is a single reference method, as one of the reference determinants
plays a distinguished role. Nevertheless, it may in fact work in an arbitrary multiref-
erence space (e.g. numerically selected), leading to a ground state dressing of the
MRCI matrix. Here, for simplicity, we shall explicitly consider (SC)2CI method in
the MRCISD space.

10



Let the reference space S consists of the HF determinant |0) and some other
relevant determinants that are used to generate the s space of all the single and
double excitations from references. The relevant outer space determinants |a) are
triplets and quadruples with respect to the references. The outer space determinants
are subsequently redefined in terms of excitations from the HF determinant only and
are decomposed as products of lower (s-space) excitations with respect to |0). The
state-specific dressing concerns the ground state only and in the following the state
index m will be omitted.

The intermediate normalization is employed and the outer space determinants
coefficients are approximated by the products of the coefficients of determinants be-
longing to s. Thus, for |a) = €;¢;|0) where é; and é; are defined by |j) = €;|0) and

|i) = é;|0) respectively, for some determinants i,j € s, we postulate that:
Ca = CiCj. (14)

Inserting (14) into (6) and using the fact that the determinant basis is used (implying
that H;, = Hy;), one gets the following form of the diagonal dressing:

Aji = Eeorr + EPV; + R;. (15)

In the above equation, Ecorr = 3_; Hojc; is the correlation energy and EPV; denotes
sum over contributions from the conjoint or Exclusion Principle Violating (EPV)
terms:
EPV;=— Y Hyc;. (16)
J; €;€;=0
The term R; takes care of possible redundancy effects. For example, a quadruple
with respect to one reference may nevertheless belong to the s space as a double from
another reference and should not be approximated in terms of the decompositions
into s space determinants. Therefore,
R, = — > Hyjc. (17)
J; €;€;|0)ES®s
The dressing takes into account all EPV effects and therefore the (SC)2CI method

may be regarded as an exact (full) CEPA method, when restricted to doubles only.

11



Of course, A is dependent on the coefficients and the method is iterative. From the
practical point of view it is sufficient to calculate efficiently the EPV contributions.
Since this can be done easily, using a trick proposed for the infinite summation of
EPV diagrams [26], the method is simple modification of the original CI problem.

Numerical results support the claim that the (SC)?CI method ensures sufficient
quality of the ground state PES [20]. Perhaps surprisingly, the (SC)2CI was also
successfully applied to the description of many excited states, even though the ground
state dressing is used [27] (see discussion in the next section). There are however
many cases, such as strong quasi-degeneracy and certain excited states, that require
a truly multireference description. The Multireference Self-consistent Size-consistent
Configuration Interaction method [22] is a generalization of the (SC)?CI method, and
it aims at such difficult cases. In MR(SC)2CT all the reference determinants contribute
to the dressing in a way that reflects their total contribution to the correlation energy.
The diagonal, state-specific dressing of the MR(SC)2CI method, as introduced in ref.
[22], reads:

AR =>"(hP + EPV(i,])™ + R(i, I)™)pi}. (18)
T
The A" denote here the effective energy shifts of the references:

Wit = ¢ Hy)CP 7, (19)
1€S
whereas the terms EPV (i, I)™ and R(%,1)™ take care of all exclusion and redundancy
effects, with respect to a reference |I) [22]. The weighting factor (parentage ratio) is
given by pf} = H;;C'/ > ; HijCT.
As pointed out before, MR(SC)2CI and (SC)2CI methods are non-functional. In

the next subsection we propose a simple solution to this problem.

C) Multireference Full Coupled Pair Functional

The CI wavefunctions are obtained as solutions of the secular equation, which arises
when making the CI energy functional Fy;[®] = (®|H|®)/(®|®) stationary with re-

spect to the variations of the CI expansion coefficients cg, |®) = > ¢x|Px). Suppose
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that the functions |®;) are normalized and orthogonal (®4|®;) = dy; and consider a
modified functional:

Fg[®] = (®|H|9)/(2|G|®), (20)

where G = >k 9k|Pk) (Pk| and g are some real numbers, g € (0,1]. Following the
standard variational procedure one gets from such defined functional a generalized
eigenvalue problem (7), with a diagonal overlap matrix 8 = G. The quantity E,
which is the minimal value of Fg, is no longer bound from below by the real energy
(except for the case when all the diagonal elements of the overlap matrix g are equal
to one as in the original CI functional). One may, however, verify that E is bound
from below by a number M = E°/ming{gy}, where E is in turn bounded from
below by the real energy.

Any truncated CI functional is an approximation with respect to the full CI
functional, Fi;[¥] = (| H|¥)/(¥|T), leading to solutions that are not size-consistent.
One may ask, however, whether it is possible to define the quantities g; such that the
modified (truncated) functional Fi;, although not having the variational upper bound
property, would preserve size-consistency and provide better approximations to the
FCI solutions. Recalling now our previous considerations regarding the dressing of
the CI overlap matrix we may easily find the desired form of G.

As previously, we only consider one-state formalisms, assuming that |®,,) is the
mth MRCI eigenstate in the space S @ s. Putting now together (7) and (13) on
one hand and (20) on another, one finds that the mth exact (full CI) eigenvalue is
reproduced by the truncated functional Fg, if the g; quantities are identified with
the corresponding state-specific dressing of the overlap matrix, Sf?g ok = 1— A%/ B
For a specific form of the dressing, A7}, there is a corresponding functional scheme.
Before we introduce the Multirefrence Full Coupled Pair Functional (MR-FCPF),
which employs the MRCEPA type dressing, we shall modify slightly our definitions
and notation in order to keep consistency with other works devoted to similar func-
tionals.

From now on, the reference space S will be further divided into two orthogonal

13



subspaces, taking a zeroth order approximation to the mth state |®%,) = 3,5 C™|T)
as spanning one subspace and the remaining linear combinations of reference de-
terminants spanning its orthogonal complement Sg,. Assuming the intermediate

normalization, (®% |®,,) = 1, we may write:
|Pm) = |25,) +197,) = [®5,) +97,) + [27,), (21)

where |®2,) includes Sg,-space functions and |®{,) denotes now s-space functions,
respectively and |®¢) = |®%) + |PE,). The general expression for the expectation
value of the energy in the state |®,,) may be rewritten in the form of the correlation
energy expectation value:

- _(<D°+CI>C|H EQ|®Y, + ®¢,)
O (05 [05) + (26(95)

(22)

with the zero of the energy taken as E9, = (89 |H|®2) and obtained by the diago-
nalization in the reference space S.

The new MR-FCPF functional may be defined now. It reads:
(99, + ®|H — ES, |89, + 2°)
1+ (@0|G[@2) + (|G| D)

Fiepe[®] = (23)

The state-specific dressing of the norm of determinants is defined as follows (with &
index standing for n or 7):

=Y gle)(@)] 5 G =D gl (24)

ngcn =1- Akk/ corr: (25)

The actual form of the dressing A7} in (25) will be the MR-CEPA type dressing,
either of the (SC)2CI or of the MR(SC)?CI method, as defined in the eq. (15) or eq.
(18), respectively. In order to distinguish between these two versions we shall denote
the one corresponding to the (SC)?CI method by MR-FCPF(g), with g standing for
the ground state dressing.

It is important to realize that the quantities gx’s are coefficient and energy (and

thus also nuclear coordinates) dependent, gy = gx(C(R), E(R)). Reflecting a pseudo-
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eigenvalue problem arising within the self-consistent intermediate Hamiltonian dress-
ing scheme, the expression in the definition (23) of the MR-FCPF remains a pseudo-
functional. In order to obtain a purely functional form that may be used for efficient
gradient computations one has to get rid of these dependencies. We propose here a
simple solution to that problem, namely fixing g;’s as numbers at a conveniently cho-
sen geometry, Ry. Either converged (“dressed”) or partial solutions, C(Ry), taken
from a given dressing iteration or even from the pure CI eigenstate may be used to
evaluate gi’s. As discussed in the next section, such an approximation works well
since the coefficients gy are slowly changing ratios of two quantities.

The formal properties of Ff’cr;f[q)c] are the same as that of the general Fg func-
tional. It is an approximation to the FCI functional without the variational upper
bound property, although it is bound from below by a finite number. Variations with
respect to the expansion coefficients in ®¢ (subject to normalization constraints) give
rise to a generalized eigenvalue problem, with the diagonal elements of the overlap
matrix equal to the corresponding coefficients g, when they are fixed as numbers.
As we demonstrate in the next section, other MR-CEPA type functionals, such as

ACPF and AQCC are approximations with respect to MR-FCPF.

D) Discussion and comparison with other methods

The CPF, ACPF and AQCC functionals are based on the observation that the ef-
fect of higher excitations (necessary to restore size-extensivity) manifests in a partial
cancellation of the CI functional norm denominator or in other words that the outer
space effect may be effectively taken into account by a proper change of the normal-
ization [15] [16]. Clearly, the new MR-FCPF is closely related to CPF-like functional
methods.

Let us first consider the MR-FCPF(g) variant, which employs the ground state
dressing of the (SC)2CI method, A;; = Eopr + EPV; + R;. Now, the zeroth order
approximation to the exact ground state is just the HF determinant |0) and zero

of the energy is taken as Ey = (0|H|0). The MR-FCPF(g) dressing of the norm of
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determinants is given by:
9i = S = —(EPV; + R;)/Ecorr- (26)

In the CPF method, on the other hand, one defines pair functions (in the usual
CEPA sense) and then norm of each pair function is multiplied by a factor g,, chosen
to satisfy certain limit conditions [16]. The ACPF employs an averaged, common
factor g = 2/N, derived from a requirement of a correct description of a supersystem
of n, identical, non-interacting pair systems:

1 2
a n, N
where N is the number of electrons and 2n, = N. The single reference ACPF energy
functional reads A
0+ U |H — Eyl0+ T,)
1+ g(Pe|¥e)

In the single reference case the difference between CPF and ACPF comes simply from

Frepr[ 0] = ¢ (28)

the less refined statistical limit employed by the latter method. For heterogeneous
electronic systems the g; factors may significantly vary within a given pair since they
may involve excitations to orbitals of very different nature. As demonstrated by the
explicit computation of g; quantities for some model systems they are indeed quite
different. In light of this observation, the ACPF approximation appears to be weakly
grounded.

However, the notion of the electron pair is no longer employed in ACPF and the
method may be defined for the MRCISD functional with respect to a multireference
zeroth order energy, for both - ground and excited states [17]. Such a generalization is
rather heuristic, as discussed later. Nevertheless, the reported so far numerical results
of the MR-ACPF method are very encouraging [6] and it is desirable to understand
this fact better. The MR-AQCC method [18], which may be viewed as a functional
generalization of the Meissner’s size-extensivity correction for single reference CI [29],
represents an improvement over MR-ACPF as it partially takes into account the EPV
terms due to the particle indices. Recently, a further improvement of MR-AQCC has

been proposed, which partially includes also redundancy effects [18].
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The MR-FCPF(g) method is different from the original CPF by determinant-
specific change of the norm. One also avoids restrictions to pair and single reference
closed shell theories as in MR-ACPF. However, contrary to MR-ACPF or MR-AQCC,
both the EPV and redundancy contributions are taken into account exactly, without
any averaging.

In the limit of non-interacting pairs the determinant specific g; factors of the
FCPF(g) functional reduce to the common ACPF factor. Consider the (SC)2CID
dressing for a system of n, identical non-interacting, closed shell electron pairs (e.g.
separated Hy molecules). In the single reference case, Aj; = Eopr + EPV;, since the
redundancies are only relevant when one dresses the MRCI. Let the determinant |i) =
2 ) belong to a pair 4 = mn. Certainly, all excitations é;, |7) = |¢4,) € u, are not
possible on ¢, whereas charge transfer excitations involving indices of different pairs
have vanishing matrix elements. Thus, we get that EPV; = —¢,. The supersystem

correlation energy is equal to the sum of localized pair energies and therefore:

—EPV; € 2
9 = ‘= npu = (29)
Ecorr v=1€u N

Note, that putting all EPV’s as zero one gets the functional form of CEPA(0) found
already by Cizek [16] [2].

Regarding the practical implementation let us notice that the determinant de-
pendent g; factors may be evaluated at some geometry of interest or averaged over
a range of nuclear frames. Furthermore, they may be obtained from pure CI coefhi-
cients i.e. effectively from the first iteration of dressing or after subsequent iterations.
One has to diagonalize the CI matrix first (dressed or not) or provide another (e.g.
perturbative) starting guess and then use such evaluated g; in the MR-FCPF step. In
this way one obtains a functional (and not only pseudo-functional) form of dressing,
differing from the CPF one by the fact that all diagonal elements of the overlap ma-
trix are different. It means that the density matrix and gradients may be evaluated
analogously, as described in ref. [16], with the numerical cost essentially the same
as that of CI gradient computation. The g; coefficients should not strongly depend

on the dressing steps since they are relative quantities. Fixing them from the pure
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Figure 1: Symmetrical bond stretching in water. MR-FCPF(g) curve compared to
that of its parent (SC)?CI method. DZ basis set and equilibrium geometry (Ro g =
1) from Saxe et al [33]. The CIPSI procedure used to select numerically the reference

space of 21 determinants. Zero of the energy is set to 76.0 H.

CI coefficients (by simple evaluation of EPV contributions) brings about only small
error as shown by preliminary numerical applications presented in the next section.
Let us also note that the results of the MR-FCPF and its non-functional counterpart,
(SC)2CT, will be only identical at a specific nuclear frame that was used to compute
the g; coefficients.

As already pointed out in the Introduction, even keeping the coefficient dependent
factors g;, one may define a functional, which furnishes the starting equations (of
the CEPA or CC type) when making it stationary with respect to variations of
the coefficients. Nevertheless, such a functional depends on additional parameters
(Lagrangian multipliers) [14] and therefore the calculations of derivatives becomes
expensive [6]. The simple alternative, which is presented here, provides an excellent
approximation to the true functionals in the local neighborhood of the geometry to
be optimized (see next section) and may be viewed as pragmatic solution applicable
to various MRCC type formalism. Starting from the definition of eq. (6) one may
add the linked CC type corrections as well, obtaining the CC type of dressing [19]

[21] and then the corresponding functional approximation.
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Figure 2: Convergence of MR-CEPA type functionals for water at equilibrium ge-
ometry. The MR-FCPF(g)/(SC)2CI results with the increasing size of the reference
space are compared to that of other multireference functional methods. DZ basis
set and equilibrium geometry from Saxe et al [33]. The CIPSI procedure used to
select numerically the reference spaces which consist of 5, 8, 21 and 46 reference

determinants with the selection threshold n = 0.05, 0.04, 0.03 and 0.02, respectively.

Let us finally comment that MR-FCPF(g), following its non-functional counter-
part, is essentially a single reference formalism working in the multireference CI space.
Thus, we assume that the outer space determinants coefficients are defined with re-
spect to a single determinant, |0), and the remaining references play only the role of
generators of the CI space, assuring that the non-dynamical correlation effects are
taken into account. In MR-FCPF(g), similarly to MR-ACPF or MR-AQCC meth-
ods, one may obtain solutions for excited states as well. However, the dressing or the
change of the norm remains the ground state only. It cancels to a great extent the
ground state unlinked effects, but the quality of the description of the excited states
is, in principle, difficult to estimate.

Thus, the MR-FCPF method should be advocated for the description of the
excited states. On the other hand, in many situations it is sufficient to calculate first
the ground state correlation effects and then to take into account modifications due to

excited states. In other words, one may assume the transferability of the correlation
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effects between the ground and excited states. In fact, many methods for excited
states, such as SAC-CI [30], EOM CC [31] and the Green function method [32], are

such single reference formalisms working in the multireference spaces.

3 Numerical examples

As shown in the previous sections, the state-specific dressing of the Hamiltonian
matrix may be transformed into a corresponding overlap matrix dressing and con-
sequently into a functional procedure. However, the reverse is also true i.e. one
may obtain the results of a given functional in terms of a proper Hamiltonian matrix
dressing. This fact was used to obtain preliminary results of the MR-FCPF method,
as well as calculated for comparison results of MR-AQCC and MR-ACPF. The lat-
ter method for instance leads to the following simple diagonal dressing of the MRCI

Hamiltonian matrix:

N -2
Azr'ril,a,cpf = (1 - gacpf)Em = ——FEq

corr N corr?

(30)

where the correlation energy is defined with respect to zeroth order energy obtained

by the diagonalization in the reference space.

H>0 Symmetrical bonds stretching in water molecule using the DZ basis set is a
well known benchmark [33] that has been used to test and calibrate many methods.
We first examine the MR-FCPF(g) variant of the method and compare it in detailed
manner with MR-AQCC and MR-ACPF. The CIPSI procedure [34] was used to
generate the MRCI spaces: in the first step threshold 7 is set to choose references

and in the second step all singles and doubles are produced with zero threshold.

The potential curves of (SC)2CI and MR-FCPF(g) methods, corresponding to
the symmetrical stretching of the O-H bonds, are presented in Fig. 1. The numerical

selection of reference functions leads to a reference space of 21 determinants (threshold
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Table 1: Symmetrical bond stretching in water. DZ basis set and the geometry from
Saxe et al [33] are employed. Energy errors in millihartrees, with respect to the full CI
energy given in the first row. CAS reference space as specified in ref. [35]. SCF, FCI
- ref. [33], CASSCF, MRCI, MRCIy, - ref. [35] and this work; MRACPF, MRAQCC
- ref. [6]; MR(SC)?CI - ref. [28] and this work.

Method R, 1.5R, 2R,
FCI —76.15787 | —76.01452 | —75.90525
SCF 148.0 211.0 310.1

CASSCF 95.0 90.2 78.0
MRCI 2.1 2.3 2.0
MRACPF 0.0 0.2 0.5
MRAQCC 0.6 0.8 0.9

MR(SC)%CI, —0.6 —-0.3 —-0.2
MR(SC)?CI 1.7 1.9 1.5
MRFCPF 1.7 2.0 2.0

n = 0.03). Once selected, determinants were kept as references while changing the
geometry. The g; coefficients of the MR-FCPF(g) are fixed here at the equilibrium
geometry of the ref. [33] (O-H distance equal to 1 in the figure), from the converged
(SC)2CT dressing. Thus, both methods give identical results at this geometry and
there are growing discrepancies when going to elongated or squeezed geometries.
These discrepancies, however, are very small in the region near the equilibrium
geometry or, in other words, in the neighborhood of the geometry at which the
effective change of the norm was fixed. When using the g;’s fixed from the pure CI
coefficients (and not from the converged dressing) a hardly distinguishable curve is
obtained (results not shown). For example, at Ro_g = 1.05R., (point not shown
in the figure) the MR-FCPF(g) energy is shifted with respect to the (SC)2CI energy
(which is in turn 1.1 mH below the MRCI result) by only 15 pH, if the g;’s are fixed
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Figure 3: Weakly avoided crossing in LiF. The (SC)2CI (denoted by SC2) and AQCC
potential energy curves of LiF are compared to FCI results. Ground (Gs) and excited
(Es) states curves are presented. The basis set and reference spaces as described in
Bauschlicher et al [37] and in the text. Note that location of the avoided crossing is

not correct in AQCC case.

from the converged equilibrium geometry dressing, or by 24 pH if the g;’s are fixed
from the equilibrium geometry CI coefficients.

Thus, one may conclude that the equilibrium geometry properties obtained using
MR-FCPF(g) method should remain essentially the same as those of the (SC)2CI,
even for a simple estimate of g;’s in terms of the CI expansion coefficients. As we
are interested in the relative errors, we may compare for example simple harmonic
vibrational frequencies resulting from the curves presented in Fig. 1. They are
different by 0.2 cm !, with the absolute values of about 3472 cm ! (the experimental
frequency of the symmetric stretching mode is equal to 3832 cm!). The differences
between the equilibrium distances are also negligible - the change is smaller than
0.001 Angs.

Comparison of the MR-FCPF(g) results with those of MR-ACPF and MR-AQCC
is also of interest. In Fig. 2 we show the convergence of the MRCI, MR-FCPF(g),
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MR-ACPF and MR-AQCC (the MR prefixes are skipped in the figure description)
energies at the equilibrium geometry [33], with the growing size of the reference space.
Again, the CIPSI procedure was used to generate the MRCI spaces and the number
of reference determinants was equal to 5, 8, 21 and 46 with the selection threshold
n = 0.05, 0.04, 0.03 and 0.02 respectively.

For small reference spaces the MR-ACPF and MR-AQCC results (which were
obtained using a simple modification of the CI problem based on the eq. (30)) seem
to be favorable. One may notice however, that only the MR-FCPF(g) resembles the
nice convergence of the variational MRCI, approaching smoothly the FCI result (zero
of the energy in the figure) from above. We would like to stress that although the
MR-ACPF and MR-AQCC methods may give in some cases better results due to
a cancellation of different errors, namely the neglect of some EPV and redundancy
contributions on one side and the contributions of triple excitations on the other, it
is desirable to understand such coincidences using more accurate methods.

The explicit computation of the g; quantities shows their inhomogeneous char-
acter. For the water molecule, a single ACPF factor of ¢gPf = 0.2 is used, in both
- single and multireference case and for both - ground and excited states, while the
correlation energy defining the final dressing of eq. (30) is state-specific. On the
other hand, the actual (not averaged) values of the g;’s are quite different. They
may vary from 0.1 to 0.6 even within a given pair in the single reference FCPF(d)
with doubles only. This simply reflects the fact that excitations to very different
unoccupied orbitals are involved.

When the reference space becomes larger, inducing a more effective mixing of
different categories of excitations and smaller size-inconsistency error already on the
MRCI level, the corrections to be introduced by the change of the norm should be
smaller. Indeed, the average value of the MR-FCPF(g) g¢; factors for water at equilib-
rium geometry changes from 0.47 (which is much different from the 0.2 ACPF factor)
in the single reference case to 0.74 with 21 reference determinants (the standard devi-

ations are about 0.1 in both cases, showing quite wide distribution). MR-ACPF and
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MR-~AQCC methods account for this change using effectively smaller correlation en-
ergy, which is defined with respect to a multireference zeroth order function, whereas
the correction factor is fixed and of single reference character. This strategy may fail
when the reference space contribution to the total wavefunction and energy does not
coincide with the decrease of the exact g; factors. It is certainly more likely to occur
in case of the less refined ACPF renormalization, explaning why AQCC seems to be
less sensitive to the choice of the reference space [18].

On the other hand, the MR-FCPF(g) method, as its non-functional counterpart,
must fail when strong quasi-degeneracy occurs. In such a case the truly multireference
formalism of MR-FCPF, resulting from MR(SC)?CI method, should be used. In
Table 1 we present results of the MR-FCPF method, in comparison with some other
relevant methods. The CAS reference space of 20 determinants as specified in the
ref. [35] is used. The g; coeflicients are fixed at the equilibrium geometry from the
MR(SC)2CI solutions (alternatively, the simpler MR-CEPA (0) type approximation
of MR(SC)2CI ¢ method could be employed). The overall parallelism of the MR-
FCPF and FCI results is quite nice, but simultaneously the deviation from the parent
MR/(SC)?CI method increases up to 0.5 mH at 2R,.. Thus, fixing the effective change
of the norm at one geometry works very well near this point, which is most essential
from the point of view of geometry optimization, but does not necessarily insure
sufficient accuracy in the whole range of the conformational changes. In such a case
averaging the g; coefficients over crucial geometries of interest may be used to improve

the results.

CHJ The five lowest states (1-5) 24; of CH,, for which the FCT results are known
[36], were used as a test of ACPF method by Gdanitz and Ahlrichs [17]. It was also
used to check the numerical efficiency of the MR(SC)?CI method [28]. This gives
us the opportunity to reinterpret this test in terms of the functional counterpart of
the MR(SC)2CI method. As these were single geometry calculations, the MR-FCPF
results obtained from the converged MR(SC)2CI dressing are identical to the results
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of MR(SC)2CI presented in detail in ref. [28]. We only summarize here that the MR-
FCPF/MR(SC)2CI results are significantly better (except for the first root) than
those of MR-ACPF method.

LiF For the sake of further comparison of the new MR-FCPF(g) method and its
non-functional (SC)2CI counterpart, we calculated the potential energy curve of a
strongly polar diatom. In such a molecule the dissociation breaks quite suddenly,
through a weakly avoided crossing, the ionic Li*F~ bond into a LiF pair of neutral
free radicals. The change in the wavefunction occurs at rather long distance (ca
12 bohr) and its position is very sensitive to the precise inclusion of the dynamical
correlation energy. The correlation energy lowers more the ionic forms than the
neutral ones and thus moves the curve crossing towards larger interatomic distances.
This curve crossing, involving the two lowest ! 3.7 states, has been the subject of
several theoretical studies [37].

We shall adopt the same basis set and methodology as Bauschlicher et al. [37].
The active space consists of 40, 5o, 17 and 27 orbitals, providing correct description
in the dissociation limit. In contrast to Bauschlicher et al., however, the orbitals 1o,
20 and 30 were not frozen at the CASSCF level but only at the MRCI level. Thus,
the molecular orbitals come from an average CASSCF(2220) calculations whereas
the MRCISD is based on two electrons in two molecular orbitals CAS(2000) active
space. We have also performed full CI calculations for both states involved in the
dissociation.

As the electrons are localized, the number of interacting pairs varies with the
distance. Indeed, below the critical interatomic distance the eight valence electrons
are localized on F'~ while in the neutral asymptote the valence electron on Li is
not significantly correlated, at least not in the same proportions than in F~. One
may therefore expect that the AQCC correction, based upon a statistical calculation
averaging the number of electrons pairs, will not yield the same error in the ionic

region as in the neutral one. As a consequence the position of the avoided crossing
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Figure 4: Weakly avoided crossing in LiF. Same as in Fig. 3, except that the (SC)2CI

and AQCC potential energy curves of LiF are compared to MRCI results.

may be significantly shifted. In contrast, the (SC)?CI method, evaluating all specific
EPYV corrections, should give more reliable results.

Figure 3 presents the FCI, AQCC and (SC)2CI potential energy curves for the
lowest states, whereas figure 4 reports the MRCISD results with their AQCC and
(SC)2CI corrected counterparts. As can be seen, AQCC performs rather well, giving
an error of ca 10 3au. However the error of (SC)2CI is always smaller for both states.
Moreover, the AQCC error is larger for the ionic state, compared to the neutral one,
and increases slightly with the interatomic distance. As a consequence the position
of the curve crossing is shifted from 12.5 bohr (FCI result) to 11.8 bohr with the
AQCC approximation. In contrast, the curve crossing position is correctly located
with the (SC)2CI method.

This example demonstrates the limits of procedures that are based on statistical
estimates of the EPV corrections. Using the proposed here generlized procedure,
it is possible to obtain a good functional approximation to (SC)2CI in all parts of
the potential energy curve, recalculating the g; factors at some critical geometries of

interest, such as the region of avoided crossing.
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4 Conclusions

In this paper we formally develop a new size-consistent modification of the MRCI
method, through an effective change of the norm of the MRCI wavefunction. Starting
from a brief recall of the self-consistent, state-specific intermediate Hamiltonians
theory [25], which was previously used to introduce various CEPA and CC type
dressings of the MRCI Hamiltonian matrix, one derives an equivalent, general form
of the dressing of the MRCI overlap matrix.

Its specific form in the case of the (SC)2CI and MR(SC)2CI methods is explicitly
considered. The coefficient and energy dependent Hamiltonian matrix dressing of
this method is transformed into effective change of the norm of determinants. Simple
approximation is proposed, in order to obtain a functional form without dependence
on the nuclei geometry. It is demonstrated that the determinant specific dressings
change slowly with the change of geometry, as they are expressed in terms of ratios
of two quantities that may change quickly, but in a correlated way. For this reason,
one may evaluate an effective change of the norm at some geometry and use it also
in its sufficiently large, for geometry optimization, proximity.

The above procedure was used to define the functional counterpart of (SC)2CI,
referred to as the Multireference Full Coupled Pair Functional. The computation of
analytical gradients within MR-FCPF follows the gradient procedures of approximate
MR-ACPF and MR-AQCC functionals. The formal properties of ACPF and AQCC
are revisited to understand better the way, in which cancellation of errors takes place,
ensuring quite encouraging results of these simpler functionals. It is explained why
ACPF and to a smaller extent AQCC are sensitive to the choice of the reference
space, which may lead to their failure.

The discrepancies between strictly size-consistent treatment of (SC)2CI and only
approximately size-consistent functional counterpart may become significant at ge-
ometries much distorted with respect to conformation used to define the effective
norm. An apparently local character of MR-FCPF may be, however, circumvented.

One may easily average the dressing over a few relevant geometries, if high accuracy

27



is required for a large geometrical region.

Another aspect of the new procedure may be of special interest. A determinant
specific change of the norm is not restricted to the disconnected parts of the higher
excitations. Taking into account linked terms of the CC method as well opens a way
to introduce simple, approximate functional forms of various CC methods. In analogy
with the MR-FCPF and MR-ACPF, the analytical gradient machinery developed for
MRCI may be then utilized.
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