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Abstract. distance methods, such as &N method, many popular
The class of similarity based methods (SBM) covers most neural modePeural network models, such as the Radial BaS.IS Functions
g%BFs), Multilayer Perceptrons (MLPs), Learning Vector

and many other classifiers. Performance of such methods is significantl tizati LV b ted in this f cl
improved if irrelevant features are removed and feature weights introduced, uantization (LVQ), may be presented in this form. as-

scaling their influence on calculation of similarity. Several methods forfea—smca'tlodn prob%bllltyp((ij!X.; M)ﬂ:S dleter.rplnid by parghme-
ture selection and weighting are described. As an alternative to the globa ers and procedures defining the classification midieh-

minimization procedures computationally efficient best-first search methodCIUdIng cost functions, S|m|Iar|ty functions (usually distance

are advocated. Although these methods can be used with any SBM classiflel'll’ncuons)’ number of reference centers included in similarity

they have been tested using the k-NN method, since it is relatively fast an%valuatlons' size of th neighborhood considered, weight-

for some databases gives excellent results. A few illustrative examples sthJ\clvg funCtlon$ .eStI.matmg Con.trlbutlon of reference vecR_)?s

o - . to the classification probability, procedures for selection of

significant improvements due to the feature weighting and selection. .

the set of reference vectors, procedures for feature selection

and feature scaling and several other factors. Minimization
Introduction of a cost function using gradient procedures is possible only

if the parameterization op(Ci|X;M) allows for gradient
ANY neural, pattern recognition and machine Ieamingcomputatlons, otherwise non-gradient minimization methods

methods developed in the past use explicitly or irn_should be used. Since these methods are computationally
plicitly similarity measures during the training and classifi- €Y demanding search-based procedures should be consid-

cation process (although our focus here is on classificr:ltio‘l’a‘ured as an alternative.

the same reasoning may also be applied to regression aidhe SBM framework enables systematic generation of many
pattern completion problems). Empirical evaluation of 20classification models of increasing complexity, including
statistical, neural and machine learning classification methaew neural network models. The best method for a given
ods made within theStatLogproject [1] showed that the problem should be selected automatically from methods be-
simplest version of the nearest neighbor method, using ®nging to the SBM framework, starting with the simplest
single neighbor only, achieved best results in classification ahethod (such ak-NN) and adding more complex features
4 out of 22 datasets, and close to the best results for anothentil no gain in performance is observed. For each type
3 datasets, i.e. in about 1/3 of all problems consideredf classification model there is an optimal data-dependent
(see also a more recent comparison of different methods bgomplexity, but if the optimal model obtained at a given stage
Rohwer and Morciniec [2]). It is now clear that no single is enhanced in qualitatively different way (i.e. by optimiza-
classification model will outperform all other models for all tion of different types of parameters rather than adding more
datasets. Therefore a useful strategy is to have a comma@arameters of the same type) better performance may still
framework generating many classification models and to sbe achieved. For example an optimal number of neurons in
elect empirically the best method for a given dataset. If weaussian-based RBF network may be determined by cross-
could systematically increase the complexity of classificatiorvalidation, but the results may improve further if dispersions
models, finding an optimal combination of parameters an@f all Gaussian are optimized independently, and improve
procedures should result in best (or close to the best) perfoeven further if additional parameters related to rotation of
mance in almost all cases. Gaussian functions are provided or if the distance function
Hsed by Gaussian transfer functions is changed from Eu-

A general framework for similarity-based methods has been'.
clidean to a more general one.

presented recently [3], [4], [5]. Except for classical minimal



An important aspects of all SB methods concerns selectioputation add more flexibility to the SBM framework. The
and weighting of features. Memory based algorithms denumber of output classes may either be relatively small or
grade their performance when irrelevant or noisy features atie may be a continuos number, in which case classification
used. Many methods of feature selection and weighting haverobabilitiesp(Ci|X; M) become continuos functions. The
been developed so far. Wettschereck and Aha [6], [7] proeost function is:

pose a five-dimensional framework to characterize different

methods of feature weighting. We have developed and tested E{X};R,M) = (1)
several new feature selection methods usefukidiN and Z ; R (Ci,C(X))H (p(Gi|X;M),S(Ci,C(X)))
other SB methods. They are based either on the global min- T

imization of cost functions [8] or on search techniques. Inwherei =1...N; runs over all classes andover all training
the framework of Wettschereck and Aha they use feedbackectors,C(X) is the true class of the vectdt and function
do not change feature representation, use global weights, dit(-) is monotonic and positive, often a quadratic function.
not use task specific knowledge and perform both featur&he elements of the risk matrik (C;,C;) are proportional
selection and feature weighting. to the risk of assigning th€; class when the true class

In the next section a brief description of the SBM frameworkiS Ci . (for examp_le, R (Ci_’ Cj) =1~ 6”.)' The similar_ity
nction S(C;,C;j) in the simplest case is equal &, while

is presented. The third section deals with new algorithms fo ) i :
or continuos number of classes it may be proportional to

feature selection and scaling, presenting global minimizatio o~ . ;
and search based methods. Empirical results are discusse 'n(R (G,Cj) +1), or defined in a problem-dependent way.

the fourth section and in the fifth section neural realization oM specifies all adaptive parameters and variable procedures
the nearest neighbor method is presented. A short summaoy the classification model that may affect the cost function.
is presented in the last section. Regularization terms aimed at minimization of the complexi-
ty of the classification model are frequently added to the cost
function, helping to avoid the overfitting problemsH(-) is

A framework for the similarity-based methods. quadratic function of

N THE SBM framework the probability of classification _ 2

p(Gi|X;M), whereX is a vector of an unknown class ~ H(X;M) =% (miaXD(CiIX’;M) —6(Ci,C(X)> 2)
andM describes the classification model used (values of all J
parameters and procedures employed), is determined usistpndard mean square error function is recovered. To mini-
the information provided in the similarity measiéx,R}),  mize the leave-one-out error the sum runs over all training
where{RI},j = 1.\ is a set of class-labele@(R!) training  examplesX! and the model used to specify the classifier
vectors. A general model of an adaptive system used fashould not contain th&! vector in the reference set while
classification should include at least the following elements:p(Ci|X!) is computed. In local regression based on the
M = {D(;r),G(D(-),k),{RI},{p(R)},E[-],K(-)), where: minimal distance approaches [9] the error function is usually
D(-;r) is a function (usually based on a distance function) or _ . _
a table used to compute similarities anis the maximum E(X;M) = Z K(D(X!,R))(F(X!;M) —YJ)2 3)
size of the neighborhood considered; )
G(D(X,R}),k) is the weighting function estimating contri- whereY! are the desired values fot! and F(X1;M) are
bution of the reference vect®! to the classification prob- the values predicted by the moddl Here the kernel func-
ability andk is the number of reference vectors taken intotion K(d) measures the influence of the reference ved®rs
account in the neighborhood Xf, on the total error. For example, K(d) has a sharp high
{RI} is the set of reference vectors created from the set gieak around = 0 the functionF (X; M) will fit the values
training vectors{Xi} by some computational procedure; corresponding to the reference input vectors almost exactly
p(R) is the set of class probabilities for each reference vectaand will make large errors for other values. This is not
(confidence in tha priori knowledge, useful for clearing the the same as the weighting functi@(d) which is used to
data); estimate the influence of reference vectors on the final result.
E[] is the total cost function minimized at the training stage;In classification problems kernel function will determine the
K(-) is the kernel function, determining for a given training size of the neighborhood around the known cases in which
example the influence of error on the total cost function.  accurate classification is required.

In addition an adaptive system may include several classbistance functions provide natural similarity measures in
fication modelaM; and an interpolation procedure to selectcases in which we may define them. Calculation of distance
between different models or combine results of a committeés most often based on Euclidean metric for continuos inputs
of models. Various procedures for selection of features, minand Hamming metric for binary inputs. Additional param-

imization algorithms, architectures used for network com-eters that may be optimized are either global (for all data)



or local (for each reference vector). Minkowski's metric should pick out this feature as the most important, rejecting

involves one global parameter, exponantScaling factors all other features as superfluous and giving classification

are useful global parameters — for Minkowski's distance: accuracy of 100%. This simple test should be used for

\ all feature selection or feature weighting methods. In the

N R PR description of our algorithms we assume that a training set

DX, Y;9)" = IZSd(X|,Y|) ) is used for feature selection or determination of weights.

If separate training and test sets are not provided than the

training/test sets are obtained from stratified crossvalidation
procedure.

where d(-) function is used to estimate similarity at the
feature level and in the simplest case|¥ — Y;|. If all
contributions|sd(X;,Y;)| for some input feature are small
the feature may be eliminated. To facilitate elimination of The feature ranking algorithm proceeds as follows: 1) Pa-
features that are not useful for classification the cost functiorameters are optimized and the accuracy is checked using
may include additional penalty term, such as the surgfof all features. 2) Accuracy with each feature turned off is
(the weight of the most important feature should be fixed atletermined in crossvalidation tests done on the training part;
1). There are many methods that attempt to determine scalirayerage change in accuracy and variance of this change for
factors without adaptation (cf. recent review [7]). each feature is noted. 3) Ranking of all features is done
on the basis of accuracy changes. 4) Accuracy of classi-
fication is checked adding features, starting from a single
most significant feature, i.e. the one that, when removed,
d(Xi,Yi) = zaijU(Bij IXi = Yil = vij) ) created the largest decrease of accuracy. Hill climbing is
]

Combination of sigmoidal functions offers a good parame
terization and easy network realization:

used at this stage — only those features that, when added to
the growing list of features, contribute to significant increase
L Sum of $ sigmoids of accuracy (significance is estimated using the calculated
variance for each feature) are accepted on the final list of
relevant features. Using crossvalidation for feature ranking
makes this model rather robust. Rdfeatures not more than

0.9

0.8

o7t 2N evaluation steps are required.
o6t 1 The feature dropping algorithm is similar although more
sl | costly: 1) Parameters are optimized and the accuracy is

checked using all features. 2) Features are turned off one
after another and the leave-one-out test K&N) or strat-
ified crossvalidation test is performed on the training file to
o2} | determine the change in classification accuracy. 3) Feature
leading to the highest accuracy improvement (after the fea-
ture is dropped) on the training file is selected as the least
o 1 2 3 4 5 & 1 8 9 10 important and removed from the input set. 4) The whole
Fig. 1. Sum of 3 sigmoidal functions provides a useful distance functionproc-:edure- is repeatdd —1 times until Onl.y one feature is
Ithét minimizes in-class and maximizes between class distances. leftin the input set, presumably the most important one.
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Although this algorithm may be used with any method it
Such functions allow to minimize in-class and maximize be-s particularly easy to use with tHeNN algorithm because
tween class distances (as it is done in the Fisher discrimnagbmputational costs of the leave-one-out test are in this case
analysis, cf. [1]), and may be used in classification modelgather low: apart from the value df there is no learning
that provide sharp, hyperrectangular decision borders, simand the cost of each step is equal to the cost of classification

lar to logical systems [10], [11]. of all training vectors. If the cross-validation calculations
are performed the leave-one-out test is done on the training
Feature selection and weighting methods. partition of the dataset. The number of the leave-one-out

evaluations in the worst case - (N+1)/2—1. The

IMILARITY based algorithms faced with many features sequence of features that should be removed to achieve the

that are not necessary for predicting the desired outpuiighest classification accuracy on a training file is selected
may perform quite poorly. We have developed several methafter allN — 1 steps are performed. It may happen that at
ods for feature selection and weighting, based on variantsome level there is no improvement and the feature which
of “the best first” search strategy [14]. A simple test forleads to minimal degradation is selected. If the number of
such methods is to add a class number (or a function of &eatures is large and there is no improvement for several
class number) to the list of features. Good selection methods



levels the procedure may be stopped, because there is lititeher weights changed (they should be positive, at least for
chance that results will improve at a later stage. The pea#tistance function Eq. 4).

performance is usually observed after all irrelevant feature§heso algorithm is ‘a mirror image’ of th&L algorithm: in

are dropped. 0 features are added, starting from a single one, argl in
This method is more expensive but allows to take the interfeatures are dropped, starting from all featuf&salgorithm
actions between different features into account, while theisually works better and therefore it is described below. 1) In
feature ranking algorithm works well only if features arethe initial ranking of the features all weighting factors are set
approximately independent of each other. Standardizatioto one. 2) Evaluation with a single feature turned off (weight-
of the input vectors before the feature selection procedure iag factors = 0) is made foi = 1...N. Thus the ranking is
usually desired. The feature dropping method is acceptabldone in the same way as in the feature dropping selection
if the number of features is not too high, otherwise it maymethod. The most important feature has a fixed value of
be too slow. In such a case the feature ranking methothe weighting factos, = 1 and the optimal weighting factor
should be used, or the feature dropping selection may b@r the second featurg in the ranking is determined by the
performed using the subset of features with highest ranksearch procedure. The classifier’'s performance is evaluated
for example those that significantly decrease accuracy whewith § = mA > 0 (the default i€ = 0.05) and the remaining
dropped. After the final selection of features parameters ofveighting factors are all fixed (initially at 1, later at their
the classification model are reoptimized again and resultsptimal values). 3) The search is repeated for feature that has
checked on the test set. the next-highest rating, with optimal values of weighting fac-

Feature selection is the special case of feature Weightiné‘?rS for higher ranked features kep.t f|x§d e Iowe_r—ranked
i.e. calculation of optimal weighting factossin the metric catures left at 1. 4) After determination of all weighting

function Eq. (4). If the cost function is taken as the numberraCtorS performance of the classifier is evaluated on the test
of classification errors (i.e. it is discontinuous) only non-S€t The total number of evaluations on the training set is

gradient minimization procedures are applicable. We hav8" the order ON/A' The met_ho_d cc_)rresponds to quantized
used the inexpensive simplex method (local procedure), apersion of the line search optimization procedure.

adaptive simulated annealing (ASA) global method and mulThe weight-tuning method is used to tune the weighting
tisimplex global minimization method [12], [13]. The local factors already found by some other procedure (either by a
simplex method usually requires less than 100 evaluationminimization method or one of the search methods). Weight-
and is the fastest but results have large variance. It may heg factors are changed without initial ranking, either sequen-
used to determine whether optimization of feature weightsially or in a random order. Weights are changed for every
works for a particular database. For a dataset having separdeature by adding or subtracting a constant vaue s 4+ 06
training file ASA or multisimplex method converge to similar whered is a parameter given by the user (by deféut 0.5).
results in all calculations (the advantage of global minimizaif a change of the weighting factor leads to an improvement
tion). However, global optimization methods are expensivef the classification accuracy the factor is updated, otherwise
and may require a large number of epochs (evaluations df remains unchanged. After the last weighting factor is
errors for all training vectors) for convergence. They rarelychecked in this way thé parameter is divided by 2 and the
find solutions which are as good as those obtained by featurghole procedure repeated. The algorithm is terminated if the
selection, showing that the minimization problem is reallydifference in classification accuracy during two subsequent
diffcult. Binary weights obtained from feature selection mayiterations is smaller than a given threshold.

be used as the starting parameters for minimization methods
ensuring that results after weighting are at least as good as

from the feature selection. lllustrative results

To decrease computational costs we have used search Memory-based methods, such k&N, work well if the
trategies [14] for feature weighting. Real-valued weight-number of training vectors is sufficiently large. However,
s 5 should be guantized, either with fixed precision (forfor the well known hypothyroid dataset [15], despite the
example 0.1) or precision that is steadily increased durin@igh number of training cases (3772) results of kN
the progress of a search procedure. Three search schenmsthod are quite poor. For non-standardized data the nearest
were implemented, aiming at speeding up calculations andeighbor rule gives results that are below the majority rate!
finding better and simpler weights. They are called heréfter standardization of data, selection lofand selection
0, S1 and the weight-tuning method. The last algorithm isof the distance measureNN performs only slightly better
used to search for optimal weighting factors, starting from d@han the majority classifier (92.7% test vectors for normal
solution obtained by other methods. In each case the weiglhhyroid), giving classification accuracy of 94.4% on the test
of the most important feature is arbitrarily fixed at 1 and allset (3428 cases). This is much worse than most other algo-
rithms, including neural networks and logical rules [11]. Af-



TABLE |

ter applying the feature dropping algorithm from 21 features
RESULTS FOR THECLEVELAND HEART DISEASE DATASET.

presentin the original dataset only 4 remain (f3, 8, f17, f21),
increasing the classification accuracy on the test set by nearly

3% to 97.9% (a significant improvement since the number qf Method | Accuracy %| Reference|
cases in the test set is large). Applying weighting metBbd [hcNet 90.0 [17]
and tuning the weighting factors we were able to increase they_\N k=28, 7 features 85.1+0.5 | this paper
classification accuracy further to 98.1%. This is probably | inear Discriminant Anal. 84.5 [16]
the best result for this database obtained so far with thefrisher LDA 84.2 [16]
minimal distance method although still significantly worse| | NN, k=16 84.0+0.6 | this paper
than the result obtained with logical rules or decision trees pg\ Feature Space Mapping 84.0 | this paper
[11]. Further improvement of the-NN results is possible | Naive Bayes 83.4 [16]
using the step-like distance functions Eqg. (5), increasing thegayes (pairwise dependent) 83.1 [16]
Minkowsky exponentin Eg. (4) to large values and reducing LVQ 82.9 [16]
the number of reference vectors. k-NN, k=27, Manhattan 82.8:0.6 | this paper
Cleveland Heart data was also taken from the UCI [15] | MLP+backprop 81.3 (16]
repository. 6 of the 303 cases contain missing attributes, CART (decision tree) 80.8 [16]
therefore they are usually removed in most tests, leaving 297Quadratic Discriminant Anal. 75.4 [16]
vectors. There are 13 attributes (4 continuos, 9 nominal), arjdLFC, ASI, ASR decision trees  74.4-78.4 [16]

two classes (healthy or sick), with 164 (54.1%) healthy, and
139 (45.9%) cases with various degrees of heart problems.
while after the selection it increased to 8235% in the 10-

Although Wettschereck and Aha [6] use untypical teStmgfoId stratified crossvalidation tests. This is the best result for

o )
prchdure (.30A) of data is used for tests and the _rest. f%is dataset that we know of, comparable to the best results
training) while we use the standard 10-fold crossvalidation

. . : . obtained in the leave-one-out test [18] for this dataset. The
(averaged 10 times to obtain variance) it should be noted that, . . . .

) . ata is quite noisy, as can be seen on a Sammon (multidimen-
their feature selection methods have always decreased the : . S

. sional scaling) plot shown in Fig. 2. MLP crossvalidation
accuracy of thé&-NN classification. On the other hand our
. . results are below 84%, RBF are even worse.

feature dropping algorithm selected 3 features (thal, ca, cp or
features 13, 12 and 3) as the most useful, giving 80.2%  Another interesting dataset is thepatobiliary disorders
(note the small variance). These are the same features @sgta obtained from Tokyo Dental and Medical University
those used in logical rules [11]. After adding weights to[11] (536 cases, including 163 test cases, 9 features, 4 class-
the 3 selected features averaged results aretd8®%0, very  €s). k-NN with Manhattan distance function gives 77.9%
close to the best results, 84.2%.4% obtained with only accuracy for this dataset which is already much better than
a single feature dropped, and quite close to 83t8%%  other methods [11] (for example MLP trained with RPROP
obtained with all features used (note the large variance fogives accuracy that is below 70%). After applying feature
all features). selection method 4 features were removed (features 2, 5, 6

. . 0 ) .
Even better results were obtained on this dataset with th%nd 9), increasing accuracy to 79.1%. Using weig

feature ranking algorithm: although for all features droppin methods it was possible to increase the accuracy further to

. . %2 8%. These results are significantly better than for all other
was accompanied with decrease of accuracy for 6 feature

this decrease was rather small, within the variah&&6 error C?aSS'f'ers applied to this data (including 1B2-1B4, FOIL,

bounds. Sequentially adding features from the most im orI?DA‘ DLVQ, C4.5, FSM, Fuzzy MLP and K* methods).
- =€ y 9 P This data has also been analyzed by Mitra, De and Pal [19]

tant thal, .giving 4% change) to the least i.mportlant ShOWedusing a knowledge-based fuzzy MLP system with results on
a pe?"‘ with 7 fez.at_ures used. After re-_opt!m|zat|orkcafnq the test set in the range from 33% to 66.3%, depending on
running the stratified 10-fold crossvalidation tests 10 t|me%he actual fuzzy model used

to obtain estimation of variance an accuracy of 805%,
better than obtained with most statistical, machine learning
and neural methods [16]. Conclusions

A small medicabppendicitis datase{18] contains only 106
vectors, 8 attributes, two classes, and is rather difficult t o .
classify. The feature ranking method has found features 1, and determination of the feature weight factors for good

3 and 7 as the most important features, the same as we ha%rformance. Several methods for feature selection and

selected before using our logical rule extraction methods\'.ve'ghtlng have been introduced here. Search-based tech-

Using all features the accuracy of 82.8.1% was achieved, niques were us_ed |_nstead qf rr_1|n|m|zat|o_r_1 both for featurg se-
lection and weighting. Preliminary empirical tests described

IMILARITY based methods require selection of features
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Appendicitis - the best 2-dimensional representation of 7-[10]

(11]

in the previous section show that using the straightforward

k-NN method significant improvements of results obtaine
with reduced feature set or with weighted features are o

o

tained. Other tests that we have performed indicate that fqis)

more than half of theStatlogdatasets [1] feature selection
and weighting makelsNN results better than that of any oth-

er classifiers used in this project. The same feature selectidh"
and weighting methods may be used to improve performanc‘[%]

of any similarity-based classifier.
A natural network realization ok-NN method introduced

[16]

very recently [20] leads to a classification model with more
adaptive parameters and should allow to improve the resulis7)
even further. It is applicable to problems with an infinite
number of output classes and may take into account costs of
misclassifications. We have implemented many features (H*S]
the general framework for SBM, such as a variety of distance
functions, selection of reference vectors and weighting of
their contributions. However, even if such more sophisti{1°!
cated similarity-based methods are used performing feature

selection and weighting at the level of simpdé&IN method

(20]

may be the only practical solution due to the computational

efficiency.
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