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Abstract.
The class of similarity based methods (SBM) covers most neural models

and many other classifiers. Performance of such methods is significantly

improved if irrelevant features are removed and feature weights introduced,

scaling their influence on calculation of similarity. Several methods for fea-

ture selection and weighting are described. As an alternative to the global

minimization procedures computationally efficient best–first search methods

are advocated. Although these methods can be used with any SBM classifier

they have been tested using the k-NN method, since it is relatively fast and

for some databases gives excellent results. A few illustrative examples show

significant improvements due to the feature weighting and selection.

Introduction.

MANY neural, pattern recognition and machine learning
methods developed in the past use explicitly or im-

plicitly similarity measures during the training and classifi-
cation process (although our focus here is on classification
the same reasoning may also be applied to regression and
pattern completion problems). Empirical evaluation of 20
statistical, neural and machine learning classification meth-
ods made within theStatLogproject [1] showed that the
simplest version of the nearest neighbor method, using a
single neighbor only, achieved best results in classification of
4 out of 22 datasets, and close to the best results for another
3 datasets, i.e. in about 1/3 of all problems considered
(see also a more recent comparison of different methods by
Rohwer and Morciniec [2]). It is now clear that no single
classification model will outperform all other models for all
datasets. Therefore a useful strategy is to have a common
framework generating many classification models and to s-
elect empirically the best method for a given dataset. If we
could systematically increase the complexity of classification
models, finding an optimal combination of parameters and
procedures should result in best (or close to the best) perfor-
mance in almost all cases.

A general framework for similarity-based methods has been
presented recently [3], [4], [5]. Except for classical minimal

distance methods, such as thek-NN method, many popular
neural network models, such as the Radial Basis Functions
(RBFs), Multilayer Perceptrons (MLPs), Learning Vector
Quantization (LVQ), may be presented in this form. Clas-
sification probabilityp(Ci |X;M) is determined by parame-
ters and procedures defining the classification modelM, in-
cluding cost functions, similarity functions (usually distance
functions), number of reference centers included in similarity
evaluations, size of theX neighborhood considered, weight-
ing functions estimating contribution of reference vectorsRp

to the classification probability, procedures for selection of
the set of reference vectors, procedures for feature selection
and feature scaling and several other factors. Minimization
of a cost function using gradient procedures is possible only
if the parameterization ofp(Ci |X;M) allows for gradient
computations; otherwise non-gradient minimization methods
should be used. Since these methods are computationally
very demanding search-based procedures should be consid-
ered as an alternative.

The SBM framework enables systematic generation of many
classification models of increasing complexity, including
new neural network models. The best method for a given
problem should be selected automatically from methods be-
longing to the SBM framework, starting with the simplest
method (such ask-NN) and adding more complex features
until no gain in performance is observed. For each type
of classification model there is an optimal data-dependent
complexity, but if the optimal model obtained at a given stage
is enhanced in qualitatively different way (i.e. by optimiza-
tion of different types of parameters rather than adding more
parameters of the same type) better performance may still
be achieved. For example an optimal number of neurons in
Gaussian-based RBF network may be determined by cross-
validation, but the results may improve further if dispersions
of all Gaussian are optimized independently, and improve
even further if additional parameters related to rotation of
Gaussian functions are provided or if the distance function
used by Gaussian transfer functions is changed from Eu-
clidean to a more general one.



An important aspects of all SB methods concerns selection
and weighting of features. Memory based algorithms de-
grade their performance when irrelevant or noisy features are
used. Many methods of feature selection and weighting have
been developed so far. Wettschereck and Aha [6], [7] pro-
pose a five-dimensional framework to characterize different
methods of feature weighting. We have developed and tested
several new feature selection methods useful fork-NN and
other SB methods. They are based either on the global min-
imization of cost functions [8] or on search techniques. In
the framework of Wettschereck and Aha they use feedback,
do not change feature representation, use global weights, do
not use task specific knowledge and perform both feature
selection and feature weighting.

In the next section a brief description of the SBM framework
is presented. The third section deals with new algorithms for
feature selection and scaling, presenting global minimization
and search based methods. Empirical results are discussed in
the fourth section and in the fifth section neural realization of
the nearest neighbor method is presented. A short summary
is presented in the last section.

A framework for the similarity-based methods.

IN THE SBM framework the probability of classification
p(Ci |X;M), where X is a vector of an unknown class

andM describes the classification model used (values of all
parameters and procedures employed), is determined using
the information provided in the similarity measureD(X,R j),
where{R j}, j = 1..Nt is a set of class-labeledC(R j) training
vectors. A general model of an adaptive system used for
classification should include at least the following elements:
M = {D(·; r),G(D(·),k),{R j},{p(R)},E[·],K(·)), where:
D(·; r) is a function (usually based on a distance function) or
a table used to compute similarities andr is the maximum
size of the neighborhood considered;
G(D(X,R j ),k) is the weighting function estimating contri-
bution of the reference vectorR j to the classification prob-
ability andk is the number of reference vectors taken into
account in the neighborhood ofX;
{R j} is the set of reference vectors created from the set of
training vectors{X i} by some computational procedure;
p(R) is the set of class probabilities for each reference vector
(confidence in thea priori knowledge, useful for clearing the
data);
E[·] is the total cost function minimized at the training stage;
K(·) is the kernel function, determining for a given training
example the influence of error on the total cost function.

In addition an adaptive system may include several classi-
fication modelsMl and an interpolation procedure to select
between different models or combine results of a committee
of models. Various procedures for selection of features, min-
imization algorithms, architectures used for network com-

putation add more flexibility to the SBM framework. The
number of output classes may either be relatively small or
it may be a continuos number, in which case classification
probabilitiesp(Ci |X;M) become continuos functions. The
cost function is:

E({X};R ,M) = (1)

∑
i

∑
X

R (Ci ,C(X))H (p(Ci |X;M),S(Ci ,C(X)))

wherei = 1. . .Nc runs over all classes andX over all training
vectors,C(X) is the true class of the vectorX and function
H(·) is monotonic and positive, often a quadratic function.
The elements of the risk matrixR (Ci ,Cj) are proportional
to the risk of assigning theCi class when the true class
is Cj (for example,R (Ci ,Cj) = 1− δi j ). The similarity
functionS(Ci ,Cj) in the simplest case is equal toδi j , while
for continuos number of classes it may be proportional to
1/(R (Ci ,Cj) + 1), or defined in a problem-dependent way.

M specifies all adaptive parameters and variable procedures
of the classification model that may affect the cost function.
Regularization terms aimed at minimization of the complexi-
ty of the classification model are frequently added to the cost
function, helping to avoid the overfitting problems. IfH(·) is
a quadratic function of

H(X;M) = ∑
j

(
max

i
p(Ci |X j ;M)− δ(Ci ,C(X)

)2

(2)

standard mean square error function is recovered. To mini-
mize the leave-one-out error the sum runs over all training
examplesX j and the model used to specify the classifier
should not contain theX j vector in the reference set while
p(Ci |X j) is computed. In local regression based on the
minimal distance approaches [9] the error function is usually

E(X;M) = ∑
j

K(D(X j ,R))(F(X j ;M)−Yj)2 (3)

whereY j are the desired values forX j and F(X j ;M) are
the values predicted by the modelM. Here the kernel func-
tion K(d) measures the influence of the reference vectorsR
on the total error. For example, ifK(d) has a sharp high
peak aroundd = 0 the functionF(X;M) will fit the values
corresponding to the reference input vectors almost exactly
and will make large errors for other values. This is not
the same as the weighting functionG(d) which is used to
estimate the influence of reference vectors on the final result.
In classification problems kernel function will determine the
size of the neighborhood around the known cases in which
accurate classification is required.

Distance functions provide natural similarity measures in
cases in which we may define them. Calculation of distance
is most often based on Euclidean metric for continuos inputs
and Hamming metric for binary inputs. Additional param-
eters that may be optimized are either global (for all data)



or local (for each reference vector). Minkowski’s metric
involves one global parameter, exponentα. Scaling factors
are useful global parameters – for Minkowski’s distance:

D(X,Y;s)α =
N

∑
i

sid(X i ,Y i)α (4)

where d(·) function is used to estimate similarity at the
feature level and in the simplest case is|Xi −Yi |. If all
contributions|sid(Xi ,Yi)| for some input featurei are small
the feature may be eliminated. To facilitate elimination of
features that are not useful for classification the cost function
may include additional penalty term, such as the sum ofs2

i
(the weight of the most important feature should be fixed at
1). There are many methods that attempt to determine scaling
factors without adaptation (cf. recent review [7]).

Combination of sigmoidal functions offers a good parame-
terization and easy network realization:

d(X i ,Y i) = ∑
j

αi j σ(βi j |X i−Y i |− γi j ) (5)
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Fig. 1. Sum of 3 sigmoidal functions provides a useful distance function
that minimizes in-class and maximizes between class distances.

Such functions allow to minimize in-class and maximize be-
tween class distances (as it is done in the Fisher discrimnant
analysis, cf. [1]), and may be used in classification models
that provide sharp, hyperrectangular decision borders, simi-
lar to logical systems [10], [11].

Feature selection and weighting methods.

SIMILARITY based algorithms faced with many features
that are not necessary for predicting the desired output

may perform quite poorly. We have developed several meth-
ods for feature selection and weighting, based on variants
of “the best first” search strategy [14]. A simple test for
such methods is to add a class number (or a function of a
class number) to the list of features. Good selection methods

should pick out this feature as the most important, rejecting
all other features as superfluous and giving classification
accuracy of 100%. This simple test should be used for
all feature selection or feature weighting methods. In the
description of our algorithms we assume that a training set
is used for feature selection or determination of weights.
If separate training and test sets are not provided than the
training/test sets are obtained from stratified crossvalidation
procedure.

The feature ranking algorithm proceeds as follows: 1) Pa-
rameters are optimized and the accuracy is checked using
all features. 2) Accuracy with each feature turned off is
determined in crossvalidation tests done on the training part;
average change in accuracy and variance of this change for
each feature is noted. 3) Ranking of all features is done
on the basis of accuracy changes. 4) Accuracy of classi-
fication is checked adding features, starting from a single
most significant feature, i.e. the one that, when removed,
created the largest decrease of accuracy. Hill climbing is
used at this stage – only those features that, when added to
the growing list of features, contribute to significant increase
of accuracy (significance is estimated using the calculated
variance for each feature) are accepted on the final list of
relevant features. Using crossvalidation for feature ranking
makes this model rather robust. ForN features not more than
2N evaluation steps are required.

The feature dropping algorithm is similar although more
costly: 1) Parameters are optimized and the accuracy is
checked using all features. 2) Features are turned off one
after another and the leave-one-out test (fork-NN) or strat-
ified crossvalidation test is performed on the training file to
determine the change in classification accuracy. 3) Feature
leading to the highest accuracy improvement (after the fea-
ture is dropped) on the training file is selected as the least
important and removed from the input set. 4) The whole
procedure is repeatedN− 1 times until only one feature is
left in the input set, presumably the most important one.

Although this algorithm may be used with any method it
is particularly easy to use with thek-NN algorithm because
computational costs of the leave-one-out test are in this case
rather low: apart from the value ofk there is no learning
and the cost of each step is equal to the cost of classification
of all training vectors. If the cross-validation calculations
are performed the leave-one-out test is done on the training
partition of the dataset. The number of the leave-one-out
evaluations in the worst case isN · (N + 1)/2− 1. The
sequence of features that should be removed to achieve the
highest classification accuracy on a training file is selected
after all N− 1 steps are performed. It may happen that at
some level there is no improvement and the feature which
leads to minimal degradation is selected. If the number of
features is large and there is no improvement for several



levels the procedure may be stopped, because there is little
chance that results will improve at a later stage. The peak
performance is usually observed after all irrelevant features
are dropped.

This method is more expensive but allows to take the inter-
actions between different features into account, while the
feature ranking algorithm works well only if features are
approximately independent of each other. Standardization
of the input vectors before the feature selection procedure is
usually desired. The feature dropping method is acceptable
if the number of features is not too high, otherwise it may
be too slow. In such a case the feature ranking method
should be used, or the feature dropping selection may be
performed using the subset of features with highest rank,
for example those that significantly decrease accuracy when
dropped. After the final selection of features parameters of
the classification model are reoptimized again and results
checked on the test set.

Feature selection is the special case of feature weighting,
i.e. calculation of optimal weighting factorssi in the metric
function Eq. (4). If the cost function is taken as the number
of classification errors (i.e. it is discontinuous) only non-
gradient minimization procedures are applicable. We have
used the inexpensive simplex method (local procedure), an
adaptive simulated annealing (ASA) global method and mul-
tisimplex global minimization method [12], [13]. The local
simplex method usually requires less than 100 evaluations
and is the fastest but results have large variance. It may be
used to determine whether optimization of feature weights
works for a particular database. For a dataset having separate
training file ASA or multisimplex method converge to similar
results in all calculations (the advantage of global minimiza-
tion). However, global optimization methods are expensive
and may require a large number of epochs (evaluations of
errors for all training vectors) for convergence. They rarely
find solutions which are as good as those obtained by feature
selection, showing that the minimization problem is really
diffcult. Binary weights obtained from feature selection may
be used as the starting parameters for minimization methods
ensuring that results after weighting are at least as good as
from the feature selection.

To decrease computational costs we have used search s-
trategies [14] for feature weighting. Real-valued weight-
s si should be quantized, either with fixed precision (for
example 0.1) or precision that is steadily increased during
the progress of a search procedure. Three search schemes
were implemented, aiming at speeding up calculations and
finding better and simpler weights. They are called here
S0, S1 and the weight-tuning method. The last algorithm is
used to search for optimal weighting factors, starting from a
solution obtained by other methods. In each case the weight
of the most important feature is arbitrarily fixed at 1 and all

other weights changed (they should be positive, at least for
distance function Eq. 4).

TheS0 algorithm is ‘a mirror image’ of theS1 algorithm: in
S0 features are added, starting from a single one, and inS1
features are dropped, starting from all features.S1 algorithm
usually works better and therefore it is described below. 1) In
the initial ranking of the features all weighting factors are set
to one. 2) Evaluation with a single feature turned off (weight-
ing factorsi = 0) is made fori = 1. . .N. Thus the ranking is
done in the same way as in the feature dropping selection
method. The most important feature has a fixed value of
the weighting factorsk = 1 and the optimal weighting factor
for the second featuresl in the ranking is determined by the
search procedure. The classifier’s performance is evaluated
with sl = m∆≥ 0 (the default is∆ = 0.05) and the remaining
weighting factors are all fixed (initially at 1, later at their
optimal values). 3) The search is repeated for feature that has
the next-highest rating, with optimal values of weighting fac-
tors for higher ranked features kept fixed and lower-ranked
features left at 1. 4) After determination of all weighting
factors performance of the classifier is evaluated on the test
set. The total number of evaluations on the training set is
on the order ofN/∆. The method corresponds to quantized
version of the line search optimization procedure.

The weight-tuning method is used to tune the weighting
factors already found by some other procedure (either by a
minimization method or one of the search methods). Weight-
ing factors are changed without initial ranking, either sequen-
tially or in a random order. Weights are changed for every
feature by adding or subtracting a constant valuesi ← si ± δ
whereδ is a parameter given by the user (by defaultδ = 0.5).
If a change of the weighting factor leads to an improvement
of the classification accuracy the factor is updated, otherwise
it remains unchanged. After the last weighting factor is
checked in this way theδ parameter is divided by 2 and the
whole procedure repeated. The algorithm is terminated if the
difference in classification accuracy during two subsequent
iterations is smaller than a given threshold.

Illustrative results

Memory-based methods, such ask-NN, work well if the
number of training vectors is sufficiently large. However,
for the well known hypothyroid dataset [15], despite the
high number of training cases (3772) results of thek-NN
method are quite poor. For non-standardized data the nearest
neighbor rule gives results that are below the majority rate!
After standardization of data, selection ofk and selection
of the distance measure,k-NN performs only slightly better
than the majority classifier (92.7% test vectors for normal
thyroid), giving classification accuracy of 94.4% on the test
set (3428 cases). This is much worse than most other algo-
rithms, including neural networks and logical rules [11]. Af-



ter applying the feature dropping algorithm from 21 features
present in the original dataset only 4 remain (f3, f8, f17, f21),
increasing the classification accuracy on the test set by nearly
3% to 97.9% (a significant improvement since the number of
cases in the test set is large). Applying weighting methodS1
and tuning the weighting factors we were able to increase the
classification accuracy further to 98.1%. This is probably
the best result for this database obtained so far with the
minimal distance method although still significantly worse
than the result obtained with logical rules or decision trees
[11]. Further improvement of thek-NN results is possible
using the step-like distance functions Eq. (5), increasing the
Minkowsky exponent in Eq. (4) to large values and reducing
the number of reference vectors.

Cleveland Heart data was also taken from the UCI [15]
repository. 6 of the 303 cases contain missing attributes,
therefore they are usually removed in most tests, leaving 297
vectors. There are 13 attributes (4 continuos, 9 nominal), and
two classes (healthy or sick), with 164 (54.1%) healthy, and
139 (45.9%) cases with various degrees of heart problems.

Although Wettschereck and Aha [6] use untypical testing
procedure (30% of data is used for tests and the rest for
training) while we use the standard 10-fold crossvalidation
(averaged 10 times to obtain variance) it should be noted that
their feature selection methods have always decreased the
accuracy of thek-NN classification. On the other hand our
feature dropping algorithm selected 3 features (thal, ca, cp or
features 13, 12 and 3) as the most useful, giving 80.1±0.2%
(note the small variance). These are the same features as
those used in logical rules [11]. After adding weights to
the 3 selected features averaged results are 83.9±0.5%, very
close to the best results, 84.2%±0.4% obtained with only
a single feature dropped, and quite close to 83.6%±1.0%
obtained with all features used (note the large variance for
all features).

Even better results were obtained on this dataset with the
feature ranking algorithm: although for all features dropping
was accompanied with decrease of accuracy for 6 features
this decrease was rather small, within the variance±1% error
bounds. Sequentially adding features from the most impor-
tant (thal, giving 4% change) to the least important showed
a peak with 7 features used. After re-optimization ofk and
running the stratified 10-fold crossvalidation tests 10 times
to obtain estimation of variance an accuracy of 85.1±0.5%,
better than obtained with most statistical, machine learning
and neural methods [16].

A small medicalappendicitis dataset[18] contains only 106
vectors, 8 attributes, two classes, and is rather difficult to
classify. The feature ranking method has found features 1,
3 and 7 as the most important features, the same as we have
selected before using our logical rule extraction methods.
Using all features the accuracy of 87.8±1.1% was achieved,

TABLE I

RESULTS FOR THECLEVELAND HEART DISEASE DATASET.

Method Accuracy % Reference

IncNet 90.0 [17]
k-NN, k=28, 7 features 85.1±0.5 this paper
Linear Discriminant Anal. 84.5 [16]
Fisher LDA 84.2 [16]
k-NN, k=16 84.0±0.6 this paper
FSM, Feature Space Mapping 84.0 this paper
Naive Bayes 83.4 [16]
Bayes (pairwise dependent) 83.1 [16]
LVQ 82.9 [16]
k-NN, k=27, Manhattan 82.8±0.6 this paper
MLP+backprop 81.3 [16]
CART (decision tree) 80.8 [16]
Quadratic Discriminant Anal. 75.4 [16]
LFC, ASI, ASR decision trees 74.4-78.4 [16]

while after the selection it increased to 89.3±0.5% in the 10-
fold stratified crossvalidation tests. This is the best result for
this dataset that we know of, comparable to the best results
obtained in the leave-one-out test [18] for this dataset. The
data is quite noisy, as can be seen on a Sammon (multidimen-
sional scaling) plot shown in Fig. 2. MLP crossvalidation
results are below 84%, RBF are even worse.

Another interesting dataset is thehepatobiliary disorders
data obtained from Tokyo Dental and Medical University
[11] (536 cases, including 163 test cases, 9 features, 4 class-
es). k-NN with Manhattan distance function gives 77.9%
accuracy for this dataset which is already much better than
other methods [11] (for example MLP trained with RPROP
gives accuracy that is below 70%). After applying feature
selection method 4 features were removed (features 2, 5, 6
and 9), increasing accuracy to 79.1%. Using weightedk-NN
methods it was possible to increase the accuracy further to
82.8%. These results are significantly better than for all other
classifiers applied to this data (including IB2-IB4, FOIL,
LDA, DLVQ, C4.5, FSM, Fuzzy MLP and K* methods).
This data has also been analyzed by Mitra, De and Pal [19]
using a knowledge-based fuzzy MLP system with results on
the test set in the range from 33% to 66.3%, depending on
the actual fuzzy model used.

Conclusions

SIMILARITY based methods require selection of features
and determination of the feature weight factors for good

performance. Several methods for feature selection and
weighting have been introduced here. Search-based tech-
niques were used instead of minimization both for feature se-
lection and weighting. Preliminary empirical tests described
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Fig. 2. Appendicitis - the best 2-dimensional representation of 7-
dimensional vectors preserving their relative distances.

in the previous section show that using the straightforward
k-NN method significant improvements of results obtained
with reduced feature set or with weighted features are ob-
tained. Other tests that we have performed indicate that for
more than half of theStatlogdatasets [1] feature selection
and weighting makesk-NN results better than that of any oth-
er classifiers used in this project. The same feature selection
and weighting methods may be used to improve performance
of any similarity-based classifier.

A natural network realization ofk-NN method introduced
very recently [20] leads to a classification model with more
adaptive parameters and should allow to improve the results
even further. It is applicable to problems with an infinite
number of output classes and may take into account costs of
misclassifications. We have implemented many features of
the general framework for SBM, such as a variety of distance
functions, selection of reference vectors and weighting of
their contributions. However, even if such more sophisti-
cated similarity-based methods are used performing feature
selection and weighting at the level of simplek-NN method
may be the only practical solution due to the computational
efficiency.
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