
Optimization of Logical Rules
Derived by Neural Procedures

Włodzisław Duch, Rafał Adamczak and Krzysztof Gra¸bczewski
Department of Computer Methods, Nicholas Copernicus University,

Grudzia̧dzka 5, 87-100 Toru´n, Poland.
E-mail: duch,raad,kgrabcze@phys.uni.torun.pl

Abstract.
Neural networks are used for initial determination of linguistic variables

and extraction of logical rules from data. Hierarchical sets of rules for

different accuracy/rejection tradeoffs are obtained. Sets of logical rules are

optimized by maximization of their predictive power. To avoid global min-

imization methods for crisp logical rules Gaussian uncertainties of inputs

are assumed. Analytical formulas reproducing Monte Carlo results for such

inputs are derived, leading to a “soft trapezoidal” membership functions

instead of rectangular functions used for crisp logical rules. Such approach

increases accuracy, gives probabilities of classification instead of the yes/no

answers, and allows to optimize sets of rules using gradient procedures. A

few illustrative applications to benchmark and real life problems show the

effectiveness of this approach.

Introduction.

IN DATA mining and classification problems one should
use the simplest description of the data that is possible

without compromising accuracy. Description of the data
using crisp logical rules should be attempted first, and only if
it is not satisfactory – because of the low classification accu-
racy or because the number of logical rules becomes too large
– fuzzy rules may be used, followed by other, more sophisti-
cated tools, such as neural networks. There is no reason why
a simple model based on logical rules should always work,
but in cases when it does it is certainly worth using. In many
medical applications simple crisp logical rules proved to be
more accurate and were able to generalize better than many
machine and neural learning algorithms [1], [2]. As we will
show in this paper crisp rules may be converted to a specific
form of fuzzy rules and optimized using gradient procedure,
providing higher accuracy without significant increase of the
complexity of the classification system.

Extraction of logical rules from data may be done using sta-
tistical, pattern recognition and machine learning methods, as
well as neural network methods [3]. Recently we have pre-
sented a complete methodology for extraction, optimization
and application of logical rules [2], [4]. The last two steps are

largely neglected in the literature, with current emphasis be-
ing still on the extraction methods. Previously we have used
global minimization methods for optimization of linguistic
variables for real-valued attributes. Although such method
work well they are computationally quite expensive. Estima-
tion of reliability of sets of logical rules has been done by
exploiting accuracy/rejection tradeoff [2]. Hierarchical sets
of rules are created, starting from rules that are very reliable
but reject many cases (leaving them as unclassified) to rules
that classify all data but are less reliable. Extraction of sets
of rules may be tedious. For a given case crisp logical rules
always assign only a single class (with probability for each
class equal to 0 or 1), even in cases when other classifiers
would report similar probability for two or more classes.

All these drawbacks are overcomed in this paper. Assuming
that the input vectors are obtained from measurements per-
formed with finite precision one can calculate probabilities
for rule-based or any other classifier by Monte Carlo proce-
dure, repeating calculations for input vectors sampled around
the measured values. Assuming Gaussian uncertainties al-
lows to derive analytical formulas for classification proba-
bilities. Minimization of error function for soft probabilities
may be done using efficient gradient procedures allowing to
optimize linguistic variables for very large sets of rules. The
ease of interpretation – the main reason to use crisp logical
rules – is not sacrificed since the rules are still crisp, only
the inputs are Gaussian fuzzy vectors. Such approach is
equivalent to the use of fuzzy rules with “soft trapezoid”
membership functions applied to crisp input vectors. One
additional parameter, percent of input uncertainty for each (s-
tandardized) attribute, frequently brings significant improve-
ments and may be treated as an adaptive parameter, obtained
from minimization of error. Of course one may use more pa-
rameters: a separate uncertainty for each attribute, different
uncertainties in different regions of the inputs space (covered
by different logical rules).

In the next section our methodology of logical rule extraction
is briefly described. In the third section optimization meth-
ods of the sets of rules are discussed. Results on benchmark

and real-world datasets are presented in the fourth section
and in the last section conclusions are given.

Neural rule extraction methodology

NEURAL methodology of crisp logical rule extraction
developed by our group has been described in a series

of papers [1], [2], [4], [10], [13], therefore only a very brief
summary is given here.

Selection of linguistic variables.Linguistic variables used
by us arecontext dependent, i.e. they may be different in
each rule (more on the linguistic variables [14]. For real-
valued attributes intervals defining linguistic variables used
in logical rules are needed. Initialization of these intervals is
done by: analysis of histograms (works only in simple cases),
using a general separability criterion [9] (similar to criteria
used in decision-trees), using Feature Space Mapping (FSM)
constructive neural network [6], or using special “linguistic
units” (L-units) in an MLP (multilayer perceptron) network
[14]. The FSM neural network uses arbitrary separable trans-
fer functions, including triangular, trapezoidal, Gaussian, or
the bicentral combinations∏i(σ(xi−bi)−σ(xi +b′i)) of sig-
moidal functions [8] with soft trapezoidal shapes. If the
slope of sigmoidal functionsσ(x) is slowly increased during
learning rectangular functions are smoothly recovered. After
training nodes of FSM network are analyzed providing good
intervals for logical variables.

Linguistic neural units (L-units) automatically analyze con-
tinuos inputs and produce linguistic variables [14]. The basic
idea is based on using a window-type functions provided
by two neurons, each with it own separate bias,bi and b′i,
defining the linguistic variable intervals. Differences of two
sigmoids represent a typical linguistic variablesk equivalent
to xi ∈ [bi ,b′i], its negation¬sk while a single sigmoid may
realizexi ≥ b or xi ≤ b variables. The bordersbi and b′i
defining linguistic variables are adaptive parameters of the
MLP network. All transfer functions are sigmoids that, at the
end of training, become very steep, although at the beginning
they may be quite smooth, allowing for fuzzy approximation
of features. All weights have values constrained at the end of
the training to 0,±1. The network with L-units and a second
layer of hidden units (called R-units, since they will provide
logical rules) is an MLP network with specific architecture.

Neural architectures. In the C-MLP2LN algorithm small
MLP network is initially created, usually with one hidden
neuron and several L-units. Training is done using a con-
structive MLP algorithm (C-MLP), increasing the complex-
ity to account for the incoming data. To transform an MLP
into a network performing logical operations (Logical Net-
work, LN) new neurons are trained by minimization of the
standard mean error function plus penalty terms forcing the
weights to approach±1 or 0, i.e. encouraging weight decay,

leading to skeletonization of the network, elimination of ir-
relevant features and facilitating easy logical interpretation of
the network function: 0 = irrelevant input,+1 = positive and
−1 = negative evidence. The regularization hyperparameters
determine the simplicity/accuracy tradeoff of the generated
network and extracted rules.

After training the first neuron connections with zero weights
are deleted and the skeleton network is kept frozen. The
second neuron is added, connected to a new set of L-units.
This assures that context-dependent linguistic variables are
created and used in logical rules extracted from the network
after training. During the learning process the network ex-
pands when neurons are added and shrinks when connections
are deleted. This procedure is repeated until most of the
data is correctly classified or the number of new neurons
starts to grow rapidly, indicating overfitting and noise in the
data. Increasing the slopes of sigmoidal functions transforms
complex decision regions into simpler, hypercuboidal deci-
sion regions. RulesRk equivalent to logical functions per-
formed by MLP networks are obtained in the form of logical
conditions by considering contributions of inputs for each
linguistic variablesi . A combination of linguistic variables
activating the hidden neuron above the threshold is a logical
rule of the form:R = (s1∧¬s2∧ ...∧sk). After analysis of all
±1 weights a set of rulesR 1∨ R 2...∨ R n is found for each
output class. Rules obtained by the C-MLP2LN algorithm
are ordered, starting with rules that cover many cases and
ending with rules that cover only a few cases.

Although C-MLP2LN algorithm works very well (especially
with optimization of final rules described below) in com-
plex cases FSM network with rectangular functions (or soft
rectangular functions that are changed into rectangular dur-
ing training) is frequently simpler to use. FSM uses good
clusterization procedures (based on dendrograms or decision
trees) for initialization, frequently obtaining quite good re-
sults without any training [7], [8]. After training nodes that
cover only a few training vectors are removed and nodes
that cover many training vectors are optimized. The node
covering the largest number of vectors, assigned to classCi ,
is selected (this node corresponds to the most general logical
rule); choosing featurek = 1. . .n activity of this node is
checked using the remainingn− 1 inputs (this is possible
because transfer functions used by FSM network are separa-
ble). The interval[bk,b′k] for the selected node is adjusted to
cover allCi class vectors that activate it. The valuebk (b′k) is
set between the lowest (highest) value of thexk belonging to
the training vectors of theCi class covered by this node and
thexk value of the nearest vector from another class. Those
features that cover the whole data range are deleted, and for
the remaining features further selection is done by checking
the number of errors on vectors belonging to classes other
than the class assigned to a given node. This procedure is
repeated for all network nodes.

Optimization of rules

LOGICAL rules obtained from analysis of neural net-
works may involve spurious conditions, more specific

rules may be contained in general rules or logical expressions
may be simplified if written in another form. We use a Prolog
program for the simplification step. An iterative optimization
process is used: neural networks are initialized randomly,
trained, linguistic inputs are analyzed, logical rules extracted,
intervals defining linguistic variables optimized using sets
of rules (see below), and the whole process repeated until
convergence is achieved. Usually two or three iterations are
sufficient.

Optimization of the intervals for linguistic variables at the
network level is followed by maximization of the predic-
tive power of the rule-based classifier. LetP (Ci ,Cj |M)
be the confusion matrix, i.e. the number of instances in
which classCj is predicted when the true class wasCi ,
given the modelM. Then for n samplesp(Ci ,Cj |M) =
P (Ci ,Cj |M)/n is the probability of (mis)classification. The
best parameters of the modelM are selected by maximizing
the “predictive power” of rules maxM [Tr P (Ci ,Cj |M)] over
all parametersM, or by minimizing the number of wrong
predictions (possibly with some risk matrixR(Ci ,Cj)),
minM

[
∑i 6= j R(Ci ,Cj)P (Ci ,Cj |M)

]
. Using weighted combi-

nation:

E(M) = γ ∑
i 6= j

P (Ci ,Cj |M)−Tr P (Ci ,Cj |M)≥−n (1)

allows to minimize over parametersM without constraints
and explore the accuracy/rejection tradeoff. Ifγ is large the
number of errors after minimization may become zero but
some instances may be rejected (i.e. rules will not cover the
whole input space). Minimization of the cost function for
each ruleR separately over parameters used only in this rule
is cheaper and frequently works as well as minimization of
parameters for all rules simultaneously. As a result several
sets of rulesR (k) with increasing reliability and increasing
rejection rate are obtained, i.e. covering smaller areas of the
input space in which vectors from a single class dominate. In
practical applications this is quite useful, since some classifi-
cations may be done with high degree of certainty, while the
classification probability of those cases that fall in the region
covered by less reliable set of rulesR (k+1) and are rejected
by theR (k) set may be estimated by looking at all training
vectors that belong to the same category.

Although we have obtained very good results using this
method [2] it has some drawbacks. First, global minimiza-
tion techniques (simulated annealing and shuffled multisim-
plex method) to minimize the number of classification errors
since for the crisp logical rules all probabilities are 0 or 1.
Second, logical rules may be brittle since the intervals are
not placed in an optimal position from generalization point

of view. Neural systems have good generalization properties
because they are wide margin classifiers. Their decision bor-
ders are obtained from the mean square error optimization
of smooth function that extends over larger neighborhood
contributing to the error. This allows for three important im-
provements: the use of inexpensive gradient method instead
of global minimization, more robust rules with wider classi-
fication margins, and probabilistic estimation of confidence.
To overcome the brittleness problem we have proposed [2]
to add an input noise to the training data, optimize intervals
using crossvalidation or search for the middle of the range
of the interval values for which the number of classification
errors does not change. Using the soft trapezoid form of
rules in FSM or MLP2LN network leads to a specific form
of fuzzy rules, but optimization of all parameters is difficult.
The method presented below is simpler and may be used for
large sets of logical rules produced by any method.

Input values result usually from observations which are not
quite accurate, therefore instead of the attribute valuex a
Gaussian distributionGx = G(y;x,sx) centered aroundx with
dispersionsx should be given. This distribution may be treat-
ed as a membership function of a fuzzy numberGx. A Monte
Carlo procedure may be performed sampling vectors from
Gaussian distributions defined for all attributes to compute
probabilitiesp(Ci |X). Analytical evaluation is based on the
cumulative distribution function:

ρ(a−x) =
∫ a

−∞
G(y;x,sx)dy= (2)

1
2

[
1+ erf

(
a−x

sx
√

2

)]
≈ σ(β(a−x))

where erf is the error function andβ = 2.4/
√

2sx makes
the erf function similar to the standard unipolar sigmoidal
function with the accuracy better than 2%. A ruleRa(x) with
single crisp conditionx≥ a is fulfilled by a Gaussian number
Gx with probability:

p(Ra(Gx) = T) =
∫ +∞

a
G(y;x,sx)dy≈ σ(β(x−a)) (3)

Taking instead of the erf function a sigmoidal function
changes assumption about the error distribution ofx from
Gaussian toσ(x)(1− σ(x)), approximating Gaussian with
s2 = 1.7 within 3.5%. If the rule involves closed interval
[a,b],a≤ b the probability that it is fulfilled by a sample from
the Gaussian distribution representing the data is:

p(Ra,b(Gx) = T)≈ σ(β(x−a))−σ(β(x−b)) (4)

Thus the probability that a given condition is fulfilled is
proportional to the value of soft trapezoid function realized
by L-unit. Crisp logical rules with assumption that data has
been measured with finite precision lead to soft L-functions
that allow to compute classification probabilities that are no

longer binary. In this way we may either fuzzify the crisp
logical rules or obtain fuzzy rules directly from neural net-
works.

It is easy to calculate probabilities for single rule conditions
of the formx< a, x> a or x∈ (a,b):

P(x∈ (a,b)) =
1
2

[
erf

(
b−x

sx
√

2

)
−erf

(
a−x

sx
√

2

)]
(5)

Notice that this interpretation does not differentiate inequali-
ties≤ and< so to obtain reasonable probabilities rules with
borders such that≤ may be replaced by< without loss of
accuracy are required.

The probability thatx belongs to a ruleR= r1∧ . . .∧ rN may
be defined as the product of the probabilities ofx ∈ ri for
i = 1, . . . ,N. Such definition assumes that all the attributes
which occur in ruleR are mutually independent, which is
usually not the case. However, if the rule generator produces
as simple rules as possible there should be no pairs of strong-
ly dependent attributes in a single rule. Therefore the product
should be very close to real probability. Obviously the rule
may not contain more than one premise per one attribute,
but it is easy to convert the rules appropriately if they do not
satisfy this condition.

Another problem occurs when probability ofx belonging
to a class described by more than one rule is estimated.
Rules usually overlap because they use only a subset of all
attributes and their conditions do not exclude each other.
Summing and normalizing probabilities obtained for differ-
ent classes may give results quite different from real Monte
Carlo probabilities. To avoid this problem probabilities are
calculated as:

P(x∈C) = ∑
R∈2RC

(−1)|R|+1P(x∈
⋂

R) (6)

whereRC is the set of the classification rules for classC and
|R| is the number of elements inR.

Uncertaintiessx of the values of features are additional adap-
tive parameters that may be optimized. We have used so far
a very simple optimization with allsx taken as a percentage
of the range of featurex to perform one dimensional mini-
mization of the error function independently of other steps.
An alternative possibility that we have considered1, but not
implemented yet, is to use the renormalized network outputs
to compute probabilities:

p(Ck|X) =
ok(X)

∑i oi(X)
(7)

with output neurons for classk summing the contributions of
rule nodes,

1We are grateful to Norbert Jankowski for this idea.

ok(X) = σ

(
∑
i

Ri,k(X)

)
(8)

Each of these rule nodes computes normalized products
of L-unit outputs connected to it. Although results from
this approach are not equivalent to Monte Carlo simulations
p(Ck|X) values behave like probabilities and may be useful.

This approach to soft optimization may be used with any
set of crisp logical rules to overcome the brittleness problem
and to obtain robust wide margin rule-based classifiers. One
should note that for large input uncertainties minimizing the
mean square error (MSE) leads to different results than min-
imizing classification error. “Wide margins” are desirable
if there is a gap between distribution of vectors belonging
to different classes. If a single parameters scaling allsx is
used it may be hard to avoid an increase of the number of
classification errors despite the fact that the overall proba-
bility of correct classification will increase. To avoid this
problem a few iterative steps are used: after minimization
s is decreased and minimization repeated untils becomes
sufficiently small and probabilities almost binary. In the limit
minimization of MSE becomes equivalent to minimization of
the classification error but the brittleness problem is solved
because the intervals that are optimally placed for larger in-
put uncertainties do not change in subsequent minimizations.

Applications

LARGE number of datasets were analyzed using an early
version of this methodology, comparing results obtained

from logical rules with results of other methods. Detailed
comparison may be found on our Web page:
http://www.phys.uni.torun.pl/kmk/projects/rules.html.
Summary of our results is given in the Table 1. The classifi-
cation accuracy in most cases is either better or comparable
(within statistical error bars) to the best classifiers, and the
number of logical rules lower than obtained by alternative
systems. Each “or” condition and “else” condition is counted
as a separate rule, therefore in two-class problem at least two
rules are needed. Accuracy refers to the accuracy on the test
set (if provided) or to the overall accuracy of rules on the w-
hole dataset (if there is no test set). All data are from the UCI
repository [11], except for the appendicitis, obtained from
the authors of [12] paper. Hepatitis dataset contains many
missing values and if averages are used meaningless rules are
obtained; here only attributes with few missing values were
used (no more than 5). NASA shuttle (described below) and
the hypothyroid data contain large test sets, so comparison is
independent of the details of crossvalidation. For the three
monk problems – artificial data, not mentioned in the Table
– perfect accuracy is obtained.

TABLE I

SUMMARY OF RULE EXTRACTION RESULTS. SECOND COLUMN GIVES

THE NUMBER OF RULES/ATTRIBUTES USED.

Dataset Rules/attrib. Accuracy %

Appendicitis 3/2 91.5
Breast cancer 3/2 95.6
(Wisconsin) 6/5 99.0
Cancer (Ljubliana) 2/2 77.2

4/4 78.0
Diabetes 2/2 75.0
Hepatitis 3/5 88.4
Heart (Cleveland) 4/3 85.5
Hypothyroid 3/5 99.4
Iris 3/1 95.3

3/2 98.0
Mushrooms 2/1 98.5

3/2 99.4
4/4 99.9
5/6 100.0

A. NASA Shuttle

The Shuttle dataset from NASA contains 9 continuos numer-
ical attributes related to the positions of radiators in the Space
Shuttle. There are 43500 training vectors and 14500 test
vectors, divided into 7 classes in a very uneven way: about
80% from class 1 and only 6 examples from class 6 in the
training set. This data has been used in the Stalog project
[15], therefore accuracy of our rules may be compared with
many other classification systems (Table 2).

TABLE II

SUMMARY OF RESULTS FOR THENASA SHUTTLE DATASET.

Method Train % Test %

Linear discrimination 95.02 95.17
Logistic discrimination 96.07 96.17
MLP+BP 95.50 96.57
RBF 98.40 98.60
k-NN – 99.56
C4.5 dec. tree 99.96 99.90
k-NN + feature sel. – 99.95
NewID dec. tree 100.00 99.99
15 logical rules 99.98 99.97

We have used the FSM network with rectangular member-
ship functions. Initialization of the network gives 7 nodes
achieving already 88% accuracy. Increasing accuracy (using
constructive learning algorithm) on the training set to 94%,
96% and 98% leads to a total of 15, 18 and 25 nodes and
accuracies on the test set of 95.5%, 97.8% and 98.5%. Back-
propagation network reached an accuracy of 95.5% on the
training set. k-NN is very slow in this case, requiring all
43500 training vectors as reference for computing distances,

reaching on the test set 99.56% but with feature selection
improving to 99.95%. Using network optimization of the
FSM rules described in the previous chapter 15 logical rules
were generated. For example, for the third class rules are:

F2∈ [−188.43,−27.50]∧F9∈ [1,74]
F2∈ [−129.49,−21.11]∧F9∈ [17,76] (9)

The set of 15 rules makes only 3 errors on the training set
(99.99% accuracy), leaving 8 vectors unclassified, and no er-
rors on the test set but leaving 9 vectors unclassified (0.06%).
After fuzzification of inputs only 3 errors and 5 unclassified
vectors are obtained for the training and 3 vectors are un-
classified and 1 error is made (although with probability of
correct class close to 50%) for the test set. These results
are much better than those obtained from the MLP or RBF
networks (as reported in the Stalog project [15]) and compa-
rable with the results of the best decision trees which work
very well for this problem. It is interesting to note that in the
Stalog project the NewID tree (descendant of the ID3 tree),
which gave the best results here, has not been among the
first 3 best methods for any other of the 22 datasets analyzed.
Results of the C4.5 decision tree are already significantly
worse. Our rule extraction approach has consistently been
giving top results (cf. Table 1). Logical rules provide highly
accurate and quite simple description of Shuttle dataset.

B. Psychometric data

Our rule extraction methods were applied to a real-world data
mining task, providing logical description of the psychome-
tric data collected in the Academic Psychological Clinic of
Nicholas Copernicus University and in several psychiatric
hospitals around Poland. Minnesota Multiphasic Personality
Inventory (MMPI) test was used. The final two databases an-
alyzed had over 1000 cases each. Standard evaluation of such
data is based on aggregation of answers into 14 coefficients,
called “psychometric scales”. These coefficients are often
displayed as a histogram (called “a psychogram”) allowing
skilled psychologists to diagnose specific problems, such as
neurosis, drug addiction or criminal tendencies. Our goal
was to provide an automatic psychological diagnosis.

Psychologists require a rule based system because a detailed
interpretation of the test, including description of personality
type, should be assigned to each diagnosis. Our datasets
contained up to 34 classes (normal, neurotic, drug addicts,
schizophrenic, psychopaths, organic problems, malingerers
etc.), determined by experts skilled in psychometric tests (it
is hard to evaluate the accuracy of their evaluation). Our ini-
tial logical rules achieved about 93% accuracy on the whole
set, increasing to over 95%-97% (depending on the dataset
used) after some optimization and fuzzification. Assumption
of the finite accuracy (about 1-5 units) of the procedure used
for calculation of the values of each scale proved to be very

helpful, allowing for classification of vectors which were
rejected by the crisp rules. On average 2.5 logical rules per
class were derived (a total of 50-60 rules), involving between
2 and 9 attributes (out of 14). For most classes there were
only a few errors and it is quite probable that they are due to
the incorrect interpretation of psychograms by psychologists.
Symptoms of organic problems and of schizophrenia are eas-
ily confused with symptoms belonging to other classes and
most errors were indeed in these two classes. A typical rule
has conditions referring to the values of scales, for example:

IF Mk∈ [42−46]∧ It ∈ [48−51] THEN drug addiction

and therefore may easily be interpreted in a verbal way.
Each rule has detailed interpretation associated with it by
psychologists. Fuzzification leads to additional adjectives in
verbal interpretation, like “strong tendencies”, or “typical”.
An expert system using these rules should be evaluated by
clinical psychologist in the near future.

Conclusions

OPTIMIZATION of crisp logical rules derived from neu-
ral methods leads to sets of simple and highly accurate

rules. Neural approaches to extraction of logical rules from
data frequently ignore the issues related to optimization and
application of rules [3]. We have used optimization of lin-
guistic variables and logical rules both at the level of net-
work optimization and maximization of the predictive power
of sets of rules. For Gaussian distribution of measurement
errors estimation of classification probability using Monte
Carlo procedure may be replaced by analytical calculation,
leading to “soft trapezoid” fuzzification of the crisp member-
ship functions and providing a small number of additional
adaptive parameters. Sets of crisp logical rules may then be
used to calculate probabilities (instead of giving a binary 0,
1 answers), making also classification of the rejected vectors
possible.

Simplest logical description for several benchmark problems
was obtained (Table 1). Recent improvements of our rule
extraction and optimization methodology include better lin-
guistic unit construction, optimization of predictive power
of rules, direct optimization of FSM nodes, soft evaluation
of probabilities and optimization of Gaussian uncertainties.
These improvements allowed us to find simple rules for
datasets that could not be analyzed earlier, such as diabetes
[14], significantly higher accuracy for such complex databas-
es as NASA Shuttle, or applications to difficult, real life
psychometric data analysis. Since simplest data description
is frequently the most useful one should always try to extract
crisp logical rules. One reason for good performance of the
rule-based systems is due to the excellent control of com-
plexity of these classifiers. Overfitting of the data manifests
with a large number of logical rules that cover only a few
cases. Looking at the number of cases each rule handles an

optimal number of parameters is easily determined. In our
tests logical rules proved to be highly accurate; second, they
are easily understandable by experts in a given domain; third,
they may expose problems with the data itself. However, if
the number of rules is too high or the accuracy of classifi-
cation is too low, other methods should be attempted, such
as fuzzy or neural classifiers. Finding a global optimum of
the error function for these more sophisticated classification
systems is usually more difficult than for the set of rules,
and if soft transfer or membership functions are used this
optimum may be different from optimal classification error.

Acknowledgments

Support by the KBN, grant 8 T11F 014 14, is gratefully
acknowledged.

REFERENCES

[1] W. Duch, R. Adamczak, K. Gra¸bczewski, G.Żal, Hybrid neural-
global minimization logical rule extraction method for medical diag-
nosis support, Intelligent Information Systems VII, Malbork, Poland,
15-19.06.1998, pp. 85-94

[2] W. Duch, R. Adamczak, K. Gra¸bczewski, G.Żal, Y. Hayashi,Fuzzy
and crisp logical rule extraction methods in application to medical
data. Computational Intelligence and Applications. Springer Studies
in Fuzziness and Soft Computing, Vol. 23 (ed. P.S. Szczepaniak), in
print

[3] R. Andrews, J. Diederich, A.B. Tickle,A Survey and Critique of Tech-
niques for Extracting Rules from Trained Artificial Neural Networks,
Knowledge-Based Systems 8 (1995) 373–389

[4] W. Duch, R. Adamczak, K. Gra¸bczewski, G.Żal, Hybrid neural-
global minimization method of logical rule extraction,Int. Journal of
Advanced Computational Intelligence (in print)

[5] B. Kosko,Neural Networks and Fuzzy Systems.Prentice Hall 1992

[6] W. Duch, G.H.F. Diercksen,Feature Space Mapping as a universal
adaptive system,Computer Physics Communic. 87 (1995) 341–371

[7] W. Duch, R. Adamczak, N. Jankowski,Initialization of adaptive pa-
rameters in density networks,3-rd Conf. on Neural Networks, Kule,
Oct. 1997, pp. 99-104

[8] W. Duch, R. Adamczak, N. Jankowski,New developments in the
Feature Space Mapping model, 3rd Conf. on Neural Networks, Kule,
Poland, Oct. 1997, pp. 65-70

[9] K. Gra̧bczewski, W. Duch,A general purpose separability criterion
for classification systems.Fourth Conference on Neural Networks and
Their Applications, Zakopane, May 1999 (in print)

[10] W. Duch, R. Adamczak and K. Gra¸bczewski,Extraction of logical
rules from backpropagation networks. Neural Processing Letters 7
(1998) 1-9

[11] C.J. Mertz, P.M. Murphy, UCI repository of machine learning databas-
es, http://www.ics.uci.edu/pub/machine-learning-data-bases.

[12] S.M. Weiss, I. Kapouleas,An empirical comparison of pattern recog-
nition, neural nets and machine learning classification methods. In:
J.W. Shavlik and T.G. Dietterich,Readings in Machine Learning, Mor-
gan Kauffman Publ, CA 1990

[13] W. Duch, R. Adamczak and K. Gra¸bczewski,Constraint MLP and
density estimation for extraction of crisp logical rules from data.I-
CONIP’97, New Zealand, Nov.1997, pp. 831-834

[14] W. Duch, R. Adamczak and K. Gra¸bczewski, Neural optimization
of linguistic variables and membership functions.ICONIP’99, Perth,
Australia, Nov. 1999 (in print)

[15] D. Michie, D.J. Spiegelhalter and C.C. Taylor,Machine learning, neu-
ral and statistical classification. Elis Horwood, London 1994

