
Neural networks in non-Euclidean metric spaces.
Włodzisław Duch and Rafał Adamczak,

Department of Computer Methods, Nicholas Copernicus University,
Grudzia̧dzka 5, 87-100 Toru´n, Poland.
E-mail: duch,raad@phys.uni.torun.pl

Abstract.
Multilayer Perceptrons (MLPs) use scalar products to compute weighted

activation of neurons providing decision borders using combinations of soft

hyperplanes. The weighted fun-in activation function corresponds to Eu-

clidean distance functions used to compute similarities between input and

weight vector. Replacing the fan-in activation function by non-Euclidean

distance function offers a natural generalization of the standard MLP model,

providing more flexible decision borders. An alternative way leading to

similar results is based on renormalization of the input vectors using non-

Euclidean norms in extended feature spaces. Both approaches influence the

shapes of decision borders dramatically, allowing to reduce the complexity

of MLP networks.

I. I NTRODUCTION

NEURAL networks of the most popular multi-layer per-
ceptron (MLP) type perform discrimination of the in-

put feature space using hyperplanes. Many other transfer
function have been proposed to increase the flexibility of
contours used for estimation of decision borders [1] (for a
recent review see [2]). Perhaps the best known alternative
to sigmoidal functions are localized Gaussian functions and
other radial basis functions. Viewing the problem of learn-
ing from geometrical point of view functions performed by
neural nodes should enable tessellation of the input space
in the most flexible way using a small number of adaptive
parameters. Although neural networks with single hidden
layer using sigmoidal or Gaussian functions can approximate
an arbitrary continuous function on a compact domain with
arbitrary precision given sufficient number of neurons [3],
i.e. they are universal approximators, for some datasets a
large (and hard to train) network using sigmoidal or Gaus-
sian functions may be needed for tasks that could be solved
with a small (and easy to train) networks using other transfer
functions, providing more flexible borders.

Improvement in learning and architectures of neural net-
works may not be able to overcome inherent drawbacks
of models that provide wrong decision borders for a given
problem. Consider a simple classification problem inN di-
mensions, with spherical distribution of vectors belonging to
classC1, to be distinguished from vectors belonging to class

C2, lying outside the unit sphere. A single neuron performing
multivariate Gaussian function with 2N adaptive parameters
(specifying the center and dispersions in each dimension)
is sufficient for this job and the training process is quite
simple. Many hyperplanes provided by sigmoidal functions
are needed to approximate spherical decision borders. The
simplest approximation, using the standard multilayer per-
ceptron (MLP) architecture, that captures any bound region
of N-dimensional space, requires construction of a simplex
using N sigmoids and an additional neuron to smooth the
output of a combination of these neurons. Thus at least
N2+N parameters are needed, compared with 2N parameters
for localized functions. On the other hand if data vectors
belonging to the first class are taken from the corner of the
coordinate system bound by the(1,1, ...,1) plane a single
sigmoidal function withN + 1 parameters is sufficient for
perfect classification while Gaussian approximation will be
quite difficult. A poor approximation may use one Gaussian
in the center of the region andN+1 Gaussians in the corners,
using 2N(N + 2) adaptive parameters.

In the first example the complexity of the training process
is O(N2) for MLP and O(N) for RBF, and in the second
example the situation is reversed. One may easily create
more complicated examples with more classes between con-
centric spheres of growing radii or with series of hyperplanes
passing through(m,m, ...,m) points. Improved learning algo-
rithms or network architectures will not change the relative
complexity of solutions as long as the decision borders pro-
vided by the transfer functions remain spherical (as in the
first example) or planar (as in the second example). Artificial
examples that are favorable for other types of functions are
also easy to construct.

MLPs are similar to statistical discriminant techniques, al-
though soft sigmoids allow for representation of more com-
plex, nonlinear decision borders. This is usually considered
to be a strength of the MLP model, although in cases when
sharp decision borders are needed it may also become its
weakness. For example, classification borders conforming
to a simple logical rulex1> 1∧x2> 1 are easily represented
by two hyperplanes, but there is no way to represent them ac-
curately using soft sigmoidal functions. Increasing the slopes

of sigmoidal functions to improve representation of such
decision borders around the (1,1) point leads to problems
with learning by backpropagation, or by any other gradient-
based method, since the volume of the input space in which
sigmoids change rapidly (and thus gradients are non-zero) is
rapidly shrinking. In the limit sigmoidal functions become
step-functions but gradient techniques like backpropagation
cannot be used to make this transition. As a result for some
datasets no change in learning rule or network architecture
will improve the accuracy of neural solutions. A good real-
world example is the hypothyroid dataset, for which the best
optimized MLPs still give about 1.5% of error [4] while
logical rules reduce it to 0.64% (since 3428 cases are pro-
vided for testing this is a significant improvement). Another
example may be provided by the NASA Shuttle benchmark
data [5], where MLP makes about 3.5% errors on the test
set, RBF makes about 1.4% error while logical rules achieve
0.01% of errors (one or two vectors out of 14500 in the test
set).

Most research on neural networks is concentrated on archi-
tectures and learning rules, but selection of neural transfer
functions may be crucial to network performance [1]. Net-
works providing the most flexible decision borders with the
lowest number of adaptive parameters may have an advan-
tage over larger and more complex networks. There are
two ways to create such networks. First, flexibility of trans-
fer functions may be increased and second, inputs may be
transformed in a non-linear way. Transfer functionso(I(X))
are compositions of the activationI(X) and the output func-
tion o(I). Output functions are usually either sigmoidal
(S-shaped) squashing functions, preventing the unbounded
growth of signals in the network, or localized, bell-shaped
functions. Activation functions are almost always either fan-
in weighted scalar productsW ·X used with sigmoidal func-
tions or Euclidean distance functions used with bell-shaped
functions. In this paper we will show how to change the
activation functions to obtain more flexible decision borders.
Flexibility of transfer functions is strongly correlated with
the number of functions (and thus with the number of adap-
tive parameters available for training) necessary to model
complex shapes of decision borders.

We will place our considerations in the general framework
for similarity-based classification methods (SBMs) presented
recently [6], [7]. Investigation of connections between neu-
ral network and similarity-based methods leads to a number
of new neural network models. In particular the distance-
based MLP (D-MLP) networks are obtained by replacing
the weighted activation with a square of Euclidean distance
[8]. Such networks improve upon the traditional approach
by providing more flexible decision borders and by enabling
a prototype-based interpretation of the results. Since the
use of distance functions (instead of weighted activation)
in neural network models is a novel idea it is described in

the next section. In the third section transformation of the
input data to the extended feature space is proposed, enabling
the use of non-Euclidean distance functions in the standard
MLP backpropagation programs without the need for coding
the new transfer functions and their derivatives. The fourth
section shows how to determine the architecture and param-
eters of such networks, including the slopes for each neuron.
An illustration of this method on the Iris data is presented
for pedagogical purposes in the fifth section. The paper is
finished with a short discussion.

II. D ISTANCE FUNCTIONS IN NEURAL NETWORKS

In the similarity-based framework the classification prob-
lem is solved using a set of class-labeled training vectors
{R j ,C(R j)}, j = 1..Nt , whereC(R j) is the class ofR j . The
probabilityp(Ci |X;M) that a given vectorX belongs to class
Ci is calculated using the information provided in the sim-
ilarity measureD(X,R j). M stands here for the classifica-
tion model used, i.e. values of all parameters and proce-
dures employed. A general similarity-based model [6] of an
adaptive system used for classification may include various
types of parameters and procedures, such as: the set{R j}
of reference vectors created from the set of training vectors
{X i} by selection and/or optimization procedure; a similarity
functionD(·) (frequently a distance function or an activation
function in neural networks) parameterized in various ways,
or a table used to compute similarities for nominal attributes;
a weighting functionG(D(X,R)), estimating contribution
of the reference vectorR to the classification probability
depending on its similarity to the vectorX; the total cost
function E[·] optimized during training. The cost function
may include regularization terms, hints [3], it may depend
upon a kernel functionK(·), scaling the influence of the error,
for a given training example, on the total cost, it may use a
risk matrixR (Ci |Cj) of assigning wrong classes or a matrix
S(Ci |Cj) measuring similarity of output classes. In some
models the number of reference vectorsk taken into account
in the neighborhood ofX is specified. An adaptive system
may include several such modelsMl and an interpolation pro-
cedure to select between different models or average results
of a committee of models.

In RBF networks Euclidean distance functionsD(X,R j) =
||X − R j || are assumed and radial, for example Gaussian
G(D) = exp(−D2), or G(D) = 1/(1+ D2) weighting func-
tions are used. Essentially RBF is a minimal distance soft
weighted method with no restrictions on the number of
neighbors – reference vectorsR j that are close toX influence
probabilities of classification more than those that are far.
The SBM framework suggests that there is nothing special
about this choice of distance function and the weighting
function. Any distance functionD(X,R) and the weighting
functionG(D) may be used to create neural network. In the

Gaussian classifier [9] or in the original RBF network only
one parameter, dispersion, was optimized [10]. Optimization
of the positions of the reference centersR j leads to the LVQ
method [11] in which the training set vectors are used to
define the initial prototypes and the minimal distance rule is
used to assign the classes. The Restricted Coulomb Energy
(RCE) classifier [12] uses a hard-sphere weighting function-
s. The Feature Space Mapping model (FSM) is based on
separable, rather than radial weighting functions [13]. Re-
cently a method to create oblique probability distributions
in N-dimensional space using onlyN parameters has been
described [1].

MLPs and other networks using discriminant functions are
also special cases of general SBM framework. Threshold
neurons compute distances in a natural way. If the input
signalsX and the weightsW are(±1. . .± 1) vectors, neu-
ron with N inputs and the thresholdθ realizes the following
function:

Θ(
N

∑
i

WiXi−θ) =
{

0 if ||W−X||> (N−θ)/2
1 if ||W−X|| ≤ (N−θ)/2 (1)

where|| · || norm is defined by the Hamming distance. One
can interpret the weights of neurons in the first hidden layer
as addresses of the reference vectors in the input space and
the activity of threshold neuron as activation by inputs falling
into a hard sphere of radiusθ centered atW. The Hamming
neural network [14] is actually a neural realization of the
nearest neighbor method for a single neighbor and binary
inputs. Changing binary into real values and threshold into
sigmoidal neurons for inputs normalized to||X||= ||W||= 1
leads to soft activation of neurons by input vectors close to
W on a unit sphere. In general the activation of a neuron is
written as:

W ·X =
1
2

(
||W||2 + ||X||2−||W−X||2

)
(2)

For normalized input vectors sigmoidal functions (or any
other monotonically growing transfer functions) may there-
fore be written in the form:

σ(W ·X + θ) = σ(d0−D(W,X)) (3)

whereD(W,X) is the square of Euclidean distance between
W and X and the 1/2 factor is absorbed in the sigmoid’s
slope. This function evaluates the influence of the refer-
ence vectorsW on the classification probabilityp(Ci |X;W).
To avoid loss of information during normalization of input
vectors an additional componentXr is added, a new feature
measuring the difference between largest norm and the norm
of the original input vectors.

Transfer functionf (D(W,X)) = σ(d0−D(W,X)) decreases
monotonically as a function of distance, with flat plateau for

small distancesD, reaching the value of 0.5 forD(W,X) =
d0 and approaching zero for larger distances. For normal-
izedX but arbitraryW the sigmoid arguments belong to the
[θ−|W|,θ + |W|] interval. A unipolar sigmoid has its max-
imum curvature around±2.4, therefore smaller thresholds
and norms of the weights mean that the network operates
in an almost linear regime, smoothing the network approxi-
mation to the training data. This is one of the reasons why
regularization methods, adding penalty terms to the error
function to reduce the weights, improve generalization [3].

From the similarity-based point of view MLP networks use
sigmoidal functions to estimate the influence of weight vec-
tors according to distance between these vectors and the
training vectors, combining many such estimations to com-
pute the final output. Changing the distance function in
equation (3) from the square of the Euclidean distance to
some other distance measures, new types of neural networks,
called D-MLP networks [8], are defined. Another possibility
is to write the weighted product in the form:

σ(W ·X) = σ
(

1
4

(||W + X||2−||W−X||2)
)

(4)

Euclidean norms may be replaced by Minkovsky or other
type of norms. Backpropagation procedure requires deriva-
tives of the distance functions, but for Minkovsky and several
functions they are easily provided. Generalized Minkovsky’s
distance with the scaling factors is given by:

D(A,B;s)β =
N

∑
i

sid(A i ,Bi)α (5)

whereβ = α is usually taken. Thed(·) function is used to
estimate similarity at the feature level and in the simplest
cased(A i ,Bi) = |A i−Bi |. Forα = β = 2 the vectors||A||= 1
are on the unit sphere, for largeα the sphere is changed
into a soft cuboid, forα = 1 it has pyramidal and forα < 1
hypocycloidal shape.

Thus using non-Euclidean distance activation functions
changes the shape of decision borders completely, from the
usual hyperplanes (β = 1, α = 2 andWr = 0 for the weight
corresponding to theXr component) to spherical, cuboidal or
hypocycloidal. Derivation of the backpropagation equations
for σ(d0−D(X,W)) functions with generalized Minkovsky
distances is straightforward but requires extensive modifi-
cation of standard MLP software. Instead of changing the
activation function nonlinear transformation of input features
may also change decision borders.

III. N ORMALIZATION OF INPUT VECTORS IN

NON-EUCLIDEAN SPACES

The parameterd0 in Eq. (3) should be treated as an adaptive
parameter only ifX is normalized. This may always be

done without loss of information if one or more additional
components are added to the vector, extending the feature
space by at least one dimension. TakingXr =

√
R2−||X||2,

whereR≥ maxX ||X||, amounts to a projection of the data
on a unit hemisphere with radiusR. Vectors(X,Xr) may be
renormalized||(X,Xr)||D = 1 using the metric defined by the
distance functionD(X,R).

The distance function may be heterogeneous, using
Minkovsky’s metric for numerical features and probabilistic
metric functions for symbolic features. In memory-based
reasoning the Modified Value Difference Metric (MVDM)
has gained popularity [15]. The distance between twoN-
dimensional vectorsA,B with discrete (nominal, symbolic)
elements, in aK class problem, is computed using condition-
al probabilities:

Dα
V(A,B) =

N

∑
j

K

∑
i

∣∣p(Ci |Aj)− p(Ci|Bj)
∣∣α =

N

∑
j

dα
V(Aj ,Bj) (6)

where p(Ci |Aj) is estimated by calculating the number
Ni(Aj) of times the valueAj of the featurej occurred in
vectors belonging to classCi , and dividing it by the number
of times Aj occurred for any class. A “value difference”
dα

V(Aj ,Bj) for each featurej allows to computeDV(A,B) as
a sum of additive factors for all features. Distance is defined
here via a data-dependent matrix with the number of rows
equal to the number of classes and the number of columns
equal to the number of all attribute values. Generalization
for continuos values requires a set of probability density
functionspi j (x), with i = 1..K, j = 1..N. Additional scaling
factors may be introduced, as in Eq. (5).

Using VDM type of metrics leads to problems with calcula-
tion of gradients, but replacing symbolic features by vectors
of p(Ci |Aj) probabilities (with dimension equal to the num-
ber of classes times the number of different symbolic val-
ues the feature takes) allows to reproduce MVDM distances
using numerical values of vector components. Many other
types of metric functions exist [15] and their performance
should be empirically verified. Several alternative extensions
of the input space may be considered, for example adding
one or more featuresXr = D(X,R) equal to the distance of a
given vectorX to some fixed vectorR a parabolic projection
is made.

It may be of some advantage to increase the separation of
the clusters projected on the hypersphere. It is impossible to
make such a projection on the whole hypersphere without vi-
olating topological constraints. In the one-dimensional case
with X ∈ [−1,+1] the (X,Xr) vector should not make a full
circle whenX is changed from−1 to+1 because the two ex-
treme vectorsX =±1 will then be identical. An optimal sep-
aration for 3 vectors with the length||X||, ||X||+∆, ||X||+2∆

is to place them in corners of equilateral triangle, for exam-
ple at angles 0,±120◦. One can search for the best input
preprocessing treating it as a rigorous optimization problem,
or just use polar coordinates to shift some upper hemisphere
vectors to the part of the lower hemisphere. Much simpler
approach is to rescale all vectors to get their Euclidean norms
≤ 1, and use the norm||X|| mapping it to points on a cir-
cle:

(
sin π

3(4−5||X||),cosπ
3(4−5||X||)

)
. These points for

0≤ ||X|| ≤ 1 are within the angle−π/3 and 4π/3. The first
factor, sinπ

3(4−5||X||) is used to rescale all components of
the vectorX, while the second factor is taken as an extraXr

component. Extended vectors||(X j ,X j
r)||D are renormalized

using the metric functionD(·), placing them on a unit sphere
defined by this metric.

IV. I NITIALIZATION OF THE NETWORK

The network should be initialized taking the centers of clus-
ters in the extended space asW and takingd0 = D(W,Xb),
whereXb is a vector at the border of the given cluster (we
have tried [16] dendrograms and decision trees but other
clusterization methods may also be used for initialization
[9]). Using weighted activation the contribution of a center
of an input data clusterC laying on the unit sphere isW ·C.
The largest activation is obtained when the weightsW point
in the same direction as the centerC. The logistic function
σ(C ·X−θ) = (1+exp((−C ·X +θ)/T))−1, whereT deter-
mines the slope, has the largest gradient in the direction of
W = C. The valueσ(0) = 0.5 is obtained at aθ distance
from the origin of the coordinate system. Since theC vector
is normalizedθ = 1 places the contours for 0.5 value tan-
gentially to the unit hypersphere. Contours for lower values
σ(C ·X−θ)< 0.5 cut segments of the hypersphere in which
the value ofσ(C ·X−θ) is constant.

A parameter which is rarely changed in MLPs is the slope
of sigmoidal functions. It defines the area which has an
influence on performance of each node. If the slope is too
high the area in which the sigmoidal function is not approxi-
mately constant is small and only a few training vectors have
a chance to influence the gradient-based learning procedures.
If it is too low then all functions strongly overlap and there
is no possibility to create sharp decision borders. Normaliza-
tion of the weightsW is equivalent to a local change of the
slope:

(W ·X + θ)/T = (
W
||W|| ·X +

θ
||W||)||W||/T =

(W′ ·X + θ′)/T ′ = (d′0−D(W′,X))/T ′ (7)

Thus without loss of generality bothX andW′ may be nor-
malized. No special learning for slopes is required since they
are computed from norms of weights. A useful variabili-
ty range of the sigmoid is between its maximum curvature
points, which forT = 1 are between∆(T) = ±2.4. If the

variability range is assumed to be 1/10 of the size of the
cluster, i.e.∆(T) = ±d0/10 then settingT ≈ d0/24 will be
appropriate. After such initialization training of the network
is usually quite short.

In the XOR case the input vectors for class = T are
(0,1),(1,0) and for the class = F are(0,0),(1,1). The mean
for each feature is 0.5 and after shifting and renormalizing
the vectors areC1 = (−1,+1)/

√
2, C2 = (+1,−1)/

√
2 for

class T and(−1,−1)/
√

2, (+1,+1)/
√

2 for class F. Se-
lecting one of the classes for output, for example class T,
initial weights for the first neuron are given byC1 and for
the second neuron byC2, while the hidden to output layer
weights are all+1. This is the correct and the simplest so-
lution for the XOR problem found without any optimization
of the network! For more complex examples of this type
of initialization see [16]. Since the architecture of the MLP
network in the extended space is completely determined by
the initialization procedure (clusterization method used de-
termines all parameters), and the training should be rapid due
to a good starting point, many distance functions may be tried
on a given problem.

V. PEDAGOGICAL ILLUSTRATION

The influence of input renormalization (using non-Euclidean
distance functions) on the shapes of decision borders is il-
lustrated below on the classical Iris flowers dataset, con-
taining 150 cases divided into 3 classes [17]. The flowers
are described by 4 measurements (petal and sepal width and
length). Two classes, Iris virginica and Iris versicolor, over-
lap, and therefore a perfect partition of the input space into
separate classes is not possible. An optimal solution (from
the point of view of generalization) contains 3 errors [18] and
may be obtained using only two of the four input features (x3

andx4), therefore results are easy to display and only those
two features have been left in simulations described below.
The data has been standardized and rescaled to fit inside a
square with±1 corners.

A standard MLP solution is obtained with 2 input, 4 hidden
and 3 output neurons, with a total of 27 adaptive parameter-
s. One discriminating plane per class for the smallest and
the largest flowers (setosa and virginica) is needed and two
planes are needed to separate the vectors of the versicolor
class. To increase accuracy and speed up learning, in the
final phase of learning only the vectors near the class borders
were presented to the network. The selection algorithm loops
over all vectors and for a given vectorX findsk (for example
k = 10) nearest vectors belonging to a different class than
X. These vectors are written to a new training file providing
a description of the border region. This method of training
leads to sharper and more accurate decision borders, as seen
in the first drawing of Fig. 2.

An additional input feature has been added and the 3-

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.20.40.60.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2
0.4

0.6
0.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.20.40.60.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

+
+ +

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+
+
+ +

+

+

+
+

+

+

+
+
+

+

+++
+

+

+

+

+
+
++

+

+

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
∇

∇

∇

∇

∇
∇

∇
∇∇

∇

∇
∇

∇
∇

∇
∇

∇

∇
∇

∇

∇

∇ ∇

∇

∇

∇∇∇

∇

∇

∇
∇

∇

∇
∇

∇
∇

∇∇

∇

∇
∇

∇

∇

∇

∇

∇
∇

∇

∇

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

⊕⊕⊕ ⊕⊕

⊕
⊕
⊕⊕
⊕
⊕⊕

⊕⊕
⊕

⊕⊕
⊕ ⊕⊕

⊕

⊕

⊕

⊕

⊕⊕

⊕

⊕⊕ ⊕⊕

⊕

⊕
⊕
⊕

⊕⊕
⊕

⊕ ⊕
⊕⊕
⊕

⊕

⊕
⊕

⊕⊕⊕⊕

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.20.40.60.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2
0.4

0.6
0.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.20.40.60.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

+
+ +

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+
+
+ +

+

+

+
+

+

+

+
+
+

+

+++
+

+

+

+

+
+
++

+

+

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
∇

∇

∇

∇

∇
∇

∇
∇∇

∇

∇
∇

∇
∇

∇
∇

∇

∇
∇

∇

∇

∇ ∇

∇

∇

∇∇∇

∇

∇

∇
∇

∇

∇
∇

∇
∇

∇∇

∇

∇
∇

∇

∇

∇

∇

∇
∇

∇

∇

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

⊕⊕⊕ ⊕⊕

⊕
⊕
⊕⊕
⊕
⊕⊕

⊕⊕
⊕

⊕⊕
⊕ ⊕⊕

⊕

⊕

⊕

⊕

⊕⊕

⊕

⊕⊕ ⊕⊕

⊕

⊕
⊕
⊕

⊕⊕
⊕

⊕ ⊕
⊕⊕
⊕

⊕

⊕
⊕

⊕⊕⊕⊕

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.20.4
0.6

0.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2
0.40.6

0.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2
0.40.6

0.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

+
+ +

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+
+
+ +

+

+

+
+

+

+

+
+
+

+

+++
+

+

+

+

+
+
++

+

+

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
∇

∇

∇

∇

∇
∇

∇
∇∇

∇

∇
∇

∇
∇

∇
∇

∇

∇
∇

∇

∇

∇ ∇

∇

∇

∇∇∇

∇

∇

∇
∇

∇

∇
∇

∇
∇

∇∇

∇

∇
∇

∇

∇

∇

∇

∇
∇

∇

∇

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

⊕⊕⊕ ⊕⊕

⊕
⊕
⊕⊕
⊕
⊕⊕

⊕⊕
⊕

⊕⊕
⊕ ⊕⊕

⊕

⊕

⊕

⊕

⊕⊕

⊕

⊕⊕ ⊕⊕

⊕

⊕
⊕
⊕

⊕⊕
⊕

⊕ ⊕
⊕⊕
⊕

⊕

⊕
⊕

⊕⊕⊕⊕

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0090.0180.0270.036

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2
0.40.6

0.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.20.40.60.8

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

+
+ +

+

+

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+

+

+

+

+
+
+ +

+

+

+
+

+

+

+
+
+

+

+++
+

+

+

+

+
+
++

+

+

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
∇

∇

∇

∇

∇
∇

∇
∇∇

∇

∇
∇

∇
∇

∇
∇

∇

∇
∇

∇

∇

∇ ∇

∇

∇

∇∇∇

∇

∇

∇
∇

∇

∇
∇

∇
∇

∇∇

∇

∇
∇

∇

∇

∇

∇

∇
∇

∇

∇

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

⊕⊕⊕ ⊕⊕

⊕
⊕
⊕⊕
⊕
⊕⊕

⊕⊕
⊕

⊕⊕
⊕ ⊕⊕

⊕

⊕

⊕

⊕

⊕⊕

⊕

⊕⊕ ⊕⊕

⊕

⊕
⊕
⊕

⊕⊕
⊕

⊕ ⊕
⊕⊕
⊕

⊕

⊕
⊕

⊕⊕⊕⊕

Fig. 1. Shapes of decision borders in the Iris case for the network without
the hidden layer (3 output neurons, 3 inputs), with growingW3 weight.

dimensional vectors normalized using various Minkovsky
distance measures. The network has been initialized tak-
ing the normalized weights that are equal to the centers of
the three clusters. In the extended feature space the same
accuracy is achieved using only 3 input and 3 output neu-
rons without the hidden layer, for a total of 12 adaptive
parameters. Using such network architecture with squared
Euclidean metric and the weightW3 = 0 for the third X3

component, only two classes are separated. The transition
process from the planar to circular decision borders is shown
in Fig. 1 (clockwise, from top left). In the learning process
W3 grows, curving the borders for vectors near the center of
the drawing.

In Fig. 2 dramatic changes in the final shapes of decision
borders for Minkovsky metric are shown. Euclidean case
corresponds to circular decision borders, the city block met-
ric α = 1 gives sharp, romboidal shapes, for largeα almost
rectangular decision borders are obtained (an approximation
using logical rules is in this case quite accurate) while for
small α hypocycloidal shapes are created. For the Iris data
the optimal solution (3 errors) has been recovered for all
values ofα ≥ 0.8. Smooth transition between these cases
is made by changingα and retraining the network.

For other datasets we have found significant improvements
of accuracy for optimizedα.

VI. D ISCUSSION

Distance-based neural networks increase flexibility of de-
cision borders by modifying transfer functions, either in a
global way (if the same distance function is used for each
node), or locally (if distance function are different at each
node). Non-Euclidean transformations of input vectors also
lead to very flexible shapes of neural network decision bor-

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 2. Shapes of decision borders in the Iris case for standard MLP (2
inputs, 3 hidden and 3 output neurons, first drawing) and using addition-
al input dimension to renormalize data vectors with Minkovsky metric,
α=2.0, 0.5, and 7.0.

ders without any change in the standard computer programs.
The training times are short since a good initialization proce-
dure based on clusterization techniques determines weights,
thresholds and slopes of all neurons. The complexity of
network architecture defined in extended space is usually
smaller comparing to the standard MLPs needed to obtain
similar accuracy on a given dataset, as has been observed in
the Iris example. Since the training is fast many different
metric functions may be tried before selecting (using cross-
validation tests) the best model. Networks with activation
given by Eq.(3) or (4) have not yet been implemented but
such models seem to be quite promising.

The change of the shapes of decision borders has been ac-
complished before by adding new type of units to neural net-
works (see the forthcoming review [2]). For example, Ridella
et al. [19] used circular units in their Circular Backpropa-
gation Networks. Different type of circular units have been
used by Kirby and Miranda [20] – in their implementation
two sigmoidal units are coupled together and their output is
restricted to lie on a unit circle. Dorffner [21] proposed conic
section transfer functions as a unified framework for MLP
and RBF networks. Straight lines and ellipses are special
cases of conic sections. Non-Euclidean metrics have been
used to characterize the manifold of all Boltzman machines
and EM algorithms by Amari [22], but not for increasing
the flexibility of neural network decision borders. The input
renormalization method may be treated as a generalization
of the circular or conical unit method. It is not restricted
to MLP neural networks, but can be used with any neural
network and any classifier. An additional advantage of our
approach is the understanding of what the network has really
learned in terms of the prototypes (weights) and sigmoidally
weighted distances (similarities) to these prototypes.

Acknowledgments

Support by the KBN, grant 8 T11F 014 14, is gratefully
acknowledged.

REFERENCES

[1] W. Duch, N. Jankowski,New neural transfer functions, Applied Math-
ematics and Computer Science 7 (1997) 639-658

[2] W. Duch, N. Jankowski,Survey of Neural Transfer Functions. Neural
Computing Surveys (submitted, 1999)

[3] Bishop C,Neural networks for pattern recognition. Clarendon Press,
Oxford, 1995

[4] W. Schiffman, M. Joost, R. Werner,Comparison of optimized back-
propagation algorithms, Proc. of ESANN’93, Brussels 1993, pp. 97-
104

[5] D. Michie, D.J. Spiegelhalter and C.C. Taylor,Machine learning, neu-
ral and statistical classification. Elis Horwood, London 1994

[6] W. Duch,Neural minimal distance methods, Proc. 3-rd Conf. on Neu-
ral Networks and Their Applications, Kule, Poland, Oct. 14-18, 1997,
pp. 183-188

[7] W. Duch, K. Grudzinski, G.H.F. Diercksen,Minimal distance neural
methods. World Congress of Computational Intelligence, May 1998,
Anchorage, Alaska, IJCNN’98 Proceedings, pp. 1299-1304

[8] W. Duch, R. Adamczak, G.H.F. Diercksen,Distance-based multilayer
perceptrons, In: Computational Intelligence for Modelling Control
and Automation. Neural Networks and Advanced Control Strategies.
Ed. M. Mohammadian, IOS Press, Amsterdam, pp. 75-80

[9] P.R. Krishnaiah, L.N. Kanal, eds,Handbook of statistics 2: classi-
fication, pattern recognition and reduction of dimensionality.(North
Holland, Amsterdam 1982)

[10] P.D. Wasserman,Advanced methods in neural networks.(van Nos-
trand Reinhold 1993)

[11] T. Kohonen,Self-organizing maps.(Berlin, Springer-Verlag 1995).

[12] D.L. Reilly, L.N. Cooper, C. Elbaum,A neural model for category
learning, Biological Cybernetics 45 (1982) 35–41

[13] W. Duch, G.H.F. Diercksen,Feature Space Mapping as a universal
adaptive system, Comp. Phys. Communic.87 (1995) 341-371

[14] R.P. Lippmann,An introduction to computing with neural nets, IEEE
Magazine on Acoustics, Signal and Speech Processing 4 (1987) 4-22;
P. Floreen,The convergence of Hamming memory networks, Trans.
Neural Networks 2 (1991) 449-457

[15] D.R. Wilson, T.R. Martinez,Improved heterogenous distance func-
tions. J. Artificial Intelligence Research 6 (1997) 1-34

[16] W. Duch, R. Adamczak, N. Jankowski,Initialization and optimization
of multilayered perceptrons, 3rd Conf. on Neural Networks and Their
Applications, Kule, Poland, October 1997, pp. 105-110

[17] C.J. Mertz, P.M. Murphy, UCI repository,
http://www.ics.uci.edu/pub/machine-learning-databases.

[18] Duch W, Adamczak R, Gra¸bczewski K,Żal G, Hybrid neural-global
minimization method of logical rule extraction, Journal of Advanced
Computational Intelligence (in print, 1999)

[19] S. Ridella, S. Rovetta, R. Zunino,Circular Backpropagation Networks
for Classification, IEEE Trans. Neural Networks 8 (1997) 84–97

[20] M.J. Kirby, R. Miranda,Circular Nodes in Neural Networks,Neural
Computations 8 (1996) 390-402

[21] G. Dorffner, A Unified Framework for of MLPs and RBFNs: Intro-
ducing Conic Section Function Networks, Cybernetics & Systems25
(1994) 511-554

[22] S-i. Amari, Information geometry of the EM and em algorithms for
neural networks, Neural Networks 8 (1995) 1379-1408

