Neural networks in non-Euclidean metric spaces.
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Abstract. Cy, lying outside the unit sphere. A single neuron performing
Multilayer Perceptrons (MLPs) use scalar products to compute WeighteJnUItlvanate Gaussian function wittN2adaptive parameters

o . - . - rgspecifying the center and dispersions in each dimension)
activation of neurons providing decision borders using combinations of so . . . . .
Is sufficient for this job and the training process is quite

hyperplanes. The weighted fun-in activation function corresponds to Eu-, . . . .
. . . P . imple. Many hyperplanes provided by sigmoidal functions
clidean distance functions used to compute similarities between input an . . S .
are needed to approximate spherical decision borders. The

weight vector. Replacing the fan-in activation function by non-Euclidean ", lest imati . th tandard Il
distance function offers a natural generalization of the standard MLP model,Slmp est approximation, using the standard muitiayer per-

L ) . ) ) ceptron (MLP) architecture, that captures any bound region
providing more flexible decision borders. An alternative way leading to . . . . .
L . - . . of N-dimensional space, requires construction of a simplex
similar results is based on renormalization of the input vectors using non-" " . ; . "
. . . psing N sigmoids and an additional neuron to smooth the
Euclidean norms in extended feature spaces. Both approaches influence the . .
L . . _output of a combination of these neurons. Thus at least
shapes of decision borders dramatically, allowing to reduce the complexn)f\|2
+N parameters are needed, compared wiNlparameters
of MLP networks. . . .
for localized functions. On the other hand if data vectors
belonging to the first class are taken from the corner of the
[. INTRODUCTION coordinate system bound by tki&,1,...,1) plane a single
_ sigmoidal function withN + 1 parameters is sufficient for
EURAL networks of the most popular multi-layer per- perfect classification while Gaussian approximation will be
ceptron (MLP) type perform discrimination of the in- quite difficult. A poor approximation may use one Gaussian

put feature space using hyperplanes. Many other transfes the center of the region amdi+ 1 Gaussians in the corners,
function have been proposed to increase the flexibility of;sing N(N + 2) adaptive parameters.

contours used for estimation of decision borders [1] (for a

recent review see [2]). Perhaps the best known alternativV® the first example the complexity of the training process

2 X
to sigmoidal functions are localized Gaussian functions antf O(N?) for M_LP Z_ind _O(N) for RBF, and in the S?CO”O'
other radial basis functions. Viewing the problem of learn-£X@mple the situation is reversed. One may easily create

ing from geometrical point of view functions performed by more complicated examples with more classes between con-

neural nodes should enable tessellation of the input spa&&Ntric spheres of growing radii or with series of hyperplanes
in the most flexible way using a small number of adaptiveP@SSing througtm m. ..., m) points. Improved learming algo-

parameters. Although neural networks with single hiddeﬁ'thms or network architectures will not change the relative
layer using sigmoidal or Gaussian functions can approximate®MPIexity of solutions as long as the decision borders pro-
an arbitrary continuous function on a compact domain withy!ded by the transfer functions remain spherical (as in the
arbitrary precision given sufficient number of neurons [3],f|rst example) or planar (as in the second example). Atrtificial

i.e. they are universal approximators, for some datasets &@mples that are favorable for other types of functions are

large (and hard to train) network using sigmoidal or Gaus&SC €asy to construct.

sian functions may be needed for tasks that could be solvadLPs are similar to statistical discriminant techniques, al-
with a small (and easy to train) networks using other transfethough soft sigmoids allow for representation of more com-
functions, providing more flexible borders. plex, nonlinear decision borders. This is usually considered

Improvement in learning and architectures of neural net!® P€ @ strength of the MLP model, although in cases when

works may not be able to overcome inherent drawback§"a/P decision borders are needed it may also become its
of models that provide wrong decision borders for a giver{'¢akness. For example, classification borders conforming
problem. Consider a simple classification problenNigi-  © @ simple logical rulay > 1Ax; > 1 are easily represented

mensions, with spherical distribution of vectors belonging ta?Y W0 hyperplanes, butthere is no way to represent them ac-

classCy, to be distinguished from vectors belonging to C|asscurately using soft sigmoidal functions. Increasing the slopes



of sigmoidal functions to improve representation of suchthe next section. In the third section transformation of the
decision borders around the (1,1) point leads to problemimput data to the extended feature space is proposed, enabling
with learning by backpropagation, or by any other gradientthe use of non-Euclidean distance functions in the standard
based method, since the volume of the input space in whicKILP backpropagation programs without the need for coding
sigmoids change rapidly (and thus gradients are non-zero) the new transfer functions and their derivatives. The fourth
rapidly shrinking. In the limit sigmoidal functions become section shows how to determine the architecture and param-
step-functions but gradient techniques like backpropagatioeters of such networks, including the slopes for each neuron.
cannot be used to make this transition. As a result for somAn illustration of this method on the Iris data is presented
datasets no change in learning rule or network architectu®r pedagogical purposes in the fifth section. The paper is
will improve the accuracy of neural solutions. A good real-finished with a short discussion.

world example is the hypothyroid dataset, for which the best

optimized MLPs still give about 1.5% of error [4] while

logical rules reduce it to 0.64% (since 3428 cases are pro- |l DISTANCE FUNCTIONS IN NEURAL NETWORKS

vided for testing this is a significant improvement). Another

example may be provided by the NASA Shuttle benchmarin the similarity-based framework the classification prob-
data [5], where MLP makes about 3.5% errors on the tedem is solved using a set of class-labeled training vectors
set, RBF makes about 1.4% error while logical rules achievéR’,C(R")}, j = 1..N, whereC(R!) is the class oR’. The

0.01% of errors (one or two vectors out of 14500 in the tesProbability p(Ci|X; M) that a given vectoX belongs to class
set). G is calculated using the information provided in the sim-

Most h | networks i irated ilarity measureD(X,R}). M stands here for the classifica-
ostresearch on neural NEWorks IS concentrated on archi,, \mogel used, i.e. values of all parameters and proce-
tectures and learning rules, but selection of neural transfey ..o employed. A general similarity-based model [6] of an

funcktlons mg.y behcrumal tf(l) ngt:;/voc;k pe_rforkr)nagce [1]: th]t'adaptive system used for classification may include various
works providing the most flexible decision borders with they ¢ ot harameters and procedures, such as: therRdat

lowest number of adaptive parameters may have an advaf reference vectors created from the set of training vectors

tage over larger and more complex networks. There ar?xi} by selection and/or optimization procedure; a similarity

two ways to create such networks. First, flexibility of trans'functionD(-) (frequently a distance function or an activation

Ier fufnctlon ds_may be ||.ncreased é_ll_nd si:copd, |tnputsxmay t*ﬁnction in neural networks) parameterized in various ways,
ransformed in a non-linear way. Transfer functiofs(X)) or a table used to compute similarities for nominal attributes;

are compositions of the activatid(X) and the output func- a weighting functionG(D(X,R)), estimating contribution

tion o(l). Output f_unctions_ are usually _either sigmoidal ¢ 46" reference vectoR to the classification probability
(S-shaped) squashing functions, preventing the unbound(?:%pending on its similarity to the vectot; the total cost

g“’WFh of S|gr_1als_ in the n_etwork, or localized, beI_I'Shapedfunction E[-] optimized during training. The cost function
functions. Activation functions are almost always either fan-

) iohted | dUCH - X d with si ol £ may include regularization terms, hints [3], it may depend
In weig :Ee ?Za ar %r_o uc f use wit Z'gm?]' ba”u'ac' pon a kernel functioK(-), scaling the influence of the error,
tlons_or uclidean Istance unpnons used with bell-shapeg, . o given training example, on the total cost, it may use a
functions. In this paper we will show how to change the

U ) ; . . risk matrixR (Ci|C;j) of assigning wrong classes or a matrix
activation functions to obtain more flexible decision borderss(qc) measuring similarity of output classes. In some
J .

Fhlex'b'“t{) of t]{?nsfqr functio dnshls str.or?grl]y corretl)atedf w(;th models the number of reference vectktaken into account
t. € number o unctlc_)ns (andt us \.N't the number of adapy, ,q neighborhood oX is specified. An adaptive system
tive parameters available for training) necessary to mod

| h ¢ decision bord ay include several such mod#&is and an interpolation pro-
complex shapes of decision borders. cedure to select between different models or average results

We will place our considerations in the general frameworkof a committee of models.

for similarity-based classification methods (SBMs) presente% RBF networks Euclidean distance functidbéX,Ri) —

relcently [6% [711' Ipvistl_gatt;on 0(; conrrllec(;tlolns:etween neg X — RI|| are assumed and radial, for example Gaussian
ral network and similarity-based methods leads to a num (D) = exp(—D?), or G(D) = 1/(1+ D?) weighting func-

Ef ne(\j/v Iail;raanl\e/;chsrk modell(s. In pagngula(; tl?e dIS:"m,ce'tions are used. Essentially RBF is a minimal distance soft
ased. ( o .) networ S are obtaine Dy rep aCIng\/\/eighted method with no restrictions on the number of
the weighted activation with a square of Euclidean dIStanCﬁeighbors— reference vectd$ that are close tX influence

[8]. Suph networks IMprove upon the traditional approach, o apilities of classification more than those that are far.
by providing more flgxmle dec[smn borders and by epabhn he SBM framework suggests that there is nothing special
a prototype-based mtgrpretgﬂon of the rgsults. Sl'nce. th bout this choice of distance function and the weighting
use of distance functions (instead of weighted activationy |\ o Any distance functioB(X,R) and the weighting

in neural network models is a novel idea it is described infunctionG(D) may be used to crea’te neural network. In the



Gaussian classifier [9] or in the original RBF network only small distance®, reaching the value of 0.5 f@(W,X) =

one parameter, dispersion, was optimized [10]. Optimizationly and approaching zero for larger distances. For normal-
of the positions of the reference centBsleads to the LVQ ized X but arbitraryW the sigmoid arguments belong to the
method [11] in which the training set vectors are used td6 — |W|,8+ |W|] interval. A unipolar sigmoid has its max-
define the initial prototypes and the minimal distance rule iSmum curvature aroune-2.4, therefore smaller thresholds
used to assign the classes. The Restricted Coulomb Energnd norms of the weights mean that the network operates
(RCE) classifier [12] uses a hard-sphere weighting functionin an almost linear regime, smoothing the network approxi-
s. The Feature Space Mapping model (FSM) is based omation to the training data. This is one of the reasons why
separable, rather than radial weighting functions [13]. Reregularization methods, adding penalty terms to the error
cently a method to create oblique probability distributionsfunction to reduce the weights, improve generalization [3].

n N-cﬂmensmnal space using only parameters has been From the similarity-based point of view MLP networks use
described [1]. sigmoidal functions to estimate the influence of weight vec-
MLPs and other networks using discriminant functions argors according to distance between these vectors and the
also special cases of general SBM framework. Thresholttaining vectors, combining many such estimations to com-
neurons compute distances in a natural way. If the inpupute the final output. Changing the distance function in
signalsX and the weight8V are (+1...+ 1) vectors, neu- equation (3) from the square of the Euclidean distance to
ron with N inputs and the threshoRirealizes the following some other distance measures, new types of neural networks,
function: called D-MLP networks [8], are defined. Another possibility
is to write the weighted product in the form:

N o [0 if[W=X|>(N-8)/2
oW 0= 1 W X< oz @

where|| - || norm is defined by the Hamming distance. One

can interpret the weights of neurons in the first hidden layeEuclidean norms may be replaced by Minkovsky or other
as addresses of the reference vectors in the input space dfe of norms. Backpropagation procedure requires deriva-
the activity of threshold neuron as activation by inputs fallingtives of the distance functions, but for Minkovsky and several
into a hard sphere of radiiscentered a¥v. The Hamming functions they are easily provided. Generalized Minkovsky's
neural network [14] is actually a neural realization of thedistance with the scaling factors is given by:

nearest neighbor method for a single neighbor and binary

inputs. Changing binary into real values and threshold into D(A B's)B _ %Sd(Ai B;)” (5)
sigmoidal neurons for inputs normalized || = ||W|| = 1 T ’

leads to soft activation of neurons by input vectors close to

W on a unit sphere. In general the activation of a neuron i¥/n€rep = o is usually taken. Thel(:) function is used to
written as: estimate similarity at the feature level and in the simplest

casal(Aj, Bi) = |Ai —Bi|. Fora = =2the vectorg/A||=1
are on the unit sphere, for large the sphere is changed
into a soft cuboid, forn = 1 it has pyramidal and fonr < 1
hypocycloidal shape.

For normalized input vectors sigmoidal functions (or any i , , L )
Thus using non-Euclidean distance activation functions

other monotonically growing transfer functions) may there- -
fore be written in the form: changes the shape of decision borders completely, from the

usual hyperplaneg(= 1, a = 2 andW; = 0 for the weight
W-X +6) = 6(dy— D(W.X 3 corresponding to th¥ component) to spherical, cuboidal or
o +6)=0(do (W, X)) 3) hypocycloidal. Derivation of the backpropagation equations
_ _ _ for o(do — D(X,W)) functions with generalized Minkovsky
whereD(W, X) is the square of Euclidean distance betweenyigiances s straightforward but requires extensive modifi-
W andX and the }2 factor is absorbed in the sigmoid's cation of standard MLP software. Instead of changing the

slope. This f“nC“ﬁn e;valgfgte; the mflue.rll_ce of t'he referyctivation function nonlinear transformation of input features
ence vector§V on the classification probabilitg(Ci|X; W). may also change decision borders.

To avoid loss of information during normalization of input
vectors an additional componeXt is added, a new feature
measuring the difference between largest norm and the norm
of the original input vectors.

oW -x) = o WX IW-X]?) @)

1
WX = 3 (W24 [IX][2 = W = X][?) )

IIl. N ORMALIZATION OF INPUT VECTORS IN
NON-EUCLIDEAN SPACES

Transfer functiorf (D(W, X)) = o(dg— D(W, X)) decreases The parametetly in Eq. (3) should be treated as an adaptive
monotonically as a function of distance, with flat plateau forparameter only ifX is normalized. This may always be



done without loss of information if one or more additionalis to place them in corners of equilateral triangle, for exam-
components are added to the vector, extending the featupte at angles 0t12(0°. One can search for the best input
space by at least one dimension. Takag= \/R% —||X||?, preprocessing treating it as a rigorous optimization problem,
whereR > max ||X||, amounts to a projection of the data or just use polar coordinates to shift some upper hemisphere
on a unit hemisphere with radil®s Vectors(X,X;) may be vectors to the part of the lower hemisphere. Much simpler
renormalized|(X, X )||o = 1 using the metric defined by the approach is to rescale all vectors to get their Euclidean norms
distance functio® (X, R). < 1, and use the norriiX|| mapping it to points on a cir-

: - - cle: (sinZ(4—5||X]]),cosz(4—5||X]|)). These points for
The distance function may be heterogeneous, usmg < |IX[| % 1 are within the angle-1/3 and 41/3. The first
Minkovsky’s metric for numerical features and probabilistic

metric functions for symbolic features. In memory- baseJaCtor sing(4 — 5/|X]|) is used to rescale all components of

reasoning the Modified Value Difference Metric (MVDM) the vectorxt \IIEVhtIIe ghzsec?nd fa}ctojr Is taken as an ﬁm?j
has gained popularity [15]. The distance between Nvo CcomPonent. Extended vectqfex?, X7)||p are renormalize

dimensional vector#é\, B with discrete (nominal, symbolic) “Sif‘g the meF”C funptioﬁ)(-), placing them on a unit sphere
elements, in & class problem, is computed using condition—de'necj by this metric.

al probabilities:
IV. INITIALIZATION OF THE NETWORK

N K

DY(A,B) = Z z ‘ P(GilA;j) — (Ci|BJ')|u = The network should be initialized taking the centers of clus-
'L ! ters in the extended space\dsand takingdy = D(W, XP),
zdv (A; 6) whereXP is a vector at the border of the given cluster (we
; B have tried [16] dendrograms and decision trees but other

clusterization methods may also be used for initialization

[9]). Using weighted activation the contribution of a center

of an input data cluste® laying on the unit sphere &/ - C.

» The largest activation is obtained when the weighftpoint

in the same direction as the cen@r The logistic function
(C-X—0)=(1+exp(—C-X+0)/T))"L, whereT deter-
ines the slope, has the largest gradient in the direction of

where p(Ci|Aj) is estimated by calculating the number
Ni(Aj) of times the valueA; of the featurej occurred in
vectors belonging to clagg, and dividing it by the number
of times Aj occurred for any class. A *“value difference
dJ (A;,B;) for each featurg allows to comput®y (A,B) as
a sum of additive factors for all features. Distance is define
here via a data-dependent matrix with the number of row: ; . .
equal to the number of classes and the number of columr}rom tcl’:le grl?elr:/aﬁio( ) —do S tls obttamedsat eﬁg:star:ce
equal to the number of all attribute values. Generallzatlon gin ofthe coordinate system. >ince teector
s normalizedd = 1 places the contours for.®value tan-

for contin val requir f pr ili nsi
fancct?or:s;o(s) aﬁﬁsl equer alse'\tl C,JA d%.ggﬁ; st)éaiﬁgs tygentlally to the unit hypersphere. Contours for lower values
1] y — L.\, ) — LN

. , o(C-X —8) < 0.5 cut segments of the hypersphere in which
factors may be introduced, as in Eq. (5). the value ofs(C- X — 8) is constant.
Using VDM type of metrics leads to problems with calcula-

tion of gradients, but replacing symbolic features by vectors
of p(Ci|Aj) probabilities (with dimension equal to the num-
ber of classes times the number of different symbolic val-
ues the feature takes) allows to reproduce MVDM distances

A parameter which is rarely changed in MLPs is the slope
of sigmoidal functions. It defines the area which has an
influence on performance of each node. If the slope is too
high the area in which the sigmoidal function is not approxi-
r;nately constant is small and only a few training vectors have

using numerical values of vector components. Many othe a chance to influence the gradient-based learning procedures.
types of metric functions exist [15] and their performance 9 gp
If it is too low then all functions strongly overlap and there

should be empirically verified. Several alternative extensions 16 possibility to create sharp decision borders. Normaliza-
of the input space may be considered, for example add|n§ P Y P

one or more featureé — D(X, R) equal to the distance of a on of the weight3/V is equivalent to a local change of the

given vectorX to some fixed vectdR a parabolic projection slope:
is made. w 0
| | (W-X+6)/T = (o X ) [W|/T =
It may be of some advantage to increase the separation of W] || I
the clusters projected on the hypersphere. It is impossibleto (W'-X+8)/T" = (dy—D(W’,X))/T’ (7

make such a projection on the whole hypersphere without vi-

olating topological constraints. In the one-dimensional cas@hus without loss of generality bot% andw’ may be nor-
with X € [—1,+1] the (X, X;) vector should not make a full malized. No special learning for slopes is required since they
circle whenX is changed from-1to+1 because the two ex- are computed from norms of weights. A useful variabili-
treme vectorX = 1 will then be identical. An optimal sep- ty range of the sigmoid is between its maximum curvature
aration for 3 vectors with the lengf{X||, || X||+ A, ||X||+2A  points, which forT = 1 are betweel\(T) = £2.4. If the



variability range is assumed to be 1/10 of the size of the,

cluster, i.e.A(T) = £do/10 then setting ~ do/24 will be o Y Z
appropriate. After such initialization training of the network o« e
is usually quite short. o

In the XOR case the input vectors for class = T are
(0,1),(1,0) and for the class = F ai®,0),(1,1). The mean s
for each feature is.6 and after shifting and renormalizing 1o s s o+ a2 6o az a5 05 08 10
the vectors ar€; = (-1,+1)/v2,Co = (+1,—-1)/v2for
class T and(—1,-1)/v2, (+1,+1)/v2 for class F. Se-
lecting one of the classes for output, for example class To:
initial weights for the first neuron are given Iy and for ;2
the second neuron b@,, while the hidden to output layer 22
weights are all-1. This is the correct and the simplest so-ss
lution for the XOR problem found without any optimization o 10
Of the networkl For more Comp|ex examp|es of th|s type -10 -08 -06 -04 -02 00 02 04 06 08 10 -10 -08 -06 -04 -02 00 02 04 06 08 10

of initialization see [16]. Since the architecture of the IV”-F)Fig. 1. Shapes of decision borders in the Iris case for the network without

network in the extended space is completely determined by the hidden layer (3 output neurons, 3 inputs), with grovidagweight.

the initialization procedure (clusterization method used de-

termines all parameters), and the training should be rapid due

to a good starting point, many distance functions may be trieimensional vectors normalized using various Minkovsky

on a given problem. distance measures. The network has been initialized tak-

ing the normalized weights that are equal to the centers of
the three clusters. In the extended feature space the same
accuracy is achieved using only 3 input and 3 output neu-
The influence of input renormalization (using non-Euclidearfons without the hidden layer, for a total of 12 adaptive
distance functions) on the shapes of decision borders is iParameters. Using such network architecture with squared
lustrated below on the classical Iris flowers dataset, conEuclidean metric and the weight; = O for the third X3
taining 150 cases divided into 3 classes [17]. The flower§omponent, only two classes are separated. The transition
are described by 4 measurements (petal and sepal width aRePcess from the planar to circular decision borders is shown
length). Two classes, Iris virginica and Iris versicolor, over-in Fig. 1 (clockwise, from top left). In the learning process
lap, and therefore a perfect partition of the input space int§¥s grows, curving the borders for vectors near the center of
separate classes is not possible. An optimal solution (frorifie drawing.

the point of view of generalization) contains 3 errors [18] and, Fig. 2 dramatic changes in the final shapes of decision
may be obtained using only two of the four input featuses ( porders for Minkovsky metric are shown. Euclidean case
andxs), therefore results are easy to display and only thosgorresponds to circular decision borders, the city block met-
two features have been left in simulations described belowjc o — 1 gives sharp, romboidal shapes, for lacgalmost

The data has been standardized and rescaled to fit insid&@ctangular decision borders are obtained (an approximation
square with+1 corners. using logical rules is in this case quite accurate) while for
A standard MLP solution is obtained with 2 input, 4 hiddensmalla hypocycloidal shapes are created. For the Iris data
and 3 output neurons, with a total of 27 adaptive parametefhe optimal solution (3 errors) has been recovered for all
s. One discriminating plane per class for the smallest andalues ofa > 0.8. Smooth transition between these cases
the largest flowers (setosa and virginica) is needed and twi§ made by changing and retraining the network.

planes are needed to separate the vectors of the versicolegy other datasets we have found significant improvements
class. To increase accuracy and speed up learning, in thg accuracy for optimized.

final phase of learning only the vectors near the class borders
were presented to the network. The selection algorithm loops
over all vectors and for a given vectdrfindsk (for example

k = 10) nearest vectors_belonglng toa Qn‘.fere-nt cIas; t.haﬁistance—based neural networks increase flexibility of de-
X. These vectors are written to a new training file prowdmgCision borders by modifying transfer functions, either in a

a description of the border region. This'n'wethod of trainin lobal way (if the same distance function is used for each
!ea:ﬁs ]E.O sthdarpe.r ano; rFr!orezaccurate decision borders, as s Efﬂje), or locally (if distance function are different at each
In the first drawing ot Fg. 2. node). Non-Euclidean transformations of input vectors also
An additional input feature has been added and the 3ead to very flexible shapes of neural network decision bor-

V. PEDAGOGICAL ILLUSTRATION

VI. DISCUSSION



(4]

(5]

Fig. 2. Shapes of decision borders in the Iris case for standard MLP (£6]
inputs, 3 hidden and 3 output neurons, first drawing) and using addition-
al input dimension to renormalize data vectors with Minkovsky metric,
a=2.0, 0.5, and 7.0. Y

(8]
ders without any change in the standard computer programs.
The training times are short since a good initialization proce-
dure based on clusterization techniques determines weighisy
thresholds and slopes of all neurons. The complexity of
network architecture defined in extended space is usuallej/[
smaller comparing to the standard MLPs needed to obtai
similar accuracy on a given dataset, as has been observed,jp
the Iris example. Since the training is fast many different[12
metric functions may be tried before selecting (using cross-
validation tests) the best model. Networks with activation13]
given by Eq.(3) or (4) have not yet been implemented but
such models seem to be quite promising. (14]

The change of the shapes of decision borders has been ac-
complished before by adding new type of units to neural net[—l5]
works (see the forthcoming review [2]). For example, Ridella
et al. [19] used circular units in their Circular Backpropa- [16]
gation Networks. Different type of circular units have been
used by Kirby and Miranda [20] — in their implementation
two sigmoidal units are coupled together and their output i§t7]
restricted to lie on a unit circle. Dorffner [21] proposed conic[lS]
section transfer functions as a unified framework for MLP
and RBF networks. Straight lines and ellipses are special
cases of conic sections. Non-Euclidean metrics have beé#f]
used to characterize the manifold of all Boltzman machines
and EM algorithms by Amari [22], but not for increasing
the flexibility of neural network decision borders. The input[21
renormalization method may be treated as a generalization
of the circular or conical unit method. It is not restricted

to MLP neural networks, but can be used with any neuralf?!
network and any classifier. An additional advantage of our
approach is the understanding of what the network has really
learned in terms of the prototypes (weights) and sigmoidally
weighted distances (similarities) to these prototypes.
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