
Neural optimization of linguistic variables
and membership functions

Włodzisław Duch, Rafał Adamczak and Krzysztof Gra¸bczewski
Department of Computer Methods, Nicholas Copernicus University,

Grudzia̧dzka 5, 87-100 Toru´n, Poland.
E-mail: duch,raad,kgrabcze@phys.uni.torun.pl

Abstract— Algorithms for extraction of logical rules from data that con-
tains real-valued components require determination of linguistic variables
or membership functions. Context-dependent membership functions for
crisp and fuzzy linguistic variables are introduced and methods of their
determination described. Methodology of extraction, optimization and ap-
plication of sets of logical rules is described. Neural networks are used for
initial determination of linguistic variables and rule extraction, followed by
minimization procedures for optimization of the sets of rules. Gaussian un-
certainties of measurements are assumed during application of crisp logical
rules, leading to “soft trapezoidal” membership functions and allowing to
optimize the linguistic variables using gradient procedures. Applications to
a number of benchmark and real life problems yield very good results.

Keywords— Logical rules, linguistic variables, neural networks, data
mining, medical diagnosis

I. I NTRODUCTION.

A GOOD strategy in data mining and classification tasks is
to use the simplest description of the data that is possible

without compromising accuracy. It is advantageous to extract
crisp logical rules first, use fuzzy rules if crisp rules are not suf-
ficient and only if the number of logical rules required for high
accuracy of classification is too large use other, more sophis-
ticated tools. In many applications simple crisp logical rules
proved to be more accurate and were able to generalize better
than many machine and neural learning algorithms [1]. In other
applications fuzzy rules proved to be more accurate [2]. There is
no reason why a simple model based on logical rules should al-
ways work, but in cases when it does it is certainly worth using.
Extraction of logical rules from data may be done using statisti-
cal, pattern recognition and machine learning methods, as well
as neural network methods [3]. Recently we have presented a
complete methodology for extraction, optimization and appli-
cation of logical rules [2], [4]. The last two steps are largely
neglected in the literature, with current emphasis being still on
the extraction methods.

Logical rules require linguistic variables. Selection of linguis-
tic variables for symbolic attributes is simple but for real-valued
attributes may be difficult. In such cases rule extraction process
should be done in an iterative way: initial linguistic variables
are defined, rules extracted, linguistic variables optimized and
the extraction process repeated until the whole procedure con-
verges to a stable set of rules and linguistic variables.

In the next section different types of linguistic variables are
described and methods of their determination presented. The
third section describes briefly our methodology of logical rule
extraction, stressing the issues of linguistic variable optimiza-
tion. The forth section discusses determination of membership
functions in case of uncertainties in input values. Analytical
formulas reproducing Monte Carlo classification probabilities

are given for this case. Results on benchmark and real-world
datasets are presented in the fourth section and in the last sec-
tion conclusions are given.

II. CONTEXT-DEPENDENT LINGUISTIC VARIABLES.

LINGUISTIC variables may be introduced in several ways.
A symbolic attributecolor may take valuesgreen, red, blue

and appear in a rule as logical condition, for examplecolor=red.
An alternative way is to use a predicate functioncolor(x). De-
pending on the type of variablex predicate function may have
different interpretation. For example, ifx is the wavelength of
light andx∈ [600nm,700nm] thencolor(x) is red, i.e. logical
conditioncolor(x)=red is true. One may also introduce predi-
cates for each color defined by logical functionscolor-green(x),
color-red(x), color-blue(x). Such logical predicate functions are
linguistic variables, mapping symbolic or real values ofx into
binary 0, 1 orfalse, true.

If the inputx∈ X is given as a real number or a large number
of integer or symbolic values linguistic variables are created di-
viding the data rangeX into distinct (for crisp logic) setsXi and
introducing variablessi(x) =F unlessx∈Xi , whensi(x) =T. For
X ⊆ R setsXi are usually intervals and linguistic variables are
binary functions mappingx into 0 or 1. A typical linguistic vari-
ables associated with the tire pressure attribute will below if
x < 1.7, normal if 1.7≤ x≤ 2.2 andhigh if x ≥ 2.2. A rule
may then have conditions of the formhigh(x), which is usually
written asx=high, meaning thatx≥ 2.2.

In many applications a common set of linguistic variables
is assumed for all rules. This is certainly a great simplifica-
tion since linguistic variables are alwayscontext dependent.
Tire pressures for bicycles are different than for cars or truck-
s. Thus instead of using a fixed number of linguistic variables
partitioning the whole attribute range one should rather use rule-
dependent linguistic variables, optimized for each rule.

Introducingcolor-red(x)predicate that has values in the[0,1]
range, instead of the binary 0, 1 values, one may interpret it
as estimation of similarity of color thatx has to the typical red
color. Using such predicate functions as logical conditions is
equivalent to some form of fuzzy logic, depending on the way
logical functions are mapped into arithmetic functions [5]. Thus
predicate functions play the role of membership functions: bi-
nary valued are used in crisp logic and real valued in fuzzy logic
(for multistep values multivalued logic conditions are defined).
For X ⊆ R crisp membership functions are rectangular while
fuzzy membership functions have triangular, trapezoid, Gaus-
sian or other shapes useful for evaluation of similarities. Quite
frequently a number of linguistic variables is defined for each

attribute, for example 3 triangular membership functions per at-
tribute,µ1(xi),µ2(xi),µ3(xi), and rules for combinations

IF (µk1(x1)∧µk2(x2) . . .∧µkN(xN))
are sought [5], withki = 1,2,3. Unfortunately the number of
combinations grows exponentially with the number of attributes
(here 3N) and the method works only for 2 or 3 dimensions.
Good results with such linguistic variables may be obtained on-
ly by chance. Fuzzy rules with fixed membership functions give
decision borders that are not much more flexible than those of
crisp rules. In both crisp and fuzzy case linguistic variables
should becontext dependent, i.e. different in each rule. For
example ifx1=broadfor 1≤ x1≤ 4, x1=averagefor 2≤ x1≤ 3,
andx2=small for 1≤ x2 ≤ 2, x2=large for 3≤ x2 ≤ 4 then two
simple rules:

IF(x1=broad∧x2=small) THEN C=great
IF(x1=average∧x2=large) THEN C=great
ELSE C=so-so

would be more complex if written using linguistic variables that
partitionx1 into distinct or just partially overlapping subsets. In
this case one may say that in the context ofx2=large linguistic
variablex1 =average, rather thanbroad, should be used.

The simplest way to select initial linguistic variables is to ana-
lyze histograms, displaying data for all classes for each attribute.
For the attributexi good intervals useful to distinguish two class-
es are found only if the histograms for these classes do not over-
lap. Unfortunately frequently this is not the case. Therefore
we have developed several neural methods for determination of
linguistic variables.

Feature Space Mapping (FSM) is a constructive neural net-
work [6] that estimates probability density of vectors in each
class. Nodes of this network use localized, separable trans-
fer functions, providing good linguistic variables. Crisp deci-
sion regions are obtained by using rectangular transfer function-
s. The network is initialized using a clusterization method [7],
and adapted to the incoming input data by moving, decreasing
and increasing the nodes, or by adding new nodes if it is nec-
essary. The FSM network may use any separable transfer func-
tions, including triangular, trapezoidal, Gaussian, or the biradial
combinations∏i(σ(xi−bi)−σ(xi +b′i)) of sigmoidal functions
[8] with soft trapezoidal shapes. If gain of sigmoidal functions
σ(x) is slowly increased during learning rectangular functions
are smoothly recovered.

Another approach is based on general separability criterion
introduced recently [9]. The best split value is the one which
separates the maximal number of pairs of vectors from different
classes and among all the split values which satisfy this condi-
tion – the one which separates the smallest number of pairs of
vectors belonging to the same class. The criterion is useful for
creation of decision trees as well as determination of linguistic
variables.

Good linguistic variables are also obtained in an adaptive way
using multilayer perceptron network with some constraints. We
have proposed special neural units, calledL-units (linguistic u-
nits), that automatically analyze continuos inputs and produce
linguistic variables. The basic scheme of such unit is shown in
Figure 1. An inputxi is connected viaW1,W2 weights to two
neurons, each with it own separate bias,bi andb′i . All trans-

fer functions are sigmoids that, at the end of training, become
very steep, although at the beginning they may be quite smooth,
allowing for fuzzy approximation of features. The two hidden
neurons of theL-unit are connected to its output neuron using
weightsS1,S2. Experiments showed that learning is faster if
connections from the two hidden L-unit neurons to other hidden
neurons of the MLP network are added. All weights have val-
ues constrained at the end of the training to 0,±1. The network
with L-units and hidden units (called R-units, since they will
provide logical rules) is an MLP network with specific architec-
ture. SinceL-units have only one input, one output and four con-
strained weights as parameters functions realized by these units
belong to one of the four types shown in the limit of large gain in
Figure 1. The first of these functions is obtained as a differences
of two sigmoids and represents a typical linguistic variablesk e-
quivalent toxi ∈ [bi ,b′i], the second denotes negation6 sk while the
other two, with only one non-zero weight, correspond toxi ≥ b
or xi ≤ b. The bordersbi andb′i defining linguistic variables and
the four constrained weights are treated as adaptive parameters
of our network.

x

+1

+1

2

b'

b

b b' b b'

1
W

W

1S

2
S

σ(W x+b)
1

σ(W x+b')
2

Fig. 1. Construction of a linguistic unit converting continuous inputs to linguis-
tic variables.

The threshold of the output unit is kept fixed at one. Input
weightsW1, W2, and the weightsS1,S2, each taking values con-
strained to 0,±1, may take at most 27 values, giving for each
combination an L-unit transfer function. Most of these output
functions are identically zero. We have found that training L-
units separately from R-units is easier, i.e. when the L-units
weights are trained (optimization of linguistic variables) R-unit
weights are frozen and vice versa. It frequently happens that
the output L-unit neuron has both weightsS1,S2 = 0 and should
be deleted, because open intervals realized by the hidden L-unit
nodes are sufficient.

III. N EURAL RULE EXTRACTION METHODOLOGY

IN our C-MLP2LN algorithm small MLP network is initial-
ly created, usually with one hidden neuron and several L-

units. Training is done using a constructive MLP algorithm (C-

MLP), increasing the complexity to account for the incoming
data. To transform an MLP into a network performing logi-
cal operations (Logical Network, LN) new neurons are trained
minimizing the standard mean error function plus two penalty
terms, one∑i, j W

2
i j scaled by theλ1 hyperparameter, encour-

aging weight decay and leading to skeletonization of the net-
work and elimination of irrelevant features, and the second,
∑i, j W

2
i j (Wi j − 1)2(Wi j + 1)2, scaled byλ2, forcing the remain-

ing weights to approach±1 or 0, facilitating easy logical inter-
pretation of the network function: 0 = irrelevant input,+1 =
positive and−1 = negative evidence. The slope of sigmoidal
functions in L-units increases during training. The hyperparam-
eters determine the simplicity/accuracy tradeoff of the generat-
ed network and extracted rules. If very simple networks (logical
rules) are desired, giving only rough description of the data,λ1

is increased until error grows sharply.

After training the first neuron is finished (inK-class problem
K−1 neurons are trained at the same time) connections with ze-
ro weights are deleted and the skeleton network is kept frozen.
The second neuron is added, connected to a new set of L-units.
This assures that context-dependent linguistic variables are cre-
ated and used in logical rules extracted from the network after
training. During the learning process the network expands when
neurons are added and shrinks when connections are deleted.
This procedure is repeated until most of the data is correctly
classified or the number of new neurons starts to grow rapidly,
indicating overfitting and noise in the data.

An iterative optimization process is used: neural networks
are initialized randomly, trained, linguistic inputs are analyzed,
logical rules extracted, intervals defining linguistic variables op-
timized using sets of rules (see below), and the whole process
repeated until convergence is achieved. Usually two or three
iterations are sufficient.

Increasing the slopes of sigmoidal functions transforms com-
plex decision regions into simpler, hypercuboidal decision re-
gions. RulesRk equivalent to logical functionsperformed by
MLP networks are obtained in the form of logical conditions
by considering contributions of inputs for each linguistic vari-
ablesi . A combination of linguistic variables activating the hid-
den neuron above the threshold is a logical rule of the form:
R = (s1∧¬s2∧ ...∧ sk). After analysis of all±1 weights a set
of rulesR 1∨ R 2...∨ R n is found for each output class. Rules
obtained by the C-MLP2LN algorithm are ordered, starting with
rules that cover many cases and ending with rules that cover on-
ly a few cases.

Simplification of rules: some rules obtained from analysis
of the network may involve spurious conditions, more specific
rules may be contained in general rules or logical expressions
may be simplified if written in another form. We use a Prolog
program for the simplification step.

Optimization of rules: optimal intervals for linguistic vari-
ables are found by maximization of a predictive power of the
rule-based classifier. LetP (Ci ,Cj |M) be the confusion ma-
trix, i.e. the number of instances in which classCj is pre-
dicted when the true class wasCi , given the modelM. Then
for n samplesp(Ci ,Cj |M) = P (Ci ,Cj |M)/n is the probabili-
ty of (mis)classification. The best parameters of the model

M are selected by maximizing the “predictive power” of rules
maxM [Tr P (Ci ,Cj |M)] over all parametersM, or by minimiz-
ing the number of wrong predictions (possibly with some risk
matrix R(Ci ,Cj)), minM

[
∑i 6= j R(Ci ,Cj)P (Ci ,Cj |M)

]
. Weight-

ed combination of these two terms is used:

E(M) = γ ∑
i 6= j

P (Ci ,Cj |M)−Tr P (Ci ,Cj |M)≥−n (1)

minimized over parametersM without constraints. Ifγ is large
the number of errors after minimization may become zero but
some instances may be rejected (i.e. rules will not cover the
whole input space). An alternative to minimization of the whole
set of rules simultaneously is to define a cost function for each
rule separately and minimize it over parametersM used only
in the single ruleR . We have used two global minimization
techniques for this optimization [10] but the method described
below allows to use more efficient gradient procedures.

Neural systems have good generalization properties because
they are wide margin classifiers. Their decision borders are ob-
tained from the mean square error optimization of smooth func-
tion that extends over larger neighborhood contributing to the er-
ror. This allows for three important improvements: the use of in-
expensive gradient method instead of global minimization, more
robust rules with wider classification margins, and probabilistic
estimation of confidence. Input values result usually from obser-
vations which are not quite accurate, therefore instead of the at-
tribute valuex a Gaussian distributionGx = G(y;x,sx) centered
aroundx with dispersionsx should be given. This distribution
may be treated as a membership function of a fuzzy numberGx.
A Monte Carlo procedure may be performed sampling vectors
from Gaussian distributions defined for all attributes to compute
probabilitiesp(Ci |X). Analytical evaluation is based on the cu-
mulative distribution function:

ρ(a−x) =
∫ a

−∞
G(y;x,sx)dy= (2)

1
2

[
1+ erf

(
a−x

sx
√

2

)]
≈ σ(β(a−x))

where erf is the error function andβ = 2.4/
√

2sx makes the er-
f function similar to the standard unipolar sigmoidal function
with the accuracy better than 2%. A ruleRa(x) with single crisp
conditionx≥ a is fulfilled by a Gaussian numberGx with prob-
ability:

p(Ra(Gx) = T) =
∫ +∞

a
G(y;x,sx)dy≈ σ(β(x−a)) (3)

Taking instead of the erf function a sigmoidal function changes
assumption about the error distribution ofx from Gaussian to
σ(x)(1− σ(x)), approximating Gaussian withs2 = 1.7 within
3.5%. If the rule involves closed interval[a,b],a≤ b the proba-
bility that it is fulfilled by a sample from the Gaussian distribu-
tion representing the data is:

p(Ra,b(Gx) = T)≈ σ(β(x−a))−σ(β(x−b)) (4)

Thus the probability that a given condition is fulfilled is propor-
tional to the value of soft trapezoid function realized by L-unit.
Crisp logical rules with assumption that data has been measured
with finite precision lead to soft L-functions that allow to com-
pute classification probabilities that are no longer binary. In this

way we may either fuzzify the crisp logical rules or obtain fuzzy
rules directly from neural networks.

It is easy to calculate probabilities for single rule conditions
of the formx< a, x> a or x∈ (a,b):

P(x< a) =
∫ a

−∞
G(y;x,sx)dy=

1
2

[
1+ erf

(
a−x

sx
√

2

)]
P(x> a) =

∫ +∞

a
G(y;x,sx)dy=

1
2

[
1−erf

(
a−x

sx
√

2

)]
P(x∈ (a,b)) =

1
2

[
erf

(
b−x

sx
√

2

)
−erf

(
a−x

sx
√

2

)]
Notice that this interpretation does not differentiate inequalities
≤ and< so to obtain reasonable probabilities rules with borders
such that≤ may be replaced by< without loss of accuracy are
required.

The probability thatx belongs to a ruleR = r1 ∧ . . . ∧ rN

may be defined as the product of the probabilities ofx ∈ ri for
i = 1, ...N. Such definition assumes that all the attributes which
occur in ruleR are mutually independent, which is usually not
the case. However, if the rule generator produces as simple rules
as possible there should be no pairs of strongly dependent at-
tributes in a single rule. Therefore the product should be very
close to real probability. Obviously the rule may not contain
more than one premise per one attribute, but it is easy to convert
the rules appropriately if they do not satisfy this condition.

Another problem occurs when probability ofx belonging to a
class described by more than one rule is estimated. Rules usu-
ally overlap because they use only a subset of all attributes and
their conditions do not exclude each other. Summing and nor-
malizing probabilities obtained for different classes may give
results quite different from real Monte Carlo probabilities. To
avoid this probabilities are calculated as:

P(x∈C) = ∑
R∈2RC

(−1)|R|+1P(x∈
⋂

R) (5)

whereRC is the set of the classification rules for classC and
|R| is the number of elements inR.

Instead of the number of misclassifications the error function
may include a sum over all probabilities:

E(M,sx) =
1
2 ∑

X
∑
i

(p(Ci |X;M)− δ(C(X),Ci))
2 (6)

whereM includes intervals defining linguistic variables andsx

are Gaussian uncertainties of inputs. Confusion matrix com-
puted using probabilities instead of the number of errors allows
for optimization of Eq. (1) using gradient-based methods. This
minimization may be performed directly or may be presented
as a neural network problem with special network architecture.
Uncertaintiessx of the values of features are additional adap-
tive parameters that may be optimized. We have used so far a
very simple optimization with allsx taken as a percentage of the
range of featurex to perform one dimensional minimization of
the error function independently of other steps. This approach
to soft optimization may be used with any crisp logical rules
to overcome the brittleness problem and to obtain robust wide
margin rule-based classifiers.

IV. I LLUSTRATIVE APPLICATIONS

WE have analyzed a large number of datasets comparing
our results with the results obtained by other methods

whenever possible. Many results are collected at:
http://www.phys.uni.torun.pl/kmk/projects/rules.html
Web page. Here only a few new results obtained due to the
improvements in optimization of linguistic variables are shown.
In most cases for the two-class problems only one L-unit was
sufficient, with non-zero weights connected to a single hidden
L-unit neuron. Therefore the final rules are very simple.

A. Wisconsin breast cancer data.

We have already analyzed the Wisconsin cancer dataset be-
fore giving detailed comparison with other results [1]. The data
has 699 instances, with 458 benign (65.5%) and 241 (34.5%)
malignant cases. The values of the 9 attributes are quantized in
the range 1-10. The simplest rules for malignant class obtained
from optimization offer the overall accuracy 94.9%

f2 ≥ 7∨ f7≥ 6 (7)

Using L-units 4 more accurate rules for the malignant class
are created (their reliability is in parenthesis):

R 1: f4 < 3∧ f5 < 4∧ f7 < 6∧ f 10= 1 (99.5)%
R 2: f2 < 7∧ f5 < 4∧ f7 < 6∧ f 10= 1 (99.8)%
R 3: f2 < 7∧ f4 < 3∧ f7 < 6∧ f 10= 1 (99.4)%
R 4: f2 < 7∧ f4 < 3∧ f5 < 4∧ f7 < 6 (99.4)%

that (includeing ELSE condition) give 97.7% overall accura-

cy. The confusion matrix (benign, malignant) is

(
447 5
11 236

)
(only 5 malignant cases are misclassified as benign). More com-
plex rules with 99.0% overall accuracy have also been found [1],
reducing the number of benign misclassification to 1 and leav-
ing 6 misclassified malignant cases. Fuzzified rules predict with
almost 100% confidence that these vectors belong to the wrong
class, indicating that the data is really noisy.

B. Diabetes.

This is the “Pima Indian diabetes” dataset from UCI reposi-
tory [11]. Previously we were not successful in extracting rules
for this dataset because histograms are do not provide a useful
starting point here. All patients were females at least 21 years
old, of Pima Indian heritage. The data contains 2 classes, 8 at-
tributes, 768 instances, 500 (65.1%) healthy and 268 (34.9%)
diabetes cases. This dataset was used in the Statlog project [14],
with the best 10-fold crossvalidation accuracy around 77.7% ob-
tained by logistic discriminant analysis. One simple rule for the
healthy cases achieving 75% accuracy is:

f2 ≤ 151∧ f6≤ 47 (8)

where f2 is the “plasma glucose concentration” andf6 the
body mass index (weight in kg/(height in m)2). The confusion

matrix (healthy, diabetes) is:

(
467 159
33 109

)
.

C. Psychometric data

The methods described here were tried in a real-world da-
ta mining task, providing logical description of the psycho-
metric data collected in the Academic Psychological Clinic of
Nicholas Copernicus University and in several psychiatric hos-
pitals around Poland. Minnesota Multiphasic Personality Inven-
tory (MMPI) test was used. The final two databases analyzed
had over 1000 cases each. Standard evaluation of such data
is based on aggregation of answers into 14 coefficients, called
“psychometric scales”. These coefficients are often displayed
as a histogram (called “a psychogram”) allowing skilled psy-
chologists to diagnose specific problems, such as neurosis, drug
addiction or criminal tendencies. Our goal was to provide an
automatic psychological diagnosis.

Rule based system is most desirable because a detailed in-
terpretation, including description of personality type, may be
assigned to each diagnosis. We have worked with dataset-
s containing up to 34 classes (normal, neurotic, drug addict-
s, schizophrenic, psychopaths, organic problems, malingerers
etc.) determined by expert psychologists. Our initial logical
rules achieved about 93% accuracy on the whole set, increas-
ing to over 95%-97% after some optimization and fuzzification.
About 50-60 rules were generated for each datasets (man, wom-
an, mixed cases). On average 2.5 logical rules per class were
derived, involving between 2 and 9 attributes. For most classes
there were only a few errors and it is quite probable that they are
due to the psychologists interpreting the psychogram data. Two
classes, organic problems and schizophrenia, are difficult since
their symptoms are easily confused with symptoms belonging
to other classes.

A typical rule has conditions referring to the values of scales
asHy(X) ∈ [72,88] (Hypochondria scale) orPs∈ [74,80] (psy-
chostenia scale) and therefore may easily be interpreted in a ver-
bal way. Each rule has detailed interpretation associated with it
by psychologists. These rules are used with an assumption about
finite accuracy of the measurement, in each of the scales corre-
sponding to a Gaussian dispersion of about 5 units and leading
to some fuzzification of membership functions. This leads to ad-
ditional adjectives in verbal interpretation, like “strong tenden-
cies”, or “typical”. An expert system using these rules should
be evaluated by clinical psychologist in the near future.

V. CONCLUSIONS

IN this paper neural methods of determination of linguistic
variables have been presented. The problem is not separa-

ble from the rule extraction itself. An iterative algorithm is
used, improving in turns linguistic variables and then rules us-
ing these variables. We have stressed the importance of context-
dependent linguistic variables since an unwarranted assumption
that the whole range of attribute values should be partitioned
into intervals corresponding to linguistic variables is frequent-
ly used. Complete methodology, based on neural networks, for
construction of logical rules has been briefly described. Opti-
mization and application of rules is often neglected in other ap-
proaches. We have derived analytical formulas allowing to find
the best fuzzification of the crisp membership functions that will
give the same probabilities as the Monte Carlo procedure per-

formed for input vectors distributed around measured values in
a Gaussian way.

Using the early version of this methodology simplest logi-
cal description for several benchmark problems was obtained
[1]. Now we were also able to find simple rules for datasets
that could not be analyzed earlier (see also [15]). It is not quite
clear why, for some medical datasets, logical rules work better
than any other method [2]. One reason for such performance of
rule-based systems is due to the good control of the complexi-
ty of data representation. Another possible explanation for the
medical data is that the classes labeled “sick” or “healthy” have
really fuzzy character. If the doctors are forced to make yes-no
diagnosis they may fit the results of tests to specific intervals,
implicitly using crisp logical rules.

We are sure that in all cases, independently of the final classi-
fier used, it is advantageous to extract crisp logical rules. First,
in our tests logical rules proved to be highly accurate; second,
they are easily understandable by experts in a given domain;
third, they may expose problems with the data itself. However,
if the number of rules is too high or the accuracy of classification
is too low, other methods should be attempted.

ACKNOWLEDGMENTS

Support by the KBN, grant 8 T11F 014 14, is gratefully ac-
knowledged.

REFERENCES

[1] W. Duch, R. Adamczak, K. Gra¸bczewski, G.Żal, Hybrid neural-global
minimization logical rule extraction method for medical diagnosis support,
Intelligent Information Systems VII, Malbork, Poland, 15-19.06.1998, pp.
85-94

[2] W. Duch, R. Adamczak, K. Gra¸bczewski, G.Żal, Y. Hayashi, Fuzzy and
crisp logical rule extraction methods in application to medical data. Com-
putational Intelligence and Applications. Springer Studies in Fuzziness
and Soft Computing, Vol. 23 (ed. P.S. Szczepaniak), in print (1999)

[3] R. Andrews, J. Diederich, A.B. Tickle, “A Survey and Critique of Tech-
niques for Extracting Rules from Trained Artificial Neural Networks”,
Knowledge-Based Systems 8 (1995) 373–389

[4] W. Duch, R. Adamczak, K. Gra¸bczewski, G.Żal, Hybrid neural-global
minimization method of logical rule extraction, Int. Journal of Advanced
Computational Intelligence (in print)

[5] B. Kosko, Neural Networks and Fuzzy Systems. Prentice Hall 1992
[6] W. Duch, G.H.F. Diercksen, Feature Space Mapping as a universal adap-

tive system, Computer Physics Communication 87 (1995) 341–371
[7] W. Duch, R. Adamczak, N. Jankowski, Initialization of adaptive parame-

ters in density networks, 3-rd Conf. on Neural Networks, Kule, Oct. 1997,
pp. 99-104

[8] W. Duch, R. Adamczak, N. Jankowski, New developments in the Feature
Space Mapping model, 3rd Conf. on Neural Networks, Kule, Poland, Oct.
1997, pp. 65-70

[9] K. Gra̧bczewski, W. Duch,A general purpose separability criterion for
classification systems.Fourth Conference on Neural Networks and Their
Applications, Zakopane, May 1999 (in print)

[10] W. Duch, R. Adamczak and K. Gra¸bczewski, Extraction of logical rules
from backpropagation networks. Neural Processing Letters 7, 1-9 (1998)

[11] C.J. Mertz, P.M. Murphy, UCI repository of machine learning databases,
http://www.ics.uci.edu/pub/machine-learning-data-bases.

[12] S.M. Weiss, I. Kapouleas, An empirical comparison of pattern recognition,
neural nets and machine learning classification methods. In: J.W. Shavlik
and T.G. Dietterich,Readings in Machine Learning, Morgan Kauffman
Publ, CA 1990

[13] W. Duch, R. Adamczak and K. Gra¸bczewski, Constraint MLP and density
estimation for extraction of crisp logical rules from data. ICONIP’97, New
Zealand, Nov.1997, pp. 831-834

[14] D. Michie, D.J. Spiegelhalter and C.C. Taylor, Machine learning, neural
and statistical classification. Elis Horwood, London 1994

[15] W. Duch, R. Adamczak, K. Gra¸bczewski, Optimization of Logical Rules
Derived by Neural Procedures, International Joint Conference on Neural
Networks, Washington, 10-16 June 1999 (in print)

