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Abstract— Algorithms for extraction of logical rules from data that con- ~ are given for this case. Results on benchmark and real-world

tains real-valued components require determination of linguistic variables - atasets are presented in the fourth section and in the last sec-
r membership functions. ntext- ndent membership functions for . . :
or membership functions. Context-dependent membership functions fo tion conclusions are given.

crisp and fuzzy linguistic variables are introduced and methods of their
determination described. Methodology of extraction, optimization and ap-
plication of sets of logical rules is described. Neural networks are used for [I. CONTEXT-DEPENDENT LINGUISTIC VARIABLES.

il deerminaton of Inqustc varables and e xvacion Olowed | INGUISTIC variables may be introduced in several ways.
certainties of measurements are assumed during application of crisp logical A symbolic attributecolor may take valuegreen, red, blue
rules,_lea?]insll_ to “_SftJ_ft trapekfggil;i?en;ggiresmp rfgggg;)?:sa;d ﬁ'ifgvﬂiggst?o and appear in a rule as logical condition, for exangoler=red.
gpr?umnﬁ)i: 0? t;re]%lélfmcal\'/l?gid real Iifegp?oblems 5ield very gloog?esults. An al,tematlve way Is to US? . predpate funCtmor(X)' De-
Keywords— Logical rules, linguistic variables, neural networks, data pendlng on the type of varlabbepredlcate function may have
mining, medical diagnosis different interpretation. For example fis the wavelength of
light andx € [600nm, 700 nm thencolor(x)is red, i.e. logical
conditioncolor(x)=redis true. One may also introduce predi-
cates for each color defined by logical functi@aor-green(x),
GOOD strategy in data mining and classification tasks élor-red(x), color-blue(x)Such logical predicate functions are
to use the simplest description of the data that is possiliiguistic variables, mapping symbolic or real valuesxafto
without compromising accuracy. It is advantageous to extragihary 0, 1 orfalse, true
crisp logical rules first, use fuzzy rules if crisp rules are not suf- |f the inputx € X is given as a real number or a large number
ficient and only if the number of logical rules required for higlaf integer or symbolic values linguistic variables are created di-
accuracy of classification is too large use other, more sophigding the data rang¥ into distinct (for crisp logic) set¥; and
ticated tools. In many applications simple crisp logical rulgstroducing variables (x) =F unlesx € X;, whens (x) =T. For
proved to be more accurate and were able to generalize beter R setsX; are usually intervals and linguistic variables are
than many machine and neural learning algorithms [1]. In othihary functions mappinginto 0 or 1. A typical linguistic vari-
applications fuzzy rules proved to be more accurate [2]. Thereaibles associated with the tire pressure attribute willdve if
no reason why a simple model based on logical rules should@l: 1.7, normalif 1.7 < x < 2.2 andhigh if x> 2.2. A rule
ways work, but in cases when it does it is certainly worth usinghay then have conditions of the fotmgh(x), which is usually
Extraction of logical rules from data may be done using statistiritten asx=high, meaning thax > 2.2.
cal, pattern recognition and machine learning methods, as welln many applications a common set of linguistic variables
as neural network methods [3]. Recently we have presentei aassumed for all rules. This is certainly a great simplifica-
complete methodology for extraction, optimization and appliion since linguistic variables are alwagsntext dependent
cation of logical rules [2], [4]. The last two steps are largelyire pressures for bicycles are different than for cars or truck-
neglected in the literature, with current emphasis being still @) Thus instead of using a fixed number of linguistic variables
the extraction methods. partitioning the whole attribute range one should rather use rule-
Logical rules require linguistic variables. Selection of linguisdependent linguistic variables, optimized for each rule.
tic variables for symbolic attributes is simple but for real-valued Introducingcolor-red(x)predicate that has values in tfe1]
attributes may be difficult. In such cases rule extraction procaasige, instead of the binary 0, 1 values, one may interpret it
should be done in an iterative way: initial linguistic variableas estimation of similarity of color thathas to the typical red
are defined, rules extracted, linguistic variables optimized aodlor. Using such predicate functions as logical conditions is
the extraction process repeated until the whole procedure cequivalent to some form of fuzzy logic, depending on the way
verges to a stable set of rules and linguistic variables. logical functions are mapped into arithmetic functions [5]. Thus
In the next section different types of linguistic variables angredicate functions play the role of membership functions: bi-
described and methods of their determination presented. Ty valued are used in crisp logic and real valued in fuzzy logic
third section describes briefly our methodology of logical rul@or multistep values multivalued logic conditions are defined).
extraction, stressing the issues of linguistic variable optimizBer X C R crisp membership functions are rectangular while
tion. The forth section discusses determination of memberslfiigzy membership functions have triangular, trapezoid, Gaus-
functions in case of uncertainties in input values. Analyticalan or other shapes useful for evaluation of similarities. Quite
formulas reproducing Monte Carlo classification probabilitifsequently a number of linguistic variables is defined for each
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attribute, for example 3 triangular membership functions per digr functions are sigmoids that, at the end of training, become
tribute, py (X ), l2(Xi), U3(Xi ), and rules for combinations very steep, although at the beginning they may be quite smooth,
IF (i, (X1) A Hiy (X2) - - A iy (XN)) allowing for fuzzy approximation of features. The two hidden
are sought [5], withk; = 1,2,3. Unfortunately the number of heurons of the.-unit are connected to its output neuron using
combinations grows exponentially with the number of attribut&4eights S;,S,. Experiments showed that learning is faster if
(here 3') and the method works only for 2 or 3 dimensiong:onnections from the two hidden L-unit neurons to other hidden
Good results with such linguistic variables may be obtained opeurons of the MLP network are added. All weights have val-
ly by chance. Fuzzy rules with fixed membership functions giwes constrained at the end of the training te-0. The network
decision borders that are not much more flexible than thosevgth L-units and hidden units (called R-units, since they will
crisp rules. In both crisp and fuzzy case linguistic variablg¥ovide logical rules) is an MLP network with specific architec-
should becontext dependenti.e. different in each rule. For ture. Since.-units have only one input, one output and four con-
example ifx;=broadfor 1 < x; < 4, x;=averagefor 2 < x; < 3, Sstrained weights as parameters functions realized by these units
andxp=smallfor 1 < x, < 2, xo=large for 3 < x, < 4 then two belong to one of the four types shown in the limit of large gain in

simple rules: Figure 1. The first of these functions is obtained as a differences
IF(xg=broadAx,=smal) THEN C=great of 'Fwo sigmoids and represents a typical Iinguist_ic var.ia;ble
IF(x,=average\x,=large) THEN C=great quivalentta € [bj, b], the second denotes negatigwhile the
ELSE C=50-50 other two, with only one non-zero weight, correspond;to b

. o ) orx < b. The borders; andb{ defining linguistic variables and
would be more complex if written using linguistic variables thafg fo,r constrained weights are treated as adaptive parameters
partitionx; into distinct or just partially overlapping subsets. Iny¢ o \r network.
this case one may say that in the contexkgflarge linguistic
variablex; =averagerather tharbroad, should be used.

The simplest way to select initial linguistic variables is to an:
lyze histograms, displaying data for all classes for each attribu

For the attribute; good intervals useful to distinguish two class

1.b o(W x+b
es are found only if the histograms for these classes do not o\ X Sl
lap. Unfortunately frequently this is not the case. Therefo —Q
we have developed several neural methods for determinatior V\é
linguistic variables. G\(\N&;

Feature Space Mapping (FSM) is a constructive neural n
work [6] that estimates probability density of vectors in eac +1 b
class. Nodes of this network use localized, separable tra
fer functions, providing good linguistic variables. Crisp deci
sion regions are obtained by using rectangular transfer functic
s. The network is initialized using a clusterization method [7 b b b b'
and adapted to the incoming input data by moving, decreas
and increasing the nodes, or by adding new nodes if it is ne
essary. The FSM network may use any separable transfer fu —
tions, including triangular, trapezoidal, Gaussian, or the birad
Combma“onsﬂi (G(Xi__ bi) —o(x + bl/)) _Of SlngIdal functlon_s Fig. 1. Construction of a linguistic unit converting continuous inputs to linguis-
[8] with soft trapezoidal shapes. If gain of sigmoidal function  ic variables.
o(x) is slowly increased during learning rectangular functions
are smoothly recovered. The threshold of the output unit is kept fixed at one. Input
Another approach is based on general separability criteriseights\Wy, W, and the weight§;, S, each taking values con-
introduced recently [9]. The best split value is the one whidirained to 0+1, may take at most 27 values, giving for each
separates the maximal number of pairs of vectors from differex@mbination an L-unit transfer function. Most of these output
classes and among all the split values which satisfy this conflinctions are identically zero. We have found that training L-
tion — the one which separates the smallest number of pairsuofts separately from R-units is easier, i.e. when the L-units
vectors belonging to the same class. The criterion is useful feeights are trained (optimization of linguistic variables) R-unit
creation of decision trees as well as determination of linguistieeights are frozen and vice versa. It frequently happens that
variables. the output L-unit neuron has both weiglsis S, = 0 and should
Good linguistic variables are also obtained in an adaptive wag deleted, because open intervals realized by the hidden L-unit
using multilayer perceptron network with some constraints. We@des are sufficient.
have proposed special neural units, callednits (linguistic u-
nits), that automatically analyze continuos inputs and produce
linguistic variables. The basic scheme of such unit is shown N our C-MLP2LN algorithm small MLP network is initial-
Figure 1. An inputx; is connected vidVq,W» weights to two ly created, usually with one hidden neuron and several L-
neurons, each with it own separate bibsandb{. All trans- units. Training is done using a constructive MLP algorithm (C-
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MLP), increasing the complexity to account for the incominiyl are selected by maximizing the “predictive power” of rules
data. To transform an MLP into a network performing logimaxy [Tr P (Ci,Cj|M)] over all parameterM, or by minimiz-
cal operations (Logical Network, LN) new neurons are trainedg the number of wrong predictions (possibly with some risk
minimizing the standard mean error function plus two penaltgatrix R(Ci,C;)), miny [Zi# R(Ci,Cj)P (Ci,Cj|M)]. Weight-
terms, onezi,jV\/iJ2 scaled by the\; hyperparameter, encour-ed combination of these two terms is used:

aging weight decay and leading to skeletonization of the net-

work and elimination of irrelevant features, and the second, E(M) ZV%P(Q’CHM) ~TrPG,CM)2-n (1)
%i,i W (Wj — 1)%(Wj + 1)%, scaled bya, forcing the remain- yinimized over parametetd without constraints. I is large

ing weights to approactt1 or 0, facilitating easy logical inter- \he number of errors after minimization may become zero but
pretation of the network function: 0 = irrelevant inputl = ¢qme instances may be rejected (i.e. rules will not cover the
positive and—1 = negative evidence. The slope of sigmoidg} e input space). An alternative to minimization of the whole

functions in L-units increases during training. The hyperparams; of ryles simultaneously is to define a cost function for each
eters determine the simplicity/accuracy tradeoff of the genergi;e separately and minimize it over parameteraised only

ed network an_d extra}c_ted rules. If very simplg networks (logicgy the single ruleR . We have used two global minimization
rules) are desired, giving only rough description of the d&{a, gchniques for this optimization [10] but the method described
is increased until error grows sharply. below allows to use more efficient gradient procedures.

After training the first neuron is finished (K-class problem  Neural systems have good generalization properties because
K —1 neurons are trained at the same time) connections with #gey are wide margin classifiers. Their decision borders are ob-
ro weights are deleted and the skeleton network is kept frozesined from the mean square error optimization of smooth func-
The second neuron is added, connected to a new set of L-unijtsi that extends over larger neighborhood contributing to the er-
This assures that context-dependent linguistic variables are ¢tg: This allows for three importantimprovements: the use of in-
ated and used in logical rules extracted from the network afigtpensive gradient method instead of global minimization, more
training. During the learning process the network expands whgybust rules with wider classification margins, and probabilistic
neurons are added and shrinks when connections are delegglmation of confidence. Input values result usually from obser-
This procedure is repeated until most of the data is correciliitions which are not quite accurate, therefore instead of the at-
classified or the number of new neurons starts to grow rapidijbute valuex a Gaussian distributio®, = G(y;x,s) centered
indicating overfitting and noise in the data. aroundx with dispersions, should be given. This distribution

An iterative optimization process is used: neural networksnay be treated as a membership function of a fuzzy nui@her
are initialized randomly, trained, linguistic inputs are analyzeé, Monte Carlo procedure may be performed sampling vectors
logical rules extracted, intervals defining linguistic variables ofi-om Gaussian distributions defined for all attributes to compute
timized using sets of rules (see below), and the whole procgssbabilitiesp(Ci|X). Analytical evaluation is based on the cu-
repeated until convergence is achieved. Usually two or threwilative distribution function:
iterations are sufficient.

a
Increasing the slopes of sigmoidal functions transforms com- p(a—x)= /_00 G(y;x s)dy = )
plex decision regions into simpler, hypercuboidal decision re- 1 a—x
gions. Rules Ry equivalent to logical functionsperformed by > {1+ erf(—\/é> ~o(B(a—x))
Sx

MLP networks are obtained in the form of logical conditions
by considering contributions of inputs for each linguistic varivhere erf is the error function arfii= 2.4/1/2s, makes the er-
ables. A combination of linguistic variables activating the hidf function similar to the standard unipolar sigmoidal function
den neuron above the threshold is a logical rule of the foriith the accuracy better than 2%. A riRg(x) with single crisp
R=(ssA—SA...AS). After analysis of alt-1 weights a set conditionx > a s fulfilled by a Gaussian numb&y with prob-
of rulesR 1V R...v R, is found for each output class. Rulegbility:
obtained by the C-MLP2LN algorithm are ordered, starting with +o
rules that cover many cases and ending with rules that cover on-  P(Ra(Gx) =T) = /a G(y;x,s)dy~o(B(x—a)) (3)
ly a few cases. Taking instead of the erf function a sigmoidal function changes

Simplification of rules: some rules obtained from analysisassumption about the error distributionofrom Gaussian to
of the network may involve spurious conditions, more specif@(x)(1 — a(x)), approximating Gaussian witsf = 1.7 within
rules may be contained in general rules or logical expressid15%. If the rule involves closed intervia, b],a < b the proba-
may be simplified if written in another form. We use a Prologility that it is fulfilled by a sample from the Gaussian distribu-
program for the simplification step. tion representing the data is:

Optimization of rules: optimal intervals for linguistic vari- .
ables are found by maximization of a predictive power of the P(Rap(Gx) =T) ~ o(B(x—2)) — o(B(x—b)) @)
rule-based classifier. LeR(C;,Cj|M) be the confusion ma- Thus the probability that a given condition is fulfilled is propor-
trix, i.e. the number of instances in which claSg is pre- tional to the value of soft trapezoid function realized by L-unit.
dicted when the true class w&s, given the modeM. Then Crisp logical rules with assumption that data has been measured
for n samplesp(C;,C;|M) = P (C;,Cj|M)/n is the probabili- with finite precision lead to soft L-functions that allow to com-
ty of (mis)classification. The best parameters of the modalite classification probabilities that are no longer binary. In this



way we may either fuzzify the crisp logical rules or obtain fuzzy IV. I LLUSTRATIVE APPLICATIONS
rules directly from neural networks.

It is easy to calculate probabilities for single rule condition
of the formx < a,x >aorxe (a,b):

E have analyzed a large number of datasets comparing
our results with the results obtained by other methods
whenever possible. Many results are collected at:
a 1 http://www.phys.uni.torun.pl/kmk/projects/rules.html
Px<a) = / G(y; x,s¢)dy= 5 [1+ erf(—\/é)] Web page. Here only a few new results obtained due to the
‘:’ S improvements in optimization of linguistic variables are shown.
o0 1 _ _ _ .
/ Gly: %, 5)dy= = [1_ erf(a X)] In most cases for the two c!ass problems only one L unit was
a 2 SV/2 sufficient, with non-zero weights connected to a single hidden
b—x> f(a_xﬂ L-unit neuron. Therefore the final rules are very simple.
—er

Sv/2 Sv/2 A. Wisconsin breast cancer data.

Notice that this interpretation does not differentiate inequalitiesW h read vzed the Wi . dataset b
< and< so to obtain reasonable probabilities rules with bordeys € have already analyze € Yvisconsin cancer dataset be-

such that< may be replaced by without loss of accuracy are '°'¢ giving detailed comparison W?th other results [1]. The data
requited. yberep ¥ Y€ as 699 instances, with 458 benign (65.5%) and 241 (34.5%)

The probability thatx belongs to a ruleR = rq A ... A malignant cases. The values of the 9 attributes are quantized in

may be defined as the product of the probabilities fr; for the range 1-10. The simplest rules for malignant class obtained

S 0
i =1,...N. Such definition assumes that all the attributes Whicmom optimization offer the overall accuracy 94.9%

occur in ruleR are mutually independent, which is usually not
the case. However, if the rule generator produces as simple rules fo>7vi>6 (7)
as possible there should be no pairs of strongly dependent at-

tributes in a single rule. Therefore the product should be VerYUsing L-units 4 more accurate rules for the malignant class

close to real probability. Obviously the rule may not contaige created (their reliability is in parenthesis):
more than one premise per one attribute, but it is easy to conyert B 0
the rules appropriately if they do not satisfy this condition. \ﬁlj fa<3Af5<4NT7 <6AT10=1 (99.5)%
. . Ro fo<7Afs<d4nf;<6Af10=1 (99.8)%

Another problem occurs when probabilityxobelonging to a . B o

. . . Ra fo<7Afs<3Af7<6Af10=1 (99.4)%
class described by more than one rule is estimated. Rules < TAfa< BN < AN s <6 (99.4)%
ally overlap because they use only a subset of all attributes and 2 4 ° ! '
thel_r _condmons do not exc!ude each-other. Summing and r.]or_that (includeing ELSE condition) give 97.7% overall accura-
malizing probabilities obtained for different classes may give 447 5
results quite different from real Monte Carlo probabilities. Toey. The confusion matrix (benign, malignant) is

id thi babiliti Iculated as: 11 236
avoid this probabilities are caicuiated as. (only 5 malignant cases are misclassified as benign). More com-

_ RAHL plex rules with 99.0% overall accuracy have also been found [1],
PxeC) = Z (=1) P(xe ﬂR) () reducing the number of benign misclassification to 1 and leav-
_ Re2’c o ing 6 misclassified malignant cases. Fuzzified rules predict with
whereRc is the set of the classification rules for cl&and  a)most 100% confidence that these vectors belong to the wrong

a—X

P(x> a)

P(xe (a,b)) = %{erf(

IR| is the number of elements R class, indicating that the data is really noisy.
Instead of the number of misclassifications the error function
may include a sum over all probabilities: B. Diabetes.

1 ) 2 This is the “Pima Indian diabetes” dataset from UCI reposi-
EM,sq) = 2 ; .Z (PGIX:M) = 8(C(X),G)) 6) tory [11]. Previously we were not successful in extracting rules
for this dataset because histograms are do not provide a useful

whereM m_cludes mter_va_ls deﬂr_nng linguistic vgrlables _aaa(d starting point here. All patients were females at least 21 years
are Gaussian uncertainties of inputs. Confusion matrix COMYy of Pima Indian heritage. The data contains 2 classes, 8 at-
puted using probabilities instead of the number of errors allows_’ j

o9 . . Wﬁ)utes, 768 instances, 500 (65.1%) healthy and 268 (34.9%)
for c.th.|m|;at|on of Eq. (1) using grgdlent—based methods. Thﬂﬂ?’ betes cases. This dataset was used in the Statlog project [14],
minimization may be performed directly or may be present

as a neural network problem with special network architectur th the best .1O._fO|.d crpgsvalidation aceuracy :_;lround 77.7% 0b-
Uncertaintiess, of the values of features are additional ada t‘?\ined by logistic discriminant analysis. One simple rule for the
. S I%ealthy cases achieving 75% accuracy is:

tive parameters that may be optimized. We have used so far a

very simple optimization with a, taken as a percentage of the f, < 151A fg < 47 (8)
range of feature to perform one dimensional minimization of

the error function independently of other steps. This approachwhere f; is the “plasma glucose concentration” afglthe
to soft optimization may be used with any crisp logical rulesody mass index (weight in kg/(height in fit) The confusion
to overcome the brittleness problem and to obtain robust wide < 467 159>

margin rule-based classifiers. matrix (healthy, diabetes) | 33 109



C. Psychometric data formed for input vectors distributed around measured values in

The methods described here were tried in a real-world ﬁ%zynsgtahnev‘:aazil ersion of this methodoloav simplest logi-
ta mining task, providing logical description of the psycho- ing y Versi ! gy simp gl

metric data collected in the Academic Psychological Clinic Cﬁl description for several benchmark problems was obtained

Nicholas Copernicus University and in several psychiatric h ot (':)Z%intvgzrznjls Zeiibfa:ﬁe?rzgezlglglg [212]038 Iftoirs iittasjii
pitals around Poland. Minnesota Multiphasic Personality Inven- yze ) ) d
ar why, for some medical datasets, logical rules work better

tory (MMPI) test was used. The final two databases analyz 3
hagj’ E)ver 12)00 cases each. Standard evaluation of sucr)llé Q any other method [2]. One reason for such performance of
) Y -based systems is due to the good control of the complexi-

's based on aggregation of answers into 14 coefficients, cal[ of data representation. Another possible explanation for the
“psychometric scales”. These coefficients are often displayé/d P ' P P

as a histogram (called “a psychogram”) allowing skilled pSyn_1edlcal data is that the classes labeled “sick” or “healthy” have

chologists to diagnose specific problems, such as neurosis, Jeggy fuzzy character. If the doctors are forced to make yes-no

ru X . e
addiction or criminal tendencies. Our goal was to provide éjﬁ nosis they may fit t_he results of tests to specific intervals,
automatic psychological diagnosis implicitly using crisp logical rules.
Rule based svstem is most des.irable because a detaile ir}/_Ve are sure that in all cases, independently of the final classi-
. d SYst o . OIfier used, it is advantageous to extract crisp logical rules. First,
terpretation, including description of personality type, may kfﬁ our tests logical rules proved to be highly accurate; second
assigned to each diagnosis. We have worked with datastﬁt- . . o )
s containing up to 34 classes (normal, neurotic, drug addi ey are easily understandable by. experts in a given domain;
s schizophrenic. psvchopaths. or anié roblem,s malin erﬁmrd,they may expose problems with the data itself. However,
j phrenic, psychop » organic p 9€TE{Re number of rules is too high or the accuracy of classification
etc.) determined by expert psychologists. Our initial logical

rules achieved about 93% accuracy on the whole set, increlgst-00 low, other methods should be attempted.
ing to over 95%-97% after some optimization and fuzzification. ACKNOWLEDGMENTS
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