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Abstract. Multilayer Perceptrons (MLPs) use scalar products to compute weighted activation
of neurons providing decision borders using combinations of soft hyperplanes. The weighted
fun-in activation function may be replaced by a distance function between the inputs and
the weights, offering a natural generalization of the standard MLP model. Non-Euclidean
distance functions may also be introduced by normalization of the input vectors into an ex-
tended feature space. Both approaches influence the shapes of decision borders dramatically.
An illustrative example showing these changes is provided.
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1. Introduction

Multilayer perceptrons (MLPs) trained with backpropagation method (BP)
are certainly the most popular neural technique [1]. Applied to classifica-
tion problems MLPs provide soft hyperplanes dividing the input space into
separate regions. MLPs are therefore similar to the statistical discriminant
techniques, although soft sigmoids allow for representation of more complex,
nonlinear decision borders. This is usually considered to be a strength of the
MLP model, although in cases when sharp decision borders are needed it may
also become its weakness. For example, classification borders conforming to
a simple logical rulex1 > 1∧ x2 > 1 are easily represented by two hyper-
planes but there is no way to represent them accurately using soft sigmoidal
functions. Increasing the slopes of sigmoidal functions to improve represen-
tation of such decision borders around the (1,1) point leads to problems with
learning by backpropagation, or by any other gradient-based method, since
the volume of the input space in which sigmoids change rapidly (and thus
gradients are non-zero) is rapidly shrinking. In the limit sigmoidal functions
become step-functions but gradient techniques like backpropagation cannot
be used to make this transition. As a result for some datasets no change in
learning rule or network architecture will improve the accuracy of neural
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solutions. A good real-world example is the hypothyroid dataset, for which
the best optimized MLPs still give about 1.5% of error [2] while logical rules
reduce it to 0.64% (since 3428 cases are provided for testing this is a sig-
nificant improvement). Most research on neural networks is concentrated on
architectures and learning rules, but the selection of neural transfer functions
may be crucial to network performance [3].

Recently a general framework for similarity-based classification methods
(SBMs) has been presented [4]. Investigation of connections between neural
network and similarity-based methods leads to a number of new neural net-
work models. In particular the distance-based MLP (D-MLP) networks are
obtained by replacing the weighted activation with a square of Euclidean dis-
tance [5]. Such networks improve upon the traditional approach by providing
more flexible decision borders and by enabling a prototype-based interpreta-
tion of the results. Since the use of distance functions (instead of weighted
activation) in neural network models is a novel idea it is described in the next
section. In the third section transformation of the input data to the extended
feature space is proposed, enabling the use of non-Euclidean distance func-
tions in the standard MLP backpropagation programs without the need for
coding the new transfer functions and their derivatives. The fourth section
shows how to determine the architecture and parameters of the network, in-
cluding the slopes for each neuron. An illustration of this method on the Iris
data is presented for pedagogical purposes in the fifth section. The paper is
finished with a short discussion.

2. Distance functions in neural networks

The classification problem (the same reasoning may also be applied to re-
gression and pattern completion problems) is stated as follows: given a set
of class-labeled training vectors{Rj,C(R j)}, j = 1..Nt , whereC(R j) is the
class ofR j, and given a vectorX of an unknown class, use the information
provided in the similarity measureD(X,Rj) to estimate the probability of
classificationp(Ci|X;M), whereM describes the classification model used
(values of all parameters and procedures employed). A general similarity-
based model of an adaptive system used for classification should include at
least the following elements:
M = {{R j},D(·),G(D(·)),k,E[·]}, where
{R j} is the set of reference vectors created from the set of training vectors
{Xi} by some procedure;D(·) is a similarity function (frequently a distance
function) parameterized in various ways, or a table used to compute simi-
larities; G(D(X,R)) is a weighting function estimating contribution of the
reference vectorR to the classification probability;k is the number of ref-
erence vectors taken into account in the neighborhood ofX; E[·] is the total
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cost function optimized during training; it may include regularization terms
and depends upon a kernel functionK(·), scaling the influence of the error,
for a given training example, on the total cost function, using a risk matrix
R (Ci|Cj) of assigning wrong classes. An adaptive system may include several
such modelsMl and an interpolation procedure to select between different
models or average results of a committee of models.

In RBF networks Euclidean distance functionsD(X,Rj) = ||X−R j|| are
assumed and radial, for example GaussianG(D) = exp(−D2), weighting
functions are used. Essentially RBF is a minimal distance soft weighted method
with no restrictions on the number of neighbors – reference vectorsRj that are
near influence probabilities of classification more than those that are far. The
SBM framework suggests that there is nothing special about this choice of
distance function and the weighting function. Any distance functionD(X,R)
and the weighting functionG(D) may be used to create neural network. In
the Gaussian classifier [6] or in the original RBF network only one parameter,
dispersion, was optimized [7]. Optimization of the positions of the reference
centersR j leads to the LVQ method [8] in which the training set vectors are
used to define the initial prototypes and the minimal distance rule is used
to assign the classes. The Restricted Coulomb Energy (RCE) classifier [9]
uses a hard-sphere weighting functions. The Feature Space Mapping model
(FSM) is based on separable, rather than radial weighting functions [10]. Very
recently a method to create oblique probability distributions inN-dimensional
space using onlyN parameters has been described [3].

MLPs and other networks using discriminant functions are also special
cases of general SBM framework. Threshold neurons compute distances in a
natural way. If the input signalsX and the weightsW are(±1. . .±1) vectors,
neuron withN inputs and the thresholdθ realizes the following function:

Θ(
N

∑
i

WiXi−θ) =
{

0 if ||W−X||> (N−θ)/2
1 if ||W−X|| ≤ (N−θ)/2 (1)

where|| · || norm is defined by the Hamming distance. One can interpret
the weights of neurons in the first hidden layer as addresses of the reference
vectors in the input space and the activity of threshold neuron as activation
by inputs falling into a hard sphere of radiusθ centered atW. The Hamming
neural network [11] is actually a neural realization of the nearest neighbor
method for a single neighbor and binary inputs. Changing binary into real
values and threshold into sigmoidal neurons for inputs normalized to||X||=
||W||= 1 leads to soft activation of neurons by input vectors close toW on a
unit sphere. In general the activation of a neuron is written as:

W ·X =
1
2

(
||W||2 + ||X||2−||W−X||2

)
(2)
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For normalized input vectors sigmoidal functions (or any other monoton-
ically growing transfer functions) may therefore be written in the form:

σ(W ·X + θ) = σ(d0−D(W,X)) (3)

whereD(W,X) is the square of Euclidean distance betweenW and X
and the 1/2 factor is absorbed in the sigmoid’s slope. This function evalu-
ates the influence of the reference vectorsW on the classification probability
p(Ci|X;{W,θ}). To avoid loss of information during normalization of input
vectors an additional componentXr is added, a new feature measuring the
difference between the largest norm and the norm of original input vectors.

Transfer functionf (D(W,X)) = σ(d0−D(W,X)) decreases monotoni-
cally as a function of distance, with flat plateau for small distancesD, reach-
ing the value of 0.5 forD(W,X) = d0 and approaching zero for larger dis-
tances. For normalizedX but arbitraryW the sigmoid arguments belong to
the[θ−|W|,θ+ |W|] interval. A unipolar sigmoid has its maximum curvature
around±2.4, therefore smaller thresholds and norms of the weights mean that
the network operates in an almost linear regime. Regularization methods add
penalty terms to the error function forcing the weights to become small and
thus smoothing the network approximation to the training data.

From the similarity-based point of view MLP networks use sigmoidal
functions to estimate the influence of weight vectors according to distance
between the weight and the training vectors, combining many such estima-
tions to compute the final output. Changing the distance function in equation
(3) from the square of the Euclidean distance to some other distance mea-
sures new types of neural networks, called D-MLP networks [5], are defined.
Another possibility is to write the weighted product in the form:

σ(W ·X) = σ
(

1
4

(||W + X||2−||W−X||2)
)

(4)

Euclidean norms may be replaced by Minkovsky or other type of norm-
s. Backpropagation procedure requires derivatives of the distance function-
s, but for Minkovsky and other popular functions they are easily provided.
Generalized Minkovsky’s distance with the scaling factors is given by:

D(A,B;s)β =
N

∑
i

sid(Ai,Bi)α (5)

whereβ = α is usually taken. Thed(·) function is used to estimate sim-
ilarity at the feature level and in the simplest cased(Ai,Bi) = |Ai − Bi|.
For α = β = 2 the vectors||A|| = 1 are on the unit sphere, for largeα the
sphere is changed into a soft cuboid, forα = 1 it has pyramidal and forα < 1
hypocycloidal shape.
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Thus using non-Euclidean distance activation functions changes the shape
of decision borders completely, from the usual hyperplanes (β = 1, α = 2
andWr = 0 for the weight corresponding to theXr component) to spherical,
cuboidal or hypocycloidal. Derivation of the backpropagation equations for
σ(d0−D(X,W)) functions with generalized Minkovsky distances is straight-
forward but requires extensive modification of standard MLP software. In the
next section a simpler way of using the non-Euclidean distance functions is
introduced.

3. Normalization of input vectors in non-Euclidean spaces

The parameterd0 should be treated as an adaptive parameter only ifX is nor-
malized. This may always be done without loss of information if one or more
additional components are added to the vector, extending the feature space
by at least one dimension. TakingXr =

√
R2−||X||2, whereR≥maxX ||X||,

amounts to a projection of the data on a unit hemisphere with radiusR. In
general vectors(X,Xr) may be normalized||(X,Xr)||D = 1 using the metric
defined by the distance functionD(X,R).

The distance function may be heterogeneous, using Minkovsky’s met-
ric for numerical features and probabilistic metric functions for symbolic
features. In memory-based reasoning the Modified Value Difference Metric
(MVDM) has gained popularity [12]. The distance between twoN-dimen-
sional vectorsA,B with discrete (nominal, symbolic) elements, in aK class
problem, is computed using conditional probabilities:

Dα
V (A,B) =

N

∑
j

K

∑
i

∣∣p(Ci|A j)− p(Ci|B j)
∣∣α (6)

wherep(Ci|A j) is estimated by calculating the numberNi(A j) of times the
valueAj of the featurej occurred in vectors belonging to classCi, and divid-
ing it by the number of timesAj occurred for any class. A “value difference”
for each featurej is defined asdα

V (A j,B j) = ∑K
i |(p(Ci|A j)− p(Ci|B j))|α . It

allows to computeDV (A,B) as a sum of value differences over all features.
Distance is defined here via a data-dependent matrix with the number of rows
equal to the number of classes and the number of columns equal to the number
of all attribute values. Generalization for continuos values requires a set of
probability density functionspi j(x), with i = 1..K, j = 1..N.

Using VDM type of metrics leads to problems with calculation of gradi-
ents, therefore another method is advocated here. Replacing symbolic fea-
tures by vectors ofp(Ci|A j) probabilities (with dimension equal to the num-
ber of classes times the number of different symbolic values the feature takes)
allows to reproduce MVDM distances using numerical values of vector com-
ponents. Many other types of metric functions exist [12] and their perfor-
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mance should be empirically verified. Several alternative extensions of the
input space may be considered, for example adding one or more features
Xr = D(X,R) equal to the distance of a given vectorX to some fixed vector
R a parabolic projection is made.

It may be of some advantage to increase the separation of the clusters
projected on the hypersphere. It is impossible to make such a projection
on the whole hypersphere without violating topological constraints. In the
one-dimensional case withX ∈ [−1,+1] the (X ,Xr) vector should not make
a full circle whenX is changed from−1 to +1 because the two extreme
vectorsX = ±1 will then be identical. An optimal separation for 3 vectors
with the length||X ||, ||X ||+ ∆, ||X ||+ 2∆ is to place them in corners of e-
quilateral triangle, for example at angles 0,±120◦. One can search for the
best input preprocessing treating it as a rigorous optimization problem, or
just use polar coordinates to shift some upper hemisphere vectors to the part
of the lower hemisphere. Much simpler approach is to rescale all vectors to
get their Euclidean norms≤ 1, use the norm||X || mapping it to points on
a circle:

(
sinπ

3(4−5||X ||),cosπ
3(4−5||X ||)

)
. These points for 0≤ ||X || ≤ 1

are within the angle−π/3 and 4π/3. The first factor, sinπ3(4−5||X ||) is used
to rescale components of the vectorX, while the second factor is taken as an
extraXr component. Extended vectors||(Xj,X j

r )||D are renormalized using
the metric functionD(·), placing them on a unit sphere defined by this metric.

4. Initialization of the network

The network should be initialized taking the centers of clusters in the extend-
ed space asW and takingd0 = D(W,Xb), whereXb is a vector at the border
of the given cluster (we have tried [13] dendrograms and decision trees but
other clusterization methods may also be used for initialization [6]). Using
weighted activation the contribution of a center of an input data clusterC
laying on the unit sphere isW ·C. The largest activation is obtained when the
weightsW point in the same direction as the centerC. The sigmoidal function
σ(C ·X−θ) = (1+ exp((−C ·X+ θ)/T ))−1, whereT determines the slope,
has the largest gradient in the direction ofW = C. The valueσ(0) = 0.5 is
obtained at aθ distance from the origin of the coordinate system. Since theC
vector is normalizedθ= 1 places the contours for 0.5 value tangentially to the
unit hypersphere. Contours for lower valuesσ(C ·X−θ)< 0.5 cut segments
of the hypersphere in which the value ofσ(C ·X−θ) is constant.

A parameter which is rarely changed in MLPs is the slope of sigmoidal
functions. It defines the area which has an influence on performance of each
node. If the slope is too high the area in which the sigmoidal function is not
approximately constant is small and only a few training vectors have a chance
to influence the gradient-based learning procedures. If it is too low then all
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functions strongly overlap and there is no possibility to create sharp decision
borders. Normalization of the weightsW is equivalent to a local change of
the slope:

(W ·X + θ)/T = (
W
||W|| ·X +

θ
||W|| )||W||/T

= (W′ ·X + θ′)/T ′ = (d′0−D(W′,X))/T ′ (7)

Thus without loss of generality bothX andW′ may be normalized. No
special learning for the slopes is required. A useful variability range of the
sigmoid is between its maximum curvature points, which forT = 1 are be-
tween∆(T ) =±2.4. If the variability range is assumed to be 1/10 of the size
of the cluster, i.e.∆(T ) =±d0/10 then settingT ≈ d0/24 will be appropriate.
After such initialization training of the network is usually quite short.

In the XOR case the input vectors for class = T are(0,1),(1,0) and for the
class = F are(0,0),(1,1). The mean for each feature is 0.5 and after shifting
and renormalizing the vectors areC1 = (−1,+1)/

√
2, C2 = (+1,−1)/

√
2

for class T and(−1,−1)/
√

2, (+1,+1)/
√

2 for class F. Selecting one of the
classes for output, for example class T, initial weights for the first neuron are
given byC1 and for the second neuron byC2, while the hidden to output layer
weights are all+1. This is the correct and the simplest solution for the XOR
problem found without any optimization of the network! For more complex
examples of this type of initialization see [13]. Since the architecture of the
MLP network in the extended space is completely determined by the initial-
ization procedure (the clusterization method used determines all parameters)
and the training is short due to a good starting point many distance functions
may be tried on a given problem.

5. Pedagogical illustration

The influence of input renormalization (using non-Euclidean distance func-
tions) on the shapes of decision borders is illustrated below on the classical
Iris flowers dataset, containing 150 cases divided into 3 classes. The flowers
are described by 4 measurements (petal and sepal width and length). Two
classes, Iris virginica and Iris versicolor, overlap, and therefore a perfect
partition of the input space into separate classes is not possible. An optimal
solution (from the point of view of generalization) contains 3 errors [14]
and may be obtained using only two of the four input features (x3 andx4),
therefore results are easy to display and only those two features have been
left in simulations described below.

A standard MLP solution is obtained with 4 hidden neurons and 3 output
neurons. One discriminating plane per class of the smallest and the largest
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Figure 1. Shapes of decision borders in the Iris case for standard MLP (4 neurons, 2 in-
puts) solution and for MLP (3 neurons, 3 inputs) using the data vectors renormalized with
Minkovsky metric,α = 0.5,1.0,1.5,2.0 and 7.0.

flowers (setosa and virginica) is needed and two planes to separate the vectors
of the versicolor class. To increase accuracy and speed up the learning in the
final phase of learning only the vectors near the class borders were presented
to the network. The selection algorithm loops over all vectors and for a given
vectorX findsk (for examplek = 10) nearest vectors belonging to a different
class thanX. These vectors are written to a new training file providing a
description of the border region. This method of training leads to sharper and
more accurate decision borders.

The data has been standardized and rescaled to fit inside a square with±1
corners. An additional input feature has been added and the 3-dimensional
vectors normalized using various Minkovsky distance measures. The network
has been initialized taking the normalized weights that are equal to the cen-
ters of the three clusters. In the extended feature space the same accuracy

I-TRAN.tex; 26/03/1999; 16:59; p.8



Neural Networks in non-Euclidean spaces. 9

is achieved using only 3 hidden neurons without an output layer. In Fig. 1
dramatic changes in the shapes of decision borders for Minkovsky metric
are observed. Using squared Euclidean metric withσ(d0−D(X,R)) transfer
functions andW3 = 0 the standard MLP solution is obtained. Euclidean case
corresponds to circular decision borders, the city block metricα = 1 gives
sharp, romboidal shapes, for largeα almost rectangular decision borders are
obtained (an approximation using logical rules is in this case straightforward)
while for smallα hypocycloidal shapes are created. Since smooth transition
between these cases is madeα should be treated as an adaptive parameter. For
the Iris data the optimal solution (3 errors) has been recovered for all values
of α ≥ 0.8, but for other datasets we have found significant improvements of
accuracy for optimizedα.

6. Discussion

Non-Euclidean transformation of input vectors leads to very flexible shapes of
neural network decision borders without any change in the standard computer
programs. The training times are short since a good initialization procedure
based on clusterization techniques determines weights, thresholds and slopes
of all neurons. The number of neurons and the complexity of the network
defined in extended space is usually smaller comparing to the standard MLPs
needed to obtain similar accuracy on the original data, as has been observed
in the Iris example. A new method to treat symbolic values and a new training
procedure using only the vectors close to the decision borders have been de-
scribed here. Since the training is fast many different metric functions may be
tried before selecting (using crossvalidation tests) the best model. Networks
with activation given by Eq.(3) or (4) have not yet been implemented but such
models seem to be quite promising.

The change of the shapes of decision borders has been accomplished be-
fore by adding new type of units to neural networks. For example, Ridella
et al. [15] used circular units in their Circular Backpropagation Networks.
Different type of circular units have been used by Kirby and Miranda [16]
– in their implementation two sigmoidal units are coupled together and their
output is restricted to lie on a unit circle. Dorffner [17] proposed conic sec-
tion transfer functions as a unified framework for MLP and RBF networks.
Straight lines and ellipses are special cases of conic sections. Non-Euclidean
metrics have been used to characterize the manifold characterizing Boltzman
machines and EM algorithms by Amari [18], but his approach is completely
different than ours. The method presented here may be treated as a gener-
alization of the circular or conical unit method. It is not restricted to MLP
neural networks, but can be used with any neural network and any classifier.
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An additional advantage of our approach is the understanding of what
the network has really learned in terms of the prototypes (weights) and sig-
moidally weighted distances from these prototypes. Many ideas presented in
this paper are now being tested empirically.
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