Fuzzy and crisp logical rule extraction methods

in application to medical data.
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Abstract. A comprehensive methodology of extraction of optimal sets of logical
rules using neural networks and global minimization procedures has been devel-
oped. Initial rules are extracted using density estimation neural networks with
rectangular functions or multi-layered perceptron (MLP) networks trained with
constrained backpropagation algorithm, transforming MLPs into simpler networks
performing logical functions. A constructive algorithm called C-MLP2LN is pro-
posed, in which rules of increasing specificity are generated consecutively by
adding more nodes to the network. Neural rule extraction is followed by optimi-
zation of rules using global minimization techniques. Estimation of confidence of
various sets of rules is discussed. The hybrid approach to rule extraction has been
applied to a number of benchmark and real life problems with very good results.
In many cases crisp logical rules are quite satisfactory, but sometimes fuzzy rules
may be significantly more accurate.
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1. Logical rules - introduction

In medicine the use of black box classifiers for diagnostic decision support is not
acceptable. Adaptive systems My, including the most popular neural network
models, are useful classifiers that adjust internal parameters W performing vector
mappings from the input to the output space. Although they may achieve high
accuracy of classification the knowledge acquired by such systems is represented
in a set of numerical parameters and architectures of networks in an incomprehen-
sible way. In safety-critical applications such systems may suddenly break down
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and thus are too dangerous to use. Even if other methods of classification - ma-
chine learning, pattern recognition or neural networks - may be easier to create
and give good results logical rules should be preferred over other methods of clas-
sification provided that the set of rules is not too complex and classification accu-
racy is sufficiently high. Surprisingly, in many applications simple rules proved to
be more accurate and were able to generalize better than various machine and
neural learning algorithms.

Although many statistical, pattern recognition and machine learning [1] methods
of finding logical rules have been designed in the past automatic extraction of
logical rules from data is still a hard problem. Recently neural network methods
started to compete with better established machine learning and fuzzy logic rule-
based methods. Unfortunately systematic comparison of neural, fuzzy and ma-
chine learning methods is still missing. Many neural rule extraction methods have
recently been reviewed and compared experimentally [2], therefore we will not
discuss them here. Neural methods focus on analysis of parameters (weights and
biases) of trained networks, trying to achieve high fidelity of performance, i.e.
similar results of classification by extracted logical rules and by the original net-
works. Non-standard form of rules, such as M-of-N rules (M out of N antecedents
should be true), fuzzy rules, or decision trees [1] are sometimes useful but in this
paper we will focus on standard IF ... THEN prepositional rules which human
experts find easiest to understand. Only if these rules fail to provide satisfactory
description of the data their fuzzy logic extensions are investigated.

In classification problems prepositional rules may take several forms. Very gen-
eral form of such rule is: IF X0 K” THEN Class(X) = Cj, i.e. if X belongs to the
cluster KO then its class is C;= Class(K(i)), the same as for all vectors in this clus-
ter. If clusters overlap non-zero probability of classification p(C;|X;M) for several
classes is obtained. This approach does not restrict the decision borders (shapes of
probability density clusters) used by logical rules, but unless the decision borders
are visualized in some way (a difficult task in highly dimensional feature spaces)
it does not give more understanding of the structure of the data than any black box
classifier. A popular simplification of the most general form of logical rules is to
describe clusters using separable “membership” functions. This leads to fuzzy
rules, for example in the form:

(k)
X
P(C, | X; M) = (1)
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and U™ (X) is the value of the membership function defined for cluster k. Such
context-dependent or cluster-dependent membership functions are used in the
Feature Space Mapping (FSM) neurofuzzy system [3] developed by our group.
The flexibility of this approach depends on the choice of membership functions.
Fuzzy logic classifiers use most frequently a few triangular membership functions
per one input feature [4]. These functions are usually context-free, i.e. they are
identical in all regions of the input space, providing oval decision borders, similar
to Gaussian functions (cf. Fig.1.1). In our opinion Radial Basis Function (RBF)
classifiers based on Gaussian functions [4] are the best approach to obtain such
rules.

Fuzzy rules give decision borders that are of different shape, but are not much
more flexible than those of crisp rules. Fuzzy systems are much more complex
than set of rules of crisp logic [4]. Sometimes more important than softer decision
borders is the ability to deal with oblique distribution of data - this requires rota-
tion of some decision borders, equivalent to the introduction of new linguistic
variables. These variables are formed by taking linear combinations or making
non-linear transformations of input features, but the meaning of rules using such
variables is sometimes difficult to comprehend (cf. proverbial “mixing apples with
oranges”).

Fig.1.1 Shapes of decision borders for general clusters, fuzzy rules (using product
of membership function), rough rules (trapezoidal approximation) and logical rules.
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Logical rules require symbolic inputs (linguistic variables), therefore the input
data have to be quantized first, i.e. the features defining the problem should be
identified and their values (sets of symbolic or integer values, or continuos inter-
vals) labeled. For example a variable “size” will have the value “small” if the
continuos variable X, measuring size falls in some specified range, X, O[a,b]. Us-
ing one input variable several binary (logical) variables may be created, for exam-
ple s; = O(size,small) is equal to 1 (true) only if variable “size” has the value
“small”.

The rough set theory [5] is used to derive crisp logic prepositional rules. In this
theory for two-class problems the lower approximation of the data is defined as a
set of vectors or a region of the feature space containing input vectors that belong
to a single class with probability = 1, while the upper approximation covers all
instances which have a chance to belong to this class (i.e. probability is >0). In
practice the shape of the boundary between the upper and the lower approxima-
tions depends on the indiscernibility (or similarity) relation used. Linear approxi-
mation to the boundary region leads to trapezoidal membership functions. The
simplest crisp form of logical rules is obtained if trapezoidal membership func-
tions are changed into rectangular functions. Rectangles allow to define logical
linguistic variables for each feature by intervals or sets of nominal values.

A fruitful way of looking at logical rules is to treat them as an approximation to
the posterior probability of classification p(Ci|X;M), where the model M is com-
posed of the set of rules. Crisp, fuzzy and rough set decision borders are a special
case of the borders provided by the FSM neurofuzzy system [3] based on separa-
ble functions used to estimate the classification probability. Although the decision
borders of crisp logical rule classification are much simpler than those achievable
by neural networks, empirical results are sometimes significantly better. Three
factors that may be responsible for this empirical observation are:

1) the inability of soft sigmoidal functions used in multilayer perceptrons to
represent sharp, rectangular edges that may be necessary to separate two
classes — the slopes of sigmoidal functions are not optimized by backpropa-
gation training procedures;

2) the problem of finding globally optimal solution of the non-linear optimiza-
tion problem for neural classifiers - since we use a global optimization
method to improve our rules there is a chance of finding a better solution than
gradient-based neural classifiers are able to find;

3) the problem of finding an optimal balance between the flexibility of adaptive
models and the danger of overfitting the data.

Although Bayesian regularization [6] may help to overcome the last problem in
case of some neural and statistical classification models, logical rules give much
better control over the complexity of the data representation and elimination of
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outliers. However, in some cases they do not provide decision borders that are
flexible enough to account for complex character of the data.

In all classification problems, independently of the final classifier used, it is ad-
vantageous to start from crisp logical rules. First, in our tests logical rules proved
to be highly accurate; second, they are easily understandable by experts in a given
domain; third, they may expose hidden problems with the dataset analyzed. This
became evident in the case of the “Hepar dataset”, collected by dr. H. Wasyluk
and co-workers from the Postgraduate Medical Center in Warsaw. The data con-
tained 570 cases described by 119 values of medical tests and other features and
were collected over a period of many years. These cases were divided into 16
classes, corresponding to different types of liver disease (final diagnosis was con-
firmed by analysis of liver samples under microscope, a procedure that we try to
avoid by providing reliable diagnosis system). We have extracted crisp logical
rules from this dataset using our C-MLP2LN approach described below, and
found that 6 very simple rules gave 98.5% accuracy. Unfortunately these rules
also revealed that the missing attributes in the data were replaced by the averages
for a given class, for example, cirrhosis was fully characterized by the rule
“features=4.39”. Although one may report very good results using crossvalidation
tests using such data, results are of course useless since the averages for a given
class are known only after the diagnosis.

In this paper a new methodology for logical rule extraction is presented, based on
constructive MLPs for initial feature selection and rule extraction, and followed by
rule optimization using global minimization methods. This approach is presented
in detail in the next two sections and illustrative applications to a few benchmark
problems are given in the fourth section. The fifth section contains applications to
a real life medical data. The paper is finished with a short discussion.

2. Methodology of the hybrid rule extraction algorithm

Selection of initial linguistic variables (symbolic inputs) is the first step of the rule
extraction process. Linguistic variables are optimized together with rules in an
iterative process: neural networks with linguistic inputs are constructed, analysed,
logical rules are extracted, intervals defining linguistic variables are optimized
using rules, and the whole process repeated until convergence is achieved (usually
two or three steps are sufficient, depending on the initial choice).

Linguistic (logical) input variables sy, for integer or symbolic variables X;, taking
values from a finite set of elements [J;= {Xi(j)}, are defined as true if X; belongs to
a specific subset [Jix O [J;. Defining [J; as a subset of integers such linguistic
variables as “prime-number” or “odd-number” may be defined. For continuos
input features X; linguistic variable Sy is obtained by specifying an open or closed
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interval X; [ Xy, X'k] or some other predicate Py(X;). Each continuos input feature X;
is thus replaced by two or more linguistic values for which predicates Py are true
or false. For neural networks a convenient representation of these linguistic values
is obtained using vectors of predicates, for example Vg = (+1,-1,-1...) for linguis-
tic variable s; or Vg = (-1,+1,-1...) for s, etc.

Initial values of the intervals for continuos linguistic variables may be determined
by the analysis of histograms, dendrograms, decision trees or clusterization meth-
ods. Neural-based methods are also suitable to select relevant features and provide
initial intervals defining linguistic variables. FSM, our density estimation neuro-
fuzzy network, is initialized using simple clusterization methods [7], for example
dendrogram analysis of the input data vectors (for very large datasets rounding of
continuous values to lower precision is applied first, and then duplicate data vec-
tors are sorted out to reduce the number of input vectors). Rectangular functions
may be used in FSM for a direct extraction of logical rules.

MLP (multilayered perceptron) neural models may find linguistic variables by
training a special neural layer [8] of L-units (linguistic units). Each L-unit is a
combination of two sigmoidal functions realizing the function L(x;;b;,b/',8) =
a(B(x-by)) - a(B(xi- by")), parameterized by two biases b, b' determining the inter-
val in which this function has non-zero value. The slope B of sigmoidal functions
o(B(x) is slowly increased during the learning process, transforming the fuzzy
membership function (“soft trapezoid™) into a window-type rectangular function
[3,8] (for simplicity of notation the dependence of L-functions on the slope is not
shown below). Similar smooth transformation is used in the FSM network using
biradial transfer functions, which are combinations of products of L(X;;b;,b;',3)
functions [9] with some additional parameters.

Outputs of L-units L(x;;b;,b;',5) are usually combined and filtered through another
sigmoid O(Zij L(Xi;bi,bi',ﬁ) L(Xi;bij,bij',ﬁ)) or the product |_|ij L(Xi;bi,bi',ﬁ)
L(xi;bij,bij",B)) of these functions is used.

Construction and training of neural network follows the initial definition of
linguistic variables. To facilitate extraction of logical rules from an MLP network
one should transform it smoothly into something resembling a network performing
logical operations (Logical Network, LN). This transformation gave the name
MLP2LN [10] to the method. It may be realized in several ways. Skeletonization
of a large MLP network (i.e. leaving only a few most important connections) is the
method of choice if our goal is to find logical rules for an already trained network.
Otherwise it is simpler to start from a single neuron and construct the logical net-
work using the training data. Since interpretation of the activation of the MLP
network nodes is not easy [11] a smooth transition from MLP to a logical-type of
network performing similar functions is advocated. This is achieved by:
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Fig.2.1 L-units, or pairs of neurons with constrained weights, used for determina-

tion of linguistic variables.

a) gradually increasing the slope 3 of sigmoidal functions to obtain crisp deci-
sion regions;

b) simplifying the network structure by inducing the weight decay through a
penalty term;

c) enforcing the integer weight values 0 and * 1, interpreted as 0 = irrelevant
input, +1 = positive and —1 = negative evidence.

These objectives are achieved by adding two additional terms to the standard
mean square error function Eo(W):

EW) = E(W)+ zW L Z W D' (W +D)° )

The first term, scaled by the A; hyperparameter, encourages weight decay, leading
to skeletonization of the network and elimination of irrelevant features. The sec-
ond term, scaled by A,, forces the remaining weights to approach * 1 or 0, facili-
tating easy logical interpretation of the network function: features are either neces-
sary (+1), should not appear (—1) or are irrelevant (0). In the backpropagation
training algorithm these new terms lead to the additional change of weights:
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The 6-th order regularization term in the cost function, may be replaced by one of
the lower order terms:

W, [[W,* ~1] (cubic) )
W, [HW? 1] (quadratic) ©

W, + KW, =2 4W, +-1 (linear) @
k=-T0, +1 2 2

Introduction of integer weights may also be justified from the Bayesian perspec-
tive [6]. The cost function specifies our prior knowledge about the probability
distribution p(W|M) of the weights in our model M. For classification task when
crisp logical decisions are required the prior probability of the weight values
should include not only small weights but also large positive and negative weights
distributed around * 1, for example:

POW| M) = Z(ar) e M) = [ e [ e ©
ij ij

where the parameters o; play similar role for probabilities as the parameters A; for
the cost function. Using alternative cost functions amounts to different priors for
regularization, for example Laplace instead of Gaussian prior. Initial knowledge
about the problem may also be inserted directly into the network structure, defin-
ing initial conditions modified further in view of the incoming data. Since the final
network structure becomes quite simple insertion of partially correct rules to be
refined by the learning process is quite straightforward.

Although constraints Eq. (3) do not change the MLP exactly into a logical network
they are sufficient to facilitate logical interpretation of the final network function.
MLPs are trained using relatively large A; value at the beginning, followed by a
large A, value near the end of the training process. These parameters determine the
simplicity/accuracy tradeoff of the generated network and extracted rules. If a very
simple network (and thus simple logical rules) is desired, giving only rough de-
scription of the data, A; should be as large as possible to obtain acceptable error
rate at the end of training. Although one may estimate the relative size of the
regularization term versus the mean square error (MSE) a few experiments are
sufficient to find the largest value for which the MSE is still acceptable and does
not decrease quickly when A; is decreased. Smaller values of A; should be used to
obtain more accurate networks (rules). The value of A, should reach the value of
A1 near the end of the training.
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Logical rule extraction: the slopes of sigmoidal functions are gradually increased
to obtain sharp decision boundaries and the complex decision regions are trans-
formed into simpler, hypercuboidal decision regions. Rules [y implemented by
trained networks are obtained in the form of logical conditions by considering
contributions of inputs for each linguistic variable s, represented by a vector V.
Contribution of variable S to the activation is equal to the dot product Vg [W; of
the subset W, of the weight vector corresponding to the Vs inputs. A combination
of linguistic variables activating the hidden neuron above the threshold is a logical
rule of the form:

0 =(S; AND = s, AND ... AND sy). C)

In the constructive version of the MLP2LN approach (called C-MLP2LN) usu-
ally one hidden neuron per output class is created at a time and the training pro-
ceeds until the modified cost function reaches minimum. The weights and the
threshold obtained are then analyzed and the first group of logical rules is found,
covering the most common input-output relations. The input data that are correctly
handled by the first group of neurons will not contribute to the error function,
therefore the weights of these neurons are kept frozen during further training. This
is equivalent to training one neuron (per class) at a time on the remaining data,
although sometimes training two or more neurons may lead to faster convergence.
This procedure is repeated until all the data are correctly classified, weights ana-
lyzed and a set of rules ; OR [,...OR [, is found for each output class or until
the number of rules starts to grow rapidly. The output neuron for a given class is
connected to the hidden neurons created for that class -- in simple cases only one
neuron may be sufficient to learn all instances, becoming an output neuron rather
than a hidden neuron. Output neurons perform simple summation of the hidden
nodes signals. Since each time only one neuron per class is trained the C-
MLP2LN training is fast. The network repeatedly grows when new neurons are
added, and then shrinks when connections are deleted. Since the first neuron for a
given class is trained on all data for that class the rules it learns are most general,
covering largest number of instances. Therefore rules obtained by this algorithm
are ordered, starting with rules that cover many cases and ending with rules that
cover only a few cases.

Simplification of rules: the final solution may be presented as a set of logical
rules or as a network of nodes performing logical functions. However, some rules
obtained from analysis of the network may involve spurious conditions, more
specific rules may be contained in general rules or logical expressions may be
simplified if written in another form. Therefore after extraction rules are carefully
analyzed and whenever possible simplified (we use a Prolog program for this

step).

Optimization of rules. Gradient-based backpropagation methods have problems
with finding the optimal values of adaptive parameters, and they break down when
the slopes of sigmoidal functions are very high. Optimal linguistic variables (in-
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tervals) and other adaptive parameters may be found by maximization of predic-
tive power of a rule-based classifier. Let [ (C;,C;|M) be the confusion matrix, i.e.
the number of instances in which class C; is predicted when the true class was C;,
given some parameters M. Then for n samples p(C;,C;|M) = O (C;,C;|M)/n is the
probability of (mis)classification. The best parameters of the model M are selected
by maximizing the number (or probability) of correct predictions (called also the
“predictive power” of rules):

maxy Tr O (C;,GjM) (10)

over all parameters in M, or minimizing the number of wrong predictions (possi-
bly with some risk matrix R(C;,C)):

miny 2 R(C;,Cp) O (C;,C[M) (11)

Weighted combination of these two terms:
EM)=A Z#j R(Ci,Cy) O (Ci,CM) - Tr O (C;,Cj|M) =2 -n (12)

is bounded by — and should be minimized over parameters in M without con-
straints. For this minimization we have used simulated annealing and multisim-
plex global minimization methods. If A is large the number of errors after minimi-
zation may become zero, but some instances may be rejected (i.e. rules will not
cover the whole input space). Since rules discriminate between instances of one
class and all other classes one can define a cost function for each rule separately:

ERM)=A@.-+0-9) -O++0-) (13)

and minimize it over parameters in M used in the rule [7 only (+ means here one
of the classes, and — means all other classes). The combination [0 4. / (044 +
O+ -) O (0,1] is sometimes called the sensitivity of a rule [12], while 0 - _/ (O - -
+ 0 _,) is called the specificity of a rule. Some rule induction methods optimize
such combinations of [ ,, values.

Estimation of the accuracy of rules is very important, especially in medicine.
Tests of classification accuracy should be performed using stratified 10-fold
crossvalidation, each time including rule optimization on the training set. Chang-
ing the value of A; will produce a series of models with higher and higher confi-
dence of correct classification at the expense of growing rejection rate. A set of
rules may classify some cases at the 100% confidence level; if some instances are
not covered by this set of rules another set of (usually simpler) rules at a lower
confidence level is used (confidence level is estimated as the accuracy of rules
achieved on the training set). In this way a reliable estimation of confidence is
possible. The usual procedure is to give only one set of rules, assigning to each
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rule a confidence factor, for example ¢; = P(C;,Ci|M)/2; P(C;,Cj|M). This is rather
misleading. A rule [J " that does not make any errors covers typical instances and
its reliability is close to 100%. If a less accurate rule [J ® is given, for example
classifying correctly 90% of instances, the reliability of classification for instances
covered by the first rule is still close to 100% and the reliability of classification in
the border region 7 @\ [0 @, or cases covered by [J ® but not by [J " is much
less than 90%. Including just these border cases gives much lower confidence
factors and since the number of such cases is relatively small the estimate itself
has low reliability. A possibility sometimes worth considering is to use a similar-
ity-based classifier (such as the k-NN method or RBF network) to improve accu-
racy in the border region.

The brittleness problem. Logical rules, similarly as any other classification sys-
tems, may become brittle if the decision borders are placed too close to the data
vectors instead of being placed between the clusters. The brittleness problem is
solved either at the optimization stage by selecting the middle values of the inter-
vals for which best performance is obtained or, in a more general way, by adding
noise to the data [13]. So far we have used the first method: starting from the val-
ues of the optimized parameters the largest cuboid in the parameter space in which
the number of errors is constant is determined. The center of this cuboid is taken
as the final estimation of the adaptive parameters.

3. Extension to fuzzy rules

Approximation of the decision borders by hyperrectangles provided by the crisp
rules is rather rough and may not be sufficient is some cases. A natural generali-
zation of the crisp membership functions is obtained when the sigmoidal functions
used in our network are not forced to become step functions. The membership
function obtained in this way has a soft trapezoidal shape and if the interval is
small in comparison with slopes of the sigmoids the shape is gaussian-like. There-
fore the same algorithm may be used to derive also fuzzy rules.

The second approach that we use for extraction of logical rules [10], based on the
Feature Space Mapping network [3], has also a natural extension to fuzzy rules.
Crisp rules are obtained only if rectangular basis functions are used, but since the
FSM system works with arbitrary separable functions it may also use Gaussian,
triangular or trapezoidal functions. Soft trapezoidal functions in form of products
of L(x;a;,bhi,8) = o(B(Xi-a;)) - o(B(Xi- b)) membership functions allow for smooth
transition from fuzzy to crisp logical rules.

There is another way to justify the use of soft trapezoids as natural membership
functions. Even if crisp rules are extracted and used we may assume that the input
data is not quite precise, for example the measurement errors for continuos tests
have some Gaussian distribution G,=G(Y;X,Sy). In such a case one can estimate
how well each rule is satisfied by the input vector or estimate the probability of
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different classes by performing Monte Carlo simulations drawing the vectors from
G distribution. An analytical formula is given by a convolution of the step func-
tion representing crisp rule, and the Gaussian function representing the data, giv-

ing an error function erf(a—X) = z G(y; X, sx)dy. The error function is ap-
a

proximated quite accurately (within 2%) by a sigmoidal function used in MLPs.
Taking instead of the erf function a sigmoidal function corresponds to an assump-
tion that the error distribution of X measurements is given by a(X)(1-0(X)), ap-
proximating Gaussian distribution with s,’=1.7 within 3.5%. If the rule involves
closed interval [a,b], a<b the probability that it is fulfilled by a sample from the
Gaussian distribution G, representing the data centered at X is:

P(Rap(Gx=T)) ~ o(x-a)~0(x-b) (14)

Thus the probability that a given condition is fulfilled is proportional to the value
of a soft trapezoid function realized by L-units. Crisp logical rules with assump-
tion that data has been measured with finite precision lead to soft L-functions that
allow to compute classification probabilities that are no longer binary. In fuzzy
logic one usually requires some confidence factors, not probabilities. For complex,
non-orthogonal rules with many conditions related to different attributes, it is
indeed difficult to estimate probabilities that would agree with Monte Carlo
simulations. For independent features X; present in logical rule probabilities given
by the equation above should be multiplied and if more conditions are present for
the same feature X probabilities should be summed over all contributions.

In this way we may either fuzzify the crisp logical rules or obtain fuzzy rules di-
rectly from neural networks. Incidentally this is the reason why sigmoidal func-
tions work so well in classification. An estimation of how well the data is accepted
by rules for different classes gives the final list of probabilities of different classes.
The rule optimization step may use not only a classification error but also prob-
abilities computed assuming Gaussian character of errors. In this case the cost
function Eq. (12) may be optimized using gradient-based techniques.

4. lllustrative results for benchmark problems

Datasets for benchmark applications were taken from the UCI machine learning
repository [14]. Application of the constructive C-MLP2LN approach to the clas-
sical Iris dataset was already presented in detail [15], therefore only new aspects
related to the hybrid method are discussed here. The Iris data has 150 vectors
evenly distributed in three classes: iris-setosa, iris-versicolor and iris-virginica.
Each vector has 4 features: sepal length X; and width X,, and petal length X3 and
width X4 (all in cm). Analysis of smoothed histograms (assuming Gaussian width
for each value) of the individual features for each class provides initial linguistic
variables.
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Assuming at most 3 linguistic variables per input feature a network with 12 binary
inputs equal to +1 (features present or absent) is constructed. For example, the
medium value of a single feature is coded by (—1,+1,-1) vector. For the Iris dataset
a single neuron per one class was sufficient to train the network, therefore the final
network structure (Fig. 4.1) has 12 input nodes and 3 output nodes (hidden nodes
are only needed when more than one neuron is necessary to cover all the rules for
a given class).

The constraint hyperparameters were increased from A; = 0.001 at the beginning
of the training to about A; = 0.1 near the end, with A, increasing from 0 to 0.1 to
enforce integer weights near the end of the training. On average the network
needed about 1000 epochs for convergence. The final weights are taken to be
exactly 1 or 0 while the final value of the slopes of sigmoids reaches 300. Using
L-units with initial linguistic variables provided by the histograms very simple
networks were created, with non-zero weights for only one attribute, petal length
x3. Two rules and else condition, giving overall 95.3% accuracy (7 errors) are
obtained:

OW,: iris-setosa ifx_3<2.5 (100%),
OM,: iris-virginica ifx 3>4.8 (92%),
OW,: iris-versicolor else (94%)

The first rule is accurate in 100% of cases since the setosa class is easily separated
from the two other classes. Lowering the final hyperparameters leads to the fol-
lowing weights and thresholds (only the signs of the weights are written):

Setosa (0,0,0 0,0,0 +,0,0 +,0,0) 6=1
Versicolor (0,0,0 0,0,0 0,+,— 0,+,-) 6=3
Virginica (0,0,0 0,00 —,—+ ——,+) 6=2

Interpretation of these weights and the resulting network function (Fig. 4.1) is
quite simple. Only two features, X3 and X4, are relevant and a single rule per class
is found:

Setosa if (X3 <2.9 OR X, <0.9) (100%)
Versicolor if (x; 0[2.9,4.95] AND x, 0[0.9,1.65]) (100%)
Virginica if (x> 4.95) OR (X, > 1.65) (94%)

This 0@ level set of rules allows for correct classification of 147 vectors, achiev-
ing overall 98.0% accuracy. However, the first two rules have 100% reliability
while all errors are due to the third rule, covering 53 cases. Decreasing constraint
hyperparameters further allows to replace one of these rules by four rules, with a
total of three attributes and 11 antecedents, necessary to classify correctly a single
additional vector, a clear indication that overfitting occurs.
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Fig.4.1. Final structure of the network for the Iris problem.
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The third set of rules [ has been found after optimization with increasing A (Eq.
12), reliable in 100% but rejecting 11 vectors, 8 virginica and 3 versicolor:

Setosa if (X3 <2.9) (100%)
Versicolor if (x3 0 [2.9,4.9] AND x4 <1.7]) (100%)
Virginica if (X3>5.3) OR (x4 > 1.9) (100%)

The reliability of classification for the 11 vectors in the border region O\ 0% is
rather low: with p=8/11 they should be assigned to the virginica class and with
p=3/11 to the versicolor class. It is possible to generate more specific rules, in-
cluding more features, just for the border region, or to use in this region similarity-
based classification system, such as k-NN, but for this small dataset we do not
expect any real improvement since the true probability distributions of leave's
sizes for the two classes of iris flowers clearly overlap.

In the mushroom problem [2,14] the database consists of 8124 vectors, each with
22 discrete attributes with up to 10 different values. 51.8% of the cases represent
edible, and the rest non-edible (mostly poisonous) mushrooms. A single neuron is
capable of learning all the training samples (the problem is linearly separable), but
the resulting network has many nonzero weights and is difficult to analyze from
the logical point of view. Using the C-MLP2LN algorithm with the cost function
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Eq. (3) the following disjunctive rules for poisonous mushrooms have been dis-
covered:

) odor = —(almond OR anise OR none)

,) spore-print-color = green

0s) odor = none AND stalk-surface-below-ring = scaly AND
(stalk-color-above-ring = =brown)

Oy) habitat = leaves AND cap-color = white

Rule [0 misses 120 poisonous cases (98.52% accuracy), adding rule [, leaves 48
errors (99.41% accuracy), adding third rule leaves only 8 errors (99.90% accu-
racy), and all rules [J; to 04 classify all poisonous cases correctly. The first two
rules are realized by one neuron. For large value of the weight-decay parameter
only one rule with odor attribute is obtained, while for smaller hyperparameter
values a second attribute (spore-print-color) is left. Adding a second neuron and
training it on the remaining cases generates two additional rules, [J; handling 40
cases and 4 handling only 8 cases. We have also derived the same rules using
only 10% of all data for training. This is the simplest systematic logical descrip-
tion of the mushroom dataset that we know of (some of these rules have probably
been also found by the RULEX and TREX algorithms [2]) and therefore should be
used as a benchmark for other rule extraction methods.

We have also solved the three monk problems [16]. Summarizing the results for
the Monk 1 problem a total of 4 rules and one exception classifying the data with-
out any errors was created (exceptions are additional rules handling patterns that
are not recognized properly by the rules). In the Monk 2 problem perfect classifi-
cation with 16 rules and 8 exceptions extracted from the resulting network has
been achieved. The number of atomic formulae which compose them is 132. In
the Monk 3 problem, although the training data for this problem is corrupted by
5% noise it is still possible to obtain 100% accuracy [2]. The whole logical system
for this case contains 33 atomic formulae (without any optimization). To our best
knowledge MLP2LN is the only method that has obtained 100% accuracy for all 3
problems.

5. Hlustrative results for medical applications

To facilitate comparison with results obtained by several classification methods
we have selected three well-known medical datasets obtained from the UCI re-
pository [14].

Wisconsin breast cancer data.
The Wisconsin cancer dataset [17] contains 699 instances, with 458 benign

(65.5%) and 241 (34.5%) malignant cases. Each instance is described by the case
number, 9 attributes with integer value in the range 1-10 (for example, feature f, is
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“clump thickness” and fg is “bland chromatin”) and a binary class label. For 16
instances one attribute is missing. This data has been analyzed in a number of
papers (Table 5.1).

The simplest rules obtained from optimization procedure include the following
two rules for malignant class:

£,270Rf; > 6 (95.6%)

These rules cover 215 malignant cases and 10 benign cases, achieving overall
accuracy (including ELSE condition) of 94.9%. Without optimization 5 disjunc-
tive rules were initially from the C-MLP2LN procedure for malignant cases, with
benign cases covered by the ELSE condition:

O:  £<6  AND f,<4 AND f,<2 AND f;<5 (100)%
O,  £<6  AND fi<4 AND f,<2 AND f;<5 (100)%
O,  £<6  ANDf,<4 AND fi<4 AND f,<2 (100)%

O, £, 0[6,8] AND f;<4 AND fy<4 AND £;<2 AND £i<5 (100)%
Os:  £<6  ANDf,<4 AND fs<4 AND £,0[2,7] AND fi<5 (92.3)%

The first 4 rules achieve 100% accuracy (i.e. they cover cases of malignant class
only), the last rule covers only 39 cases, 36 malignant and 3 benign. The confu-

sion matrix is:
ﬁ238 3 b
P=
25 433

i.e. there are 3 benign cases wrongly classified as malignant and 25 malignant
cases wrongly classified as benign, giving overall accuracy of 96%. Optimization
of this set of rules gives:

O £,<6 AND ;<3 AND fz<8 (99.8)%
Us: £<9 AND f5<4 AND f;<2 AND f£3<5 (100)%
Us: <10  AND f;<4 AND fs<4 AND £;<3 (100)%

Og  £<7  ANDf,<9 AND fi<3 AND £,01[4,9] AND fi<4 (100)%
Os  £0[3,4] AND £,<9 AND f;<10 AND £,<6 AND f;<8 (99.8)%

These rules classify only 1 benign vector as malignant ([J; and Us, the same vec-
tor), and the ELSE condition for the benign class makes 6 errors, giving 99.00%
overall accuracy of this set of rules. Since the cost of assigning malignant cases to
benign group is high minimizing Eq. (12) we have also obtained 7 rules (3 for
malignant and 4 for benign class) working with 100% reliability but rejecting 79
cases (11.3%). In all cases features f; and fg (both related to the cell size) were not
important and f, with f; were the most important.
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Table 5.1. Results from the 10-fold crossvalidation for the Wisconsin breast cancer dataset,
data from [19] or our own calculations, except IncNet results, which are due to Norbert

Jankowski (our group).

Method Accuracy %
IncNet [18] 97.1

LVQ 96.6
MLP+backpropagation 96.7
CART (decision tree) 94.2
LFC, ASI, ASR decision trees 94.4-95.6
Fisher LDA 96.8
NEFCLASS (fuzzy rules) 96.5
Linear Discriminant Analysis 96.0
Quadratic Discriminant Analysis | 34.5
3-NN, Manhattan (our results) 97.0£0.12
Naive Bayes 96.4
Bayes (pairwise dependent) 96.6

FSM (our results) 96.5

The best fuzzy rules we have found in the literature were obtained using the NEF-
CLASS system [20] with trapeziodally shaped membership functions. Four such
rules use 8 attributes giving 96.5% accuracy, not much better than a single crisp
rule given above and significantly lower than our optimized set of crisp rules. For
another popular benchmark cancer data, the Ljubliana cancer [14], a single logical
rule gives about 77% accuracy in crossvalidation tests, comparing favorably with
other methods of classification.

The Cleveland heart disease data.

The Cleveland heart disease dataset [14] (collected at V.A. Medical Center, Long
Beach and Cleveland Clinic Foundation by R. Detrano) contains 303 instances,
with 164 healthy (54.1%) instances, the rest are heart disease instances of various
severity.

While the database has 76 raw attributes, only 13 of them are actually used in
machine learning tests, including 6 continuous features and 4 nominal values.
There are many missing values of the attributes. Results obtained with various
methods for this data set are collected in Table 5.2.

After some simplifications the derived rules obtained by the C-MLP2LN approach
are:

4: (thal=0 OR thal=1) AND ca=0.0
0,: (thal=0 OR ca=0.0) AND cp— 2

(88.5%)
(85.2%)
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Table 5.2. Results from the 10-fold crossvalidation for the Wisconsin breast cancer dataset.

Method Accuracy %
IncNet [18] 90.0
LVQ 82.9
MLP+backpropagation 81.3
CART (decision tree) 80.8
LFC, ASI, ASR decision trees 74.4-78.4
Fisher LDA 84.2
Linear Discriminant Analysis 84.5
Quadratic Discriminant Analysis | 75.4
k-NN 81.5
Naive Bayes 83.4
Bayes (pairwise dependent) 83.1
FSM (our results) 84.0

These rules give 85.5% correct answers on the whole set and compare favorable
with the accuracy of other classifiers (Table 5.2). Although the results may not be
directly comparable due to the different partitions of the heart dataset into the
training and test sets used by Kuncheva and Lakov [21] it is worth noting that
their 32 fuzzy rules do not exceed 67% accuracy.

The hypothyroid data.

This is a somewhat larger dataset [14], with 3772 cases for training, 3428 cases for
testing, 22 attributes (15 binary, 6 continuous), and 3 classes: primary hypothy-
roid, compensated hypothyroid and normal (no hypothyroid). the class distribution
in the training set is 93, 191, 3488 vectors and in the test set 73, 177, 3178. For the
first class two rules are sufficient (all values of continuous features are multiplied
here by 1000):

U;: FTI<63 AND TSH = 29
U,: FTI<63 AND TSH U [6.1,29) AND T3<20

For the second class one rule is created:
U;: FTI O [63,180] AND TSH = 6.1 AND on thyroxine=no AND surgery=no

and the third class is covered by ELSE. With these rules we get 99.68% accuracy
on the training set and 99.07% error on the test set. Optimization of the rules leads
to slightly more accurate rules involving one additional attribute TT4:

U;: FTI<64.1 AND TSH =>30.48 (97.06%)
U,: FTI<64.1 AND TSH [ [6.17,29.53) AND T3<23.22 (100%)
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Os: FTTI O [64.27,186.71]1 AND TSH = 6.02 AND TT4< 148.52 AND
on thyroxine=no AND surgery=no (98.96%)

The ELSE condition has 100% reliability (on the training set). These rules make
only 4 errors on the training set (99.89%) and 22 errors on the test set (99.36%).
They are similar to those found using heuristic version of PVM method by Weiss
and Kapouleas [22].

Table 5.3. Results for the hypothyroid dataset.

Method % train | % test
k-NN [22] -- 95.3
Bayes [22] 97.0 96.1
3-NN, 3 features used 98.7 97.9
MLP+backprop [23] 99.60 98.45
Cascade correlation [23] [ 100.00 |98.48
PVM [22] 99.79 99.33
CART [22] 99.79 99.36
C-MLP2LN 99.89 99.36

The differences among PVM, CART and C-MLP2LN are for this dataset rather
small (Table 5.3), but other methods, such as well-optimized MLP (including
genetic optimization of network architecture) or cascade correlation classifiers,
give results that are significantly worse. Poor results of k-NN are especially worth
noting, showing that in this case, despite large amount of reference vectors, simi-
larity-based methods are not competitive.

6. Results for real medical applications

Psychometric data.

The rule extraction and optimization approach described in this paper is used by
us in several real-life projects. One of these projects concerns the psychometric
data collected in the Academic Psychological Clinic of our University. A com-
puterized version of the Minnesota Multiphasic Personality Inventory (MMPI) test
was used, consisting of 550 questions with 5 possible answers each. MMPI evalu-
ates psychological characteristics reflecting social and personal maladjustment,
including psychological dysfunction. Hundreds of books and papers were written
on the interpretation of this test (cf. review [24]). Many computerized versions of
the MMPI test exist to assist in information acquisition, but evaluation of results is
still done by an experienced clinical psychologist. Our goal is to provide auto-
matic psychological diagnosis.

The raw MMPI data is used to compute 14 coefficients forming a psychogram.
First four coefficients are just the control scales (measuring consistency of an-
swers, allowing to find malingerers), with the rest forming clinical scales. They
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were developed to measure tendencies towards hypochondria, depression, hys-
teria, psychopathy, paranoia, schizophrenia etc. A large number of simplification
schemes has been developed to make the interpretation of psychograms easier.
They may range from rule-based systems derived from observations of character-
istic shapes of psychograms, Fisher discrimination functions, or systems using a
small number of coefficients, such as the 3 Goldberg coefficients. Unfortunately
there is no comparison of these different schemes and their relative merits have
not been tested statistically.

At present we have 1465 psychograms, each classified into one of 34 types (nor-
mal, neurotic, alcoholics, schizophrenic, psychopaths, organic problems, malin-
gerers etc.) by an expert psychologist. This classification is rather difficult and
may contain errors. Our initial logical rules achieved about 93% accuracy on the
whole set and after some optimization 94-96%. For most classes there are only a
few errors and it is quite probable that they are due to the errors of the psycholo-
gists interpreting the psychogram data. The only exception is the class of organic
problems, which leads to answers that are frequently confused with symptoms
belonging to other classes. On average 2.5 logical rules per class were derived,
involving between 3 and 7 features. A typical rule has the form:

If £,0[55,68] AND f,,00 [81,93] AND f,,0 [49,56] Then Paranoia

After optimization these rules will be used in an expert system and evaluated by
clinical psychologist in the near future. Each rule has an interpretation attached to
its conditions. Since we have used C4.5 and FSM-derived rules for man, woman,
and mixed groups the final number of rules is rather large and together with inter-
pretations and some explanations they occupy more than 600 printer pages (Duch
et al. in preparation). Rules from C4.5 were less accurate (in the range of 92-
94%). Instead of direct application of crisp logical rules we have optimized Gaus-
sian dispersions for inputs and calculated probabilities of different classes. As-
suming an error of about £2 units (data are in the range from 0 to 100) allows to
reduce remaining errors from the FSM derived rules by half, with final accuracy
reaching 96.3-97.6%. Such fuzzification of inputs corresponds to soft trapezoidal
membership functions. The C-MLP2LN approach, although usually more accurate
than FSM, requires more work for such large number of classes.

Hepatobiliary disorders

This data, used previously in [25], contains medical records of 536 patients ad-
mitted to a university-affiliated Tokyo-based hospital, with four types of hepato-
biliary disorders: alcoholic liver damage, primary hepatoma, liver cirrhosis and
cholelithiasis. The records included results of 9 biochemical tests and sex of the
patient. The same 163 cases as in [25] were used as the test data. In the previous
work three fuzzy sets per each input were assigned using recommendation of the
medical experts. A fuzzy neural network was constructed and trained until 100%
correct answers were obtained on the training set. The accuracy on the test set
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varied from less than 60% to a peak of 75.5%. Although we quote this result in the
Table 6.1 below it is rather hard to find a good criteria that will predict when the
training on the test set should be stopped. Fuzzy rules equivalent to the fuzzy
network were derived but their accuracy on the test set was not given. This data
has also been analyzed by Mitra et al. [26] using a knowledge-based fuzzy MLP
system with results on the test set in the range from 33% to 66.3%, depending on
the actual fuzzy model used.

It is interesting that for this dataset crisp rules were not too successful. The initial
49 rules obtained by our procedure gave 83.5% on the training and 63.2% on the
test set. Optimization did not improve these results significantly. On the other
hand fuzzy rules derived using the FSM network, with Gaussian as well as with
triangular functions, gave similar accuracy of 75.6-75.8%. Fuzzy neural network
used over 100 neurons to achieve 75.5% accuracy, indicating that good decision
borders in this case are quite complex and many logical rules will be required.
Various results for this dataset are summarized in Table 6.1.

Table 6.1. Some results for the hepatobiliary disorders.

Method Training set | Test set
1B2-1B4 81.2-85.5 43.6-44.6
Naive Bayes -- 46.6
IR (rules) 58.4 50.3
T2 (rules from decision tree) 67.5 53.3
FOIL (inductive logic) 99 60.1
Initial 49 crisp logical rules 83.5 63.2
LDA (statistical) 68.4 65.0
DLVQ (38 nodes) 100 66.0
C4.5 decision rules 64.5 66.3
Best fuzzy MLP model 75.5 66.3
MLP with RPROP -- 68.0
Cascade Correlation -- 71.0
Fuzzy neural network 100 75.5
C4.5 decision tree 94.4 75.5
FSM, Gaussian functions 93 75.6
FSM, 60 triangular functions 93 75.8
IB1c (instance-based) -- 76.7
kNN, k=1, Manhattan 79.1 77.9
K* method -- 78.5
1-NN, 4 features removed, Manhattan | 76.9 80.4
1-NN, weighted (ASA) 83.4 82.8
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FSM gives about 60 Gaussian or triangular membership functions achieving accu-
racy of 75.5-75.8%. Rotation of these functions (i.e. introducing linear combina-
tion of inputs to the rules) does not improve this accuracy. We have also made 10-
fold crossvalidation tests on the mixed, training plus test data, achieving quite
similar results. Many methods give rather poor results on this dataset, including
various variants of the instance-based learning (IB2-IB4, except for the IB1C,
which is specifically designed to work with continuous input data), statistical
methods (Bayes, LDA) and pattern recognition methods (LVQ).

The best results were obtained with the K* method based on algorithmic com-
plexity optimization [27], giving 78.5% on the test set, and kNN with Manhattan
distance function, k=1 and selection of features (using the leave-one-out method
on the training data, features 2, 5, 6 and 9 were removed), giving 80.4% accuracy.
We have also optimized (using simulated annealing) the scaling factors for the
remaining 5 features, obtaining slightly better accuracy of 81.0% and optimizing
scaling factors using all input features 82.8%. The scaling factors are: 0.92, 0.60,
0.91, 0.92, 0.07, 0.41, 0.55, 0.86, 0.30. Similar accuracy is obtained using mul-
tisimplex method for optimization of the scaling factors.

7. Conclusions

A new methodology for extraction of logical rules from data has been presented
and many aspects of this process discussed. Neural networks - either density esti-
mation (FSM) or constrained multilayered perceptrons (MLPs) - are used to obtain
initial sets of rules. FSM is trained either directly with the rectangular functions or
making a smooth transition from biradial functions [9] or trapezoidal functions to
rectangular functions. MLPs are trained with constraints that change them into
networks processing logical functions, either by simplification of typical MLPs or
by incremental construction of networks performing logical functions. In this
paper we have used mostly the C-MLP2LN constructive method since it requires
less experimentation with various network structures.

The method of successive regularizations introduced by Ishikawa [28] has several
features in common with our MLP2LN approach and is capable (although in our
opinion it requires more effort to select the initial network architecture) of pro-
ducing similar results [29]. Specific form of the cost function as well as the C-
MLP2LN constructive algorithm in which neurons are added and then connections
are deleted, seems to be rather different from other algorithms used for logical rule
extraction so far [2]. Neural and machine learning methods should serve only for
feature selection and initialization of sets of rules, with final optimization done
using global minimization (or search) procedures. Optimization leads to rules that
are more accurate and simpler, providing in addition sets of rules with different
reliability.
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Using C-MLP2LN hybrid methodology simplest logical description for several
benchmark problems (Iris, mushroom) has been found and perfect solutions were
obtained for the three monk problems. For many medical datasets (only 3 were
shown here) very simple and highly accurate results were obtained. It is not quite
clear why logical rules work so well, for example in the hypothyroid or the Wis-
consin breast cancer case obtaining accuracy which is better than that of any other
classifier. One possible explanation for the medical data is that the classes labeled
“sick” or “healthy” have really fuzzy character. If the doctors are forced to make
yes-no diagnosis they may fit the results of tests to specific intervals, implicitly
using crisp logical rules. Logical rules given in this paper were actually used by us
to initialize MLPs but high accuracy is preserved only with extremely steep slopes
of sigmoidal functions.

The hybrid method of rule extraction presented here is ready to be used in real
world applications. We are applying it at present to complex medical and psycho-
metric data. So far only in one case that we have tried crisp logical rules per-
formed quite poorly and fuzzy rules were necessary for accurate diagnosis. In case
of psychometric data crisp rules perform well but fuzzification of inputs (corre-
sponding to soft trapezoidal membership functions) allows to reduce remaining
errors (4-6%) by half. We are also working on the further automatization of the
whole rule extraction process that should allow to go from the data to the rule-
based expert system without much human intervention.

Acknowledgments: We would like to thank T. Kucharski and J. Gomuta (Nicho-
las Copernicus University) for providing psychometric data used in this study.
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