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Abstract

Neural networks are usually trained using local, gradient-based procedures. Such methods frequently

find suboptimal solutions being trapped in local minima. Optimization of neural structures and global

minimization methods applied to network cost functions have strong influence on all aspects of network

performance. Recently genetic algorithms are frequently combined with neural methods to select best ar-

chitectures and avoid drawbacks of local minimization methods. Many other global minimization methods

are suitable for that purpose, although they are used rather rarely in this context. This paper provides a

survey of such global methods, including some aspects of genetic algorithms.
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1 INTRODUCTION

Soft computing methods compete with traditional pattern recognition and statistical methods in many applications. For

neural networks with predetermined structure, for example Multilayer Perceptrons (MLPs) with fixed architectures,

finding an optimal set of parameters (weights and thresholds) requires a solution of a non-linear optimization problem.

Such problems in general are NP-complete and the chance to find the best solution using typical, gradient-based

learning techniques starting from a large, multi-layered network, is minimal. Nevertheless neural networks are able to

learn many non-trivial problems, since even non-optimal solutions connected to the local minima of the error function

may sometimes be satisfactory in practice. Optimization of neural architectures and global minimization methods

applied to neural network cost functions may in many cases improve dramatically the quality of networks measured

by their performance.

There are many global minimization methods (GMM) suitable for use in minimization of the neural cost functions

and optimization of neural architectures. Unfortunately the information about these methods is scattered in the math-

ematical literature and therefore it is not accessible easily. We hope that a survey of GMM will stimulate research in

this direction. Of course global minimization is not the only solution to the local minima problem. One of the simplest

and the most widely used method is based on the momentum terms added to gradients, discussed in all good books on

neural networks (cf. [1, 2, 3, 4, 5, 6]). Although the use of momentum may not lead to a global optimum it helps to



NEURAL COMPUTING SURVEYS 2, XXX -YYY, 1998, http://www.icsi.berkeley.edu/̃ jagota/NCS 3

avoid poor local solutions. Perhaps the most obvious, although rarely used method to find optimal solution, is based

on good initialization, followed by gradient optimization [7, 8, 9]. Initialization procedures should bring adaptive

parameters into the vicinity of global minimum. Random initialization with small weights and biases, commonly used

for neural networks, may not be sufficient if the optimal parameters are large. Recently in a long series of computer

experiments Schmidhuber and Hochreiter [10] observed that repeating random initialization (“guessing" the weights)

many times leads to faster convergence than using sophisticated versions of gradient methods. Gradient learning pro-

cedures are usually not able to compensate for bad initial values of weights and biases, getting stuck in local minima.

Therefore a good strategy is to abandon training as soon as it slows down significantly and start again from random

weights. Even better strategy is to use a good initialization or a global minimization method to solve the non-linear

optimization problem.

The direct approach to finding optimal network structures is to use ‘educated guesses’ for good structures, and

then select the most promising structures. Some minimization method, such as genetic algorithms [11] or simulated

annealing [12], are used to generate new network architectures using the estimated quality (‘fitness’ in genetic terms)

of previous networks. This strategy is based on an assumption (rarely spelled out explicitly) that the quality of the

network, measured by the error on the training or sometimes on the validation set, is a smooth function of the topology

and adaptive parameters of the network. Adding one neuron or deleting one connection, followed by retraining of the

network, should not have a dramatic effect on the quality of the network. If the quality function is chaotic all mini-

mization methods will ultimately fail to find the global optimum. Still, since performance of many neural architectures

is evaluated and the best one selected, such strategy may create networks of higher quality than those postulated by

many human experts. It should be interesting to check the assumption about the smoothness of the network quality,

and characterize the space of all possible architectures, either in a theoretical way, or by doing simulations for some

real-world problems. Unfortunately we are not aware of any systematic study targeting this topic.

Perhaps one caveat is in order. Although GMM may solve some problems which are beyond capabilities of

the backpropagation algorithm even the best error minimization procedure cannot compensate the drawbacks of the

network architecture selected or the mathematical model chosen. For example, classification borders conforming

to a simple logical rulex1 > 1∧ x2 > 1 are easily represented by two hyperplanes but there is no way to represent

them accurately using a sum of two soft sigmoidal functions in an MLP network. Increasing slopes of sigmoidal

functions to improve representation of such decision borders around the (1,1) point leads to problems with learning

by backpropagation, or by any other gradient-based method, since the volume of the input space in which sigmoids

change rapidly (and thus gradients are non-zero) is rapidly shrinking. In the limit sigmoidal functions become step-

functions but gradient techniques like backpropagation cannot be used to make this transition. As a result for some

datasets no change in the gradient-based learning rule or in the network architecture will improve the accuracy of

neural solutions. Many global minimization procedures do not have such drawbacks and may optimize slopes as

well as other adaptive parameters without running into numerical instabilities. A good real-world example is the

hypothyroid dataset [13], for which the best optimized MLPs still give about 1.5% of error [14] while logical rules

[15] reduce it to 0.64% (since 3428 cases are provided for testing this is a significant improvement). Most research

on neural networks is concentrated on network architectures and learning rules, but the selection of neural transfer

functions may have strong impact on the complexity and performance of neural models [16].

Selection of the minimization procedure may lead to great improvement in the quality of the network and in
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the speed of convergence of the learning algorithm itself. Global minimization [17] replacing the gradient-based

backpropagation algorithms (for good overview of local minimization algorithms used in neural networks see [18, 19])

is able to find solutions to hard problems using smaller, compact neural networks. For example, Shang and Wah [20],

using a NOVEL method that combines local gradient approach with global exploration of the search space, have found

good solutions to the two-spiral benchmark problem using just 4-6 hidden neurons. Previous smallest MLPs (build

using the cascade correlation algorithm [21]) had to use for this problem 9 neurons and 75 weights, and the training

process was very sensitive to initial conditions. As Shang and Wah illustrate [20], a chance to find a good local

minimum using a large network is greater than using a small network, because the error surface of a small network

may be extremely rugged. Therefore using one of the gradient-based methods it is often easier to obtain good results

with larger networks than with small ones. Global minimization should be especially useful for smaller networks. The

use of global methods should also improve the quality of logical rules extracted with the help of neural networks [22].

Only a few global optimization methods have been applied so far to neural networks. Many methods are buried in the

literature on engineering, financial, physical or chemical optimization problems and are virtually unknown to neural

networks experts.

The problem of unconstrained global minimization is stated as follows: given a vector of initial parametersP,

including such data as the value of weights, biases, other adaptive parameters, characterization of the structure of the

network, and given a functionE(P) evaluating the quality of this vector for some datasetD = {X(i),Y(i)} (this may

be either training or validation dataset), whereX(i) are input vectors andY(i) are the desired target vectors, generate a

sequence of new vectors of parametersP(k) until the global minimum ofE(P) function is found. The simplest strategy

of generation of theseP(k) parameters is based on Monte Carlo approach, but in the context of neural networks the most

commonly used global minimization and network architecture optimization methods are based on genetic algorithms.

Applications of the genetic algorithms to optimization of neural networks and minimization of the cost functions are

certainly more advanced than applications of other GM methods, and therefore these methods deserve a long section

in our survey. The popularity of genetic methods should not prevent anyone from trying other global minimization

methods. They are described in the subsequent sections starting from the simplest methods: Monte Carlo, simulated

annealing, reactive tabu search, NOVEL algorithm, multisimplex, methods based on deterministic dynamics exploring

the search space, smoothing methods, branch and bound methods, and interval methods. In the final sections a few

new global minimization methods are proposed, some issues related to optimization of neural architectures discussed,

and a short comparison of results of several GM methods given.

2 MONTE CARLO AND ITS IMPROVEMENTS

In the simplest Monte Carlo (MC) approach new vector of parametersP is randomly generated by changing a single

parameter or a group of parameters. For optimization of neural network structures the change may involve adding or

deleting one connection or one neuron with some connections and may be followed by gradient-based learning. Using

gradient learning in connection with MC optimization of architecture does not guarantee that globally optimal solution

will be found (but the use of genetic algorithms does not guarantee it either), but is relatively fast. After a specified

number of networks is generated and trained the best are selected and used in the crossvalidation tests. Although this

method is clearly not so sophisticated as genetic algorithms it is much simpler to implement.
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An alternative procedure is to use a separate set of architectural discontinuous parametersPa and continuous

network parametersPW (such as weights and biases), both of them optimized using Monte Carlo approach. In this

case selection of architecture is followed by a much slower search for the global minimum of the cost function.

Random generation of parameters leads, after sufficiently long time, to exploration of the whole parameter space,

but if the number of parameters is large computing times may become prohibitive. Although in the MC method

parameters are selected randomly they may be drawn from a probability distribution and overall constraints favoring

small networks may easily be implemented. Another improvement is the use of quantized weights and biases during

MC search, followed by short gradient-based training (without quantization) of the most promising networks that have

been selected by MC.

An interesting improvement in the Monte Carlo procedure has been proposed by Dittes [23] in the context ofN

interacting spins, but the method has quite general applicability. The energy, or the error minimized, is assumed to

be a sum of single spin terms, plus two-spin interaction terms, up to thek-spin interaction terms. A whole ensemble

of energy functions is defined by takingk = 1. . .N spin energies. The minimum is searched for on all these energy

landscapes: probability distribution is defined for parameter changes and for selection of one of the landscapes. Energy

for each of these landscapes should be proportional to the total energy, but local minima should be in a different place.

Applications to several spin glass problems and the traveling salesman problem showed superiority of this approach

over other Monte Carlo methods, especially for difficult optimization problems.

In context of neural systems this proposal amounts to something between on-line and batch training procedures.

In on-line procedures parameters are adjusted after presentation of every new vector, while in the batch learning they

are changed after the end of the epoch in which all data is presented. A probability distributionpE for selection of the

number of examplesK = 1..N considered simultaneously may be defined by:

pE(x) =
(

1−x+
x

Nα

)−1/α
(1)

where theα parameter changes the shape of the distribution; for large positiveα small K is selected, while for

large negativeα largeK, aroundN, should be chosen. The optimization procedure requires selection ofK and of the

elementary change∆P of network parameters. The change is performed only when the error function

EK(P′) =
K

∑
i=1

||Y(i)−M(X(i);P′)||2 < EK(P) (2)

for P′ = P+ ∆P and randomly selected subset of training data{X(i),Y(i)}. TheM(X(i);P) is the response of the

network.

This method may be used in conjunction with any other method specifying the change of adaptive parameters,

such as genetic algorithms or simulated annealing. It does not focus on the error value only but rather tries to include

contributions from various configurations of the training data vectors. So far this method has not been tried in the

context of neural networks.
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3 SIMULATED ANNEALING AND ITS VARIANTS

This optimization method has been introduced in 1983 by Kirkpatrick, Gellat and Vecchi [12], inspired by the anneal-

ing (cooling) processes of crystals that reach the lowest energy, corresponding to the perfect crystal structure, if cooled

sufficiently slowly (the process is very hard in practice and even very good crystals may contain some defects, showing

that the global minimization process is so difficult that even Nature has problems with it). High temperature allows

the atomic configurations to reach higher energy states overcoming energy barriers and avoiding inner tensions due

to defects. Simulated annealing (SA) has found numerous applications in all branches of science and technology. In

essence it adds to the simple Monte Carlo procedure the importance sampling according to the Boltzmann distribution

(known from thermodynamics) to the selection of new parameter vectors, evolving the vector of adaptive parameters

P = (P1, ...PN) from some initial value to the value minimizing the error function.

There are three types of user-defined functions in the SA procedure: first,pP(P), describing the probability distri-

bution of parameters; second,pE(∆E(P)), the probability of accepting the new set of parameters as the current one,

depending on the change of the error function; and third,T(k), the schedule of changing the ‘temperature’ parameterT

in some time stepst. TemperatureT determines the scale of fluctuations allowed at a given time step. The Boltzmann

annealing schedule is most frequently used because of the statistical mechanics roots of the method. It is defined by:

pE(∆E(P)) =
1

1+ exp(∆E(P)/T)
(3)

There are various proofs showing that, with the probability approaching one, forT(t) slower thanT0/ ln t a global

minimum can be found by this procedure. For thepP distribution gaussian form is frequently used:

pP(∆P) = (2πT)−N/2exp(−∆P2/2T) (4)

where∆P is the vector defining change of parameters from the previous value. Another popular annealing method,

called Fast Annealing, is based on Cauchy distribution, defined by:

pP(∆P) =
T

(∆P2 + T2)(N+1)/2
(5)

which assigns higher probabilities to larger changes of parameters. To save time, temperature is frequently reduced

by a constant amount, leading to exponential schedule that does not guarantee that the global minimum is found (this

variant of SA is often called “simulated quenching’, or SQ [24]). In many simulations high temperature (leading to

large changes of parameters) in the initial stages of minimization will not allow to sample the minima; to avoid the

time waste short sample runs with fast annealing schedule are recommended to determine good initial temperature. In

later stages, when local minima are explored, shifting to gradient-based or linear search techniques may significantly

reduce cost of calculation.

Mean-field annealing (MFA) is a popular approximation to stochastic search, derive for error functions that are

quadratic in quenched variables. Although MFA method may easily be applied to Hopfield-like networks for mini-

mization of their energy – it works well for quasi-linear or quadratic error functions – it is not clear how to use it for

MLP or other feedforward networks.
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3.1 Adaptive Simulated Annealing

Adaptive Simulated Annealing (ASA), previously called Very Fast Simulated Reannealing (VFSR, [25]), uses different

probability distributions for different parameters [24]. Parameters may have different finite ranges determined by

physical considerations. For parameterPi belonging to the[Ai,Bi ] range, and a random variableri ∈ [−1,+1] range,

the new value at the time stept + 1 is generated by:

Pt+1
i = Pt

i + ri(Bi−Ai); ri = sgn(ui−0.5)Ti

[
(1+ 1/Ti)

|2ui−1| −1
]

(6)

whereui is uniformly distributed in the[0,1] sector andTi is the specific temperature for the i-th parameter. The

annealing schedule is defined in terms of two free parameters,mi ,ni :

Ti(t) = Ti(0)exp(−cit
1/N); ci = mi exp(−ni/N) (7)

and the same type of function is taken for thepE(∆E(P)) acceptance probability. In effect ASA has many free

parameters that may be tuned to specific problems. Several other mechanisms are build into the publicly available ASA

software1, including re-annealing based on sensitivity of the cost function to parameters changes and self-optimization

of some parameters. A new idea that seem to significantly improve the quality of the SA results is based on the

rescaling of the error function [26]:

E(P)←
(√

E(P)−
√

Etarget

)2
(8)

ForEtarget = 0 the original error landscape is obtained, but initiallyEtarget is relatively large and the error landscape

is smoothed, helping to escape from local minima. The modification is trivial but in the tests on the traveling salesman

problem rescaled SA significantly outperformed original SA. The method has not yet been used for optimization of

neural networks, although it may be useful not only in connection with simulated annealing, but also with standard

gradient-based procedures.

SA has not been popular among neural network researchers working on MLPs, except for an interesting paper by

Engle [27] in which the network adaptive parameters were discretized. Boltzmann machines and Harmony Networks

are based on simulated annealing approach [28, 29]. SA was used with Gibbs sampling techniques in Bayesian

approach to neural networks [30]. In one study [31] Mean Field Annealing [32] has been found superior to other

minimization techniques in the neural network context. Simulated annealing has been used to solve optimization

problems inherent in the vector quantization methods [33], for feature weighting in LVQ networks [34], selection

and optimization of reference LVQ vectors [35], optimization of probabilistic networks [36] and in recurrent neural

networks exhibiting chaotic behavior [37].

SA could also be combined with Dittes approach [23], although so far it has not been done. For many optimization

problems SA was found superior to other techniques [24, 38]. It is certainly worthwhile to make more experiment

with ASA applied to neural networks.

1Available at http://www.alumni.caltech.edu/ ingber/
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3.2 Alopex

A special form of simulated annealing is used in the Alopex algorithm [39]. Since the result of this approach seem

to be very good (probably due to the global minimization) it is described here. Alopex algorithm is based on a very

simple idea which is competitive to the backpropagation. The weightWi j is changed by a constant amountδ with

probability defined by the sigmoidal (Boltzmann) factor,pi j = σ(∆Wi j ·∆E/T), where the weight change and the error

change computed in the previous iteration is used. The annealing temperature is changed every epoch consisting ofK

steps, using the sum of error changes in the previous epoch:

T(n) =
δ
K

n−1

∑
t=n−K

|∆E(t)| (9)

For large temperature, probabilities of±δ are close to 0.5 and the weights are randomly changed until a large

change of energy is detected (correlations between changes of weights and changes of error are large) and the tem-

perature is reduced. During an iteration all weights are updated simultaneously. No assumptions are made about the

structure of the network, the error measure being minimized or the transfer functions, no gradients are computed, the

same algorithm may be used in feedforward as well as recurrent networks, and there is even some neurobiological

plausibility of this algorithm (at least it is more plausible than backpropagation). There are 3 parameters: the step-size

δ, which is taken as 0.01-0.001 times the dynamic range of weights, the initial temperature, and the number of steps per

epochK = 10−100. For some problems instead of the standard quadratic measure of error the information-theoretic

cost function for[0,1] targetY(i)
j and outputM(X(i);P) values gives better results:

E(P) = ∑
i=1

N

∑
j=1

Y(i)
j log

Y(i)
j

M(X(i);P) j
+ (1−Y(i)

j ) log
1−Y(i)

j

1−M(X(i);P) j
(10)

This function is much smoother than the quadratic error function and for networks without hidden layers using

sigmoidal transfer functions it contains only one minimum. It is amazing that it has not been used more often and

there are no comparisons with the standard quadratic cost functions.

Obviously many improvements can be proposed, such as the variableK, fast and slow weights (corresponding

to differentδ, or fast and slow synapses), different annealing schedules etc. Alopex may be quite easily used in

connection with other global minimization methods, for example with genetic algorithms. One disadvantage of the

Alopex algorithm seems to be that the weights are always updated and therefore saturate around large positive or

negative values. To prune the small weights and enable feature selection it is better to define conditions when they

may vanish, for example by using penalty functions described later in this article.

The Alopex algorithm has been tested so far only on a few problems with very good results, for example it has

learned to solve quite large parity problems, it also solved all the standard machine learning benchmark, i.e. the 3

Monk’s problems [40], with 100% accuracy (except for our MLP2LN approach [22, 41] this is the only network that

was able to do it), but no results on the real-world noisy data have been reported so far.

4 REACTIVE TABU SEARCH

The reactive tabu search (both spellings, “tabu” and “taboo” are in use) is based on a very simple idea [42, 43].

The search is started at a random point and the best elementary move is selected; cycles are avoided by keeping the
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trajectory of the search and discouraging the system from visiting the same regions again. In context of neural networks

the values of the adaptive parametersP are kept with finite precision and the neighborhoodN(P) is defined by single-

bit change operations. The error functionE(P) is therefore defined on a finite set of points. The best operation for

which E(P′),P′ ∈ N(P) has the lowest value, is selected (even if the error grows) and the ties are broken in a random

way. The inverses of most recent moves are prohibited to avoid cycles, hence the ’tabu’ name for the method – regions

already visited should be avoided. If there are too many possibilities only a restricted subset of moves are randomly

sampled and the best one selected. The tabu is put on the moves, not on the values ofP, and kept for a limited number

of T time steps. The value ofT should be large enough to avoid cycles and small enough to avoid overconstraining

the search. Reactive Tabu Search (RTS) optimizes the prohibition periodT adjusting it to the local structure of the

problem. This requires remembering the pointsP along the trajectory and counting how many times each point has

been encountered. RTS algorithm is presented below:

1. Set up initial parameters and initial pointP

2. Check whetherP is repetition: check how many times it was repeated and what is the length of the cycle; if it is

short increaseT to avoid it, if repeated too many times start the escape sequence; otherwise ifT was constant for

a number of iterations that was greater than the moving average or repetition intervals, decrease it by a constant

factor (smallerT save computational time).

3. Select best move from moves that are available (not on the prohibited list); store the new pointP′; use hashing

to reduce size, remember theE(P) andP that were the best so far.

4. Escape sequence: start diversified search, or a sequence of random steps to get out of the cyclic or chaotic area.

The dynamics defined here gives probability of visiting distant points which is much higher than given by a

random walk. In application to neural networks [44] weights are mapped to binary strings using Gray encoding,

and concatenated afterwards. The proper choice of this encoding, and selection of elementary operations, are very

important for the success of the method. The need to use binary strings seems to be the weakness of RTS, since an

elementary step may correspond to a small change in weights and after each change rather costly decoding has to be

done to evaluateE(P′), even though only one weight is changed at a time. Very long strings of bits are obtained for

coding weights, therefore it is recommended that only a few bits per weight are used (4 bits gave results comparable

to full precision, while 2 or even 1 bit may already give very good results). Since derivatives are not used sigmoids

may be replaced by multistep functions. To maximize generalization the function is minimized until the error on the

validation set, not on the training set, is minimal.

The tabu search was used with very good result on a large number of combinatorial optimization problems. It was

used [44] to discriminate interesting events in High Energy Physics data, with the best results obtained for a one-bit

representation of weights (interpreted asWi =±5 weight values). The generalization levels reached 90%, while in the

standard MLP they reached only 62%. Unfortunately the authors did not try to include 0 weight values – this would

allow for feature selection. These results show that in a large network it may be more important to explore the whole

search space than to find the precise values of weights.
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5 THE NOVEL ALGORITHM

Recently a new global optimization method has been proposed for neural networks [20]. It is a hybrid, global/local

trajectory based method, exploring the solution space, locating promising regions and using local search to locate

promising minima. TrajectoryP(t) in the global search stage is defined by a differential equation:

Ṗ(t) = A(∇PM(P(t))) + B(T(t),P(t)) (11)

wheret plays the role of time,T is the trace function andA, B are in general non-linear functions. The first

component allows local minima to attract the trajectories, and the second component allows to walk out from the local

minima. In the simplest case used in the practical NOVEL algorithmA andB functions are constants:

Ṗ(t) =−µg∇PM(P(t)) + µt(T(t)−P(t)) (12)

The trace functionT should assure that all space is finally traversed; it may either partition the space into regions

that are explored in details or make first coarse and than fine searches. In the NOVEL algorithm a non-periodic

function is used in each dimensioni:

Ti(t) = ρsin
[
2π(0.5t)1−(0.05+0.45(i−1)/N)+ 2π(i−1)/n

]
(13)

whereN andn are two integer parameters. The differential equation is either solved in its original form by standard

ODE computer package [20] or in a discretized form as a difference equation:

P(t + δt) = P(t) + δt [−µg∇PM(P(t)) + µt(T(t)−P(t))] (14)

Shang and Wah noted [20] that ODE solutions are slightly better although discretized equations are faster to

simulate. The method has been tested on the two-spiral problem, training 5 hidden units in 100 time steps, starting

from zero weights. This is a very hard problem for most MLP networks. The slope of sigmoids was unusually large

(100), andµg = 1, µt = 20 was taken after some experimentation. Unfortunately finding a solution for 4 hidden units

required a total of one week of Sun SS20/71 workstation time. The discretized version was about 10 times faster but

didn’t find the absolute minimum.

Deterministic algorithms, such as NOVEL, have some advantages over the stochastic versions. They find all deep

minima contained in some bound region of the parameter space.

6 MULTISIMPLEX METHODS

Linear Least Squares SIMplex (LLSSIM) is another interesting global minimization method based on multisimplex

minimization, recently presented by Guptaet al. [45]. Results of applications to the 3-layer neural networks are

very interesting. The input-hidden layer weightsWh are estimated using the Multi-Start Downhill Simplex (MSDS)

method, while the hidden-output weightsWo are estimated using the Linear Least Squares (LLS) approach.

Supposed that there areNh hidden neurons,(Xl ,Yl ), l = 1..m training patterns, withN inputs andNy outputs. The

error function is:
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E(W) =
1

2(m−1)

m

∑
l=1

Ny

∑
i=1

(
Yl

i −Mi(X
l )
)2

(15)

and

Mk(X) = σ

(
Nh

∑
j=0

Wo
jkyj(X)

)
; yj(X) = σ

(
N

∑
i=0

Wh
i j Xi

)
(16)

The total number of non-linear parameters here isd = (N + 1)Nh + (Nh + 1)Ny. For 3-layer networks one can

estimate the output weightsWo by inverting the sigmoidal functions:

Sj(X) = σ−1(Yj) = ln
Yj

1−Yj
(17)

Zj(X) = σ−1(Mj) = ln
Mj(X)

1−Mj(X)
=

Nh

∑
i=0

yi(X) (18)

HereSj(X) is the activation of the output unit that will give expected resultsYj , andZj(X) is the actual activation.

Therefore the error function could be written as:

E(W) =
1

2(m−1)

m

∑
l=1

Ny

∑
i=1

(
Sl

i −Zi(X
l )
)2

(19)

=
1

2(m−1)

m

∑
l=1

Ny

∑
i=1

(
Sl

i −
Nh

∑
j=0

Wo
i j σ

(
N

∑
n=0

Wh
jnXl

n

))2

The MSDS minimization for non-linear optimization is therefore restricted only to the input-hidden weights. The

hidden-output layer weights are set up solving linear equations resulting from the least square problem. This approach

has been tested using two function approximation problems and one real-world dataset (prediction of rainfall) and

compared to backpropagation with the momentum, adaptive learning rates and conjugate gradient. The time was only

2-5 times longer than for the gradient-based procedure but the results were significantly better.

The multisimplex method of global optimization is similar to the multi-level single-linkage stochastic methods,

which are a particular type of clustering methods [46]. Cluster is defined here as a set of points corresponding to a basin

containing exactly one minimum to which descent methods should converge. Single linkage methods evaluate function

on a set of sample points, find the best solution, apply local minimization and create a cluster by adding points around

the minimum. Some of the initial sample points will fall into the cluster (meaning that local optimization follows into

the minimum contained in the cluster), while others will be further than a critical distance to the cluster (i.e. to the

closest point in the cluster). These far points should form new clusters. The space is thus partitioned into clusters,

or basins of local minima gradient dynamics attractors. The sample set is continually expanding and therefore even

with the finite sampling inside each cluster all minima will eventually be found. In the Multi Level Single Linkage

(MLSL) local optimization is applied to all initially sampled points if they are not closer than some critical distance.

The method has not yet been applied to neural networks.
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7 HYBRID LOCAL -GLOBAL OPTIMIZATION METHODS

Baba [47] and Babaet al. [48] described one of the first hybrid algorithm for global minimization in neural networks.

Conjugate gradient method with line search is used to find a local minimum and when the error decrease becomes

smaller than a given threshold the method switches to a global mode to escape from local minimum. Once the error

decrease becomes sufficiently large local minimization is turned on again. Random optimization method of Solis and

Wets has been used by Baba [47]; the method guarantees convergence to a global minimum. The following steps are

distinguished:

1. Select initial weight vectorW0, assuming that each weight is bounded by±10 or some other number.M is the

maximum number of steps,k = 0,b0 = 0.

2. Use normal distributionN(bk,γ) to generate random vectorξk of the same dimensionK as the weight vector;

use these vectors only if elementsWk + ξk are within bounds.

3. If E(Wk + ξk)< E(Wk) takeWk+1 = Wk + ξk andbk+1 = 0.4ξk + 0.2bk;

else ifE(Wk− ξk)< E(Wk) takeWk+1 = Wk− ξk andbk+1 =−0.4ξk + bk;

otherwise takeWk+1 = Wk andbk+1 = 0.5bk;

Baba method has been applied to 3 problems with good results, but the number of iterations has been quite large.

It has been slightly improved by Lianget al. [49] who combined it with Rosario [50] algorithm for local minimization

(faster than the conjugate gradient search) and used it for blind equalization achieving significantly better results

than using standard methods. The global Solis and Wets minimization seems to have drawbacks in context of neural

networks training [51]: Gaussian distribution chooses areas around the local minimum with too high probability;

results are strongly dependent on the choice of variancesγ; the mean of this distribution is computed using arbitrary

parameters 0.2, 0.4, 0.5; experience with neural networks show that good solutions are obtained ifW0 is in the±0.77

sector, while here arbitrary starts are used; previous values of weights are not used to improve the search. Other

variants of the hybrid methods are described in [52, 53].

Orsier [51] has presented another hybrid optimization method calledP∗SCG. It is based on Random Line Search

(RLS) combined with the Scaled Conjugate Gradient (SCG) method. The algorithm contains the following operations:

1. Select a random initial weight vectorW0.

2. From the current pointWi choose a random line in the weight space.

3. Minimize the error along the line and move to the new point if the error there is lower than in the current point.

This algorithm converges to the global minimum in the probabilistic sense. In applications to neural networks local

minimum is found first using SCG method starting from weights in the±0.77 range. Random lines are generated

always from the origin (in RLS algorithm they are generated from the currentWi ). One of the most effective one-

dimensional search techniques is calledP∗ [51]. It uses a sophisticated strategy creating statistical model (Wiener

process) to estimate the position of the global minimum and quadratic approximation to find the final value. The length

of the line is scaled by a factor proportional to stochastic Gaussian variable, while the components are uniformly
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randomly selected in the specified range; thus most of the lines generated are rather short. The cost of the global

strategy part in theP∗ method is relatively small (usually about 10%) comparing to the cost of the local searches. The

main parameter that the user may change is the range of the weights (in some experiments even±10 was too small –

this depends on preprocessing of the input data).

TheP∗SCGmethod has been implemented in the SNNS simulator [54]. Comparison of this method with the results

of Baba [48] on the parity problem and on one other problem showed its superiority. A deterministic hybrid method

called LGOTA has been proposed by Tang and Kohler [55]. Comparison ofP∗SCG with this method on the 8-parity

problem was initially not too successful but allowed to identify several problems. First, interesting minima did not

lie near the origin, therefore renormalization of the random line vector by a Gaussian component was dropped and

random lines were drawn between a point and its opposite (instead the origin at 0). This version ofP∗SCG worked

very well for the 8-parity problem, finding global minima with a few random lines only. Although these results are

preliminary the method shows great promise.

Hu et al. [56] introduced a novel hybrid random search scheme RasID (Random Search with Intensification and

Diversification), based on an interesting probability density function for generation of the random search vectors.

Their random search vectors are generated using the formula:

xm =


1
β ln
(

zm
1−qm

)
if 0 < zm≤ 1−qm

−1
β ln

(
1−zm

qm

)
if 1−qm< zm≤ 1

(20)

wherezm are random values uniformly distributed in[0,1] interval andqm andβ are two parameters, first control-

ling asymmetry in searching in positive and negative direction and second controlling the range of random searching.

It seems that such random search algorithms guarantee convergence [57]. Some heuristics are given for the choice

of qm andβ parameters. The system observes recent success/failure rations and if the results improve local search is

‘intensified’ by the random search or performed by a gradient-based algorithm, otherwise diversified search sequence

is started to escape from local minimum.

8 SMOOTHING ALGORITHMS

This algorithm has been developed and used for searching the minima of potential energy functions [58]. The idea is

to transform the minimized function to a simpler one with smaller number of local minima. The function is smoothed

and shallow minima disappear, leaving only the deep ones. Adding a second derivative of a function to the function

itself leads to a combination that has the same inflection points (second derivative is zero in the inflection point) but

the maxima decrease and the minima grow. A series of functions is defined as:

F(k)(X) = (1+ β∇2)F(X), β> 0 (21)

i.e. a trace of the Hessian matrix is added to the original function. The deformation is most effective ifk grows to

infinity andβ goes to zero, for example by taking:

F(X, t) = lim
k→∞

(
1+

t
k

∇2
)N

F(X) = et∇F(X) (22)
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It is easy to see that the exponential operatorT̂(t) = exp(t∇2) flattens high frequency components of the function

since its eigenvalues in one dimension are:

T̂(t)sinωx = e−ω2t sinωx (23)

and therefore for largert all higher Fourier components will be very small. TheT̂ operator preserves the degree

of the polynomial it acts on. Unfortunately it may lead to a divergent series. TheF(X, t) function fulfills the diffusion

equation:

∇2F(X, t) =
∂F(X, t)

∂t
(24)

For finitet it may be easier to use this equation instead of applying the exponential operator to the function directly,

with F(X,0) = F(X) as initial condition. Once the deformed function becomes simple enough to find the remaining

minima by a gradient method one should perform the reverse transformation to obtain the positions of the minima at

the original surface. This is done by following the minimum ofF(X, t) = F(X,k∆t) back toF(X,0), using gradient

procedure from the initial point found attk = k∆t throughtk−1, tk−2 . . . t1 = ∆t.

This procedure has been applied to some problems in physical chemistry [58], but never in the context of neural

systems. IfE(W, t) containing a few deepest minima could be found and the minima traced back toE(W,0) an optimal

set of parameters could be found. Direct application of the exponential operator requires the ability to systematically

compute high-order derivatives. Perhaps this is feasible. The diffusion equation may be solved in special cases,

for example for expolynomial error functions (combination of polynomial factors multiplied by exponential factors),

which is not quite the case of the neural networks. Several other minimization methods used in physical chemistry are

also worth investigating [59, 60, 61].

9 BRANCH AND BOUND METHODS

These methods provide lower bounds on the objective function and are similar to the discrete minimization methods

used in combinatorial AI searches [62]. The history of the branch and bound (B&B) methods is described in [63]. The

advantage of these methods is that they do not require any information about the function minimized and they can be

combined with many heuristic techniques to explore the search space. These methods may also characterize the error

surface completely finding all local minima and saddle points around the global minimum, which may be useful in

some applications. B&B methods may require exponential amount of work to find the global optimum, but in many

practical problems this is not the case.

The branch and bound methods work in a finite domain (Wi ∈ [−A,+A] for some constantA). The problem in the

whole domain is called the root problem. A procedure for calculating lower and upper bound should be defined and if

both bounds match for the current problem than a minimum has been found; otherwise the domain is partitioned into

smaller subdomains and bounds checked for them. A graph with the search nodes is defined is this way and recursively

expanded. Finding a local minimum in some subdomain allows to prune the tree removing all node with the lower

bound above the local minimum found. The crucial point is the ability to compute bounds.

It is not clear how to apply these methods in a rigorous way to neural optimization. Probabilistic formulation, in

which simulated annealing is used to estimate the bounds, is relatively straightforward, but so far has not been used.
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10 INTERVAL-BASED METHODS

The interval-based methods [64], in which information about minimized function is computed over a box, cone or

simplex-shaped regions, is another exciting possibility that can be used in conjunction with the branch and bound

method2. Interval arithmetic is gaining popularity and has been implemented in Maple, Mathematica and extensions

of Fortran 90. Interval methods used for global optimization are sometimes faster than point methods. Instead of

single real number (which cannot be exactly represented in a computer) an intervalX = [x̄,x] is used and all basic

operations are defined on intervals. Brouver fixed point theorem combined with Newton’s method allows to check if a

solution in a given interval exists.

Let x0 ∈X, evaluatef ′(X) and compute the Newton operatorN( f ;X,x0) = x0− f (x0)/ f ′(X); then ifN( f ;X,x0)⊂
X a unique solutionf (x) = 0 exist inX. Newton operator is used in the interval iteration algorithm [63], consisting of

the following steps:

1. Select a boxB in which global minimum is searched from a list of boxesL; while L is not empty do:

2. If N(B, x̃)⊂ B is not true for some ˜x∈ B than discardB;

3. else ifN(B, x̃) is smaller than tolerance putB on theDonelist;

4. else ifN(B, x̃) is sufficiently smaller thanB put it onL list as a new box;

5. else split theN(B, x̃) box intok pieces and put them on the listL.

Boxes on theDonelist contain local and global optima. This algorithm has been modified by Hansen [64], adding

different techniques to eliminate portions of boxes. The Back-Boxing method [63] formulated very recently seems

to be the most efficient partitioning scheme based on interval arithmetic and rectangular partitions. It is used with

constrained damped Newton’s method for real local optimization, with some provisions to stay within the interval.

The use of such local method is necessary because branch-and-bound algorithms spend most of their time around

local minima. Newton method requires calculation of the interval Hessian which is done similarly as the usual Hessian

calculation, but for neural networks applications it is rather expensive. Back-boxing is the process of identifying a box

surrounding the region such that the error function on the box is convex. Finding the largest box is a non-trivial

problem. Boxes around saddle points are treated as prohibited areas and avoided. There are 3 lists of boxes in the

algorithm. First, boxes of undetermined contents; second, the finished boxes, reduced to smallest size and containing

minima; third, the list of convex boxes, in which the error function is convex. The algorithm itself is rather complex

and is described in details in [63].

Global interval minimization methods have not yet been used for neural networks although their application should

not be too difficult. An applications of interval arithmetic to deal with the problem of the missing values in classifica-

tion and regression were reported [65], but only local minimization technique has been used by the authors.

2See also http://cs.utep.edu/interval-comp/main.html



NEURAL COMPUTING SURVEYS 2, XXX -YYY, 1998, http://www.icsi.berkeley.edu/̃ jagota/NCS 16

11 GENETIC ALGORITHMS

Great popularity of genetic algorithms in neural network optimization seems to stem from the biological inspirations

of both methods. Of course in practical applications it does not matter if a given method was biological inspired or not.

Mutations of candidates for good local minima correspond to random steps in Monte Carlo algorithms, so it may seem

that the principle of “survival of the fittest” should help, especially that crossovers enhance the probability to leave

local minima. However, in contrast to simulated annealing and a few other GM methods genetic approaches do not

guarantee global convergence. Therefore one should carefully compare the results obtained with genetic algorithms

with other global optimization techniques because it is not a priori clear that they should perform better in case of

neural problems. Success in using genetic algorithms still depends on careful analysis of the nature of the problem at

hand and may require tedious fiddling with the genetic rules.

One of the major domains of application of genetic algorithms (GA) is searching in a large space for good solutions

and the optimization of hard problems [11, 66, 67, 68]. Genetic algorithms were inspired by the adaptation and learning

capabilities of natural species. Compared to other methods, GA is perfectly capable of exploring discontinued spaces

of solutions (which is common to many other global minimization methods, but is not possible using the gradient-

based techniques) with a minimum background knowledge and domain-based information. GA techniques explore

the space of parameters being guided by a fitness function, and enabling many solutions in the population to evolve in

parallel, rather than focusing on a single best solution.

In order to explain the principle of GA one should consider a problem of optimizationP and its space of solutions

S(P). At the beginning, an initial populationG0 is created, containing a family of chromosomes describing the

elementsS(P). This population is evaluated in terms of its adaptation capacity to a given environment, by use of

the fitness functionf (·), which measures the capacity of chromosomes for solving the problemP. The main task

of the fitness function is to guide the search for best solutions, thereby promoting good chromosomes instead of bad

ones. Good chromosomes will then be selected as candidates for genetic operations. After one epoch of genetic

operations is finished a new populationG1 is created, and the process is continued. Since the genetic search may run

infinitely to control the evolution a condition for termination must be defined. Frequently, the level of satisfaction of

the fitness function, the maximal number of generations, or even a measure of homogeneity of solutions may terminate

the process. One may also define more sophisticated criteria such as measuring the convergence of the populations

towards an acceptable solution.

Many practitioners state that GA are a robust optimization method with a large extent of applications. The scope of

GA applications is restricted to those problems only where it is possible to encode the set of solutions as chromosomes

and where a fitness function may be defined. The fitness function measures the chromosome capacity for solving a

problemP assigning better chromosomes higher values of the fitness function. The fittest chromosomes are promoted

in the evolution. The evolution process is supposed to improve the quality of populations gradually, but there is no

guarantee that the optimal solution will be found.

During the last decade there has been a growing interest in the evolutionary approach to neural network design.

This subject slowly enters the textbooks on neural networks [5, 69]. The search space of possible network structures

is enormous, even for a particular type of neural networks. It is also obvious that a random search or an exhaustive

search for “good networks" is practically impossible, especially in complex domains such as image processing, voice

recognition, robot control, signal processing or financial forecasting.
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Among many types of network models MLP networks are the most common, not only because of their universality,

but also because of their good performance [70, 71, 72]. The efficiency of learning and the quality of generalization is

strongly related to the neural network topology. The number of neurons, their organization in layers, as well as their

connection scheme, have a considerable effect on network learning and its capacity for generalization [73]-[76]. Using

a non-suitable network architecture has influence on the network performance and various quality factors, such as the

training time, convergence in the training phase and the capacity for generalization.

One of the central issues in neural network research is the question of how to find an optimal MLP architecture.

Frequently a naive approach is used: the network architecture is arbitrarily designed and the network trained for some

time. Depending on the result of training neurons and/or connections are manually inserted or deleted, and then the

network is trained further. The learning capacity of the modified network is observed and, if necessary, the process

is repeated. In general, because of a large number of trial-and-error experiments required to find a good solution

(which is sometimes still poor in comparison with an optimal solution), this intuitive approach is not acceptable.

Genetic algorithms find near-optimal solutions through evolving populations of networks, which encode the candidate

solutions to a given problem. Each individual, in our case a neural network, is assigned a fitness value evaluating

how well it solves the problem. This process is iterative, and the selection of the best networks is based on the fitness

function evaluation. Genetic algorithms are capable of solving difficult real-life optimization problems.

Genetic connectionism is based on the integration of evolution and learning within one system, by combining

connectionist methods and genetic search techniques. Evolving neural networks have already been applied in a number

of research projects [69, 73]-[88]. Taking into consideration the level and the way of integration of connectionist and

genetic methods, this variety of approaches can be divided into four classes. The first class is formed by the approaches

which use genetic algorithms to pre-process the training data, e.g. to select relevant input features [89, 90]. The second

class employs genetic algorithms to train neural networks. Typically, this involves optimizing the weights in a neural

network with a predefined topology [81, 83, 91]-[94]. The third class of approaches uses genetic algorithms to select

a neural network topology [75, 79, 84, 95]-[98]. Finally, the fourth class is a combination of the previous methods

[99, 100].

Our own approach can be considered as a hybrid method [101]-[104]. The novelty here is to emphasize not only

the network performance aspects in terms of domain-oriented measures, but also the network simplification achieved

by reducing the network topology and by the elimination of irrelevant and redundant variables (reducing the problem

dimension). To find an acceptable network not only the training and generalization quality is taken into account, but

also the number of neurons and connections, as well as the number of input variables (of course the fewer the better).

All these genetic manipulations on the network architecture should not decrease the neural network performance. A

smaller set of carefully chosen parameters may improve the performance of a neural network model and also reduce

computation costs.

11.1 Overview of genetic connectionism methods

It is impossible to review all contributions to the vast field of evolutionary computation and genetic connectionism.

A large biography on evolutionary design of neural architectures may be found in the Internet [105]. The discussion

here is focused mainly on the MLP optimization methods. Many such methods have been elaborated upon in literature

[74, 76, 78, 85, 93, 106, 107, 108]. The constructive neural models that modify network topologies during the learning
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process [1, 2, 5, 3] are sometimes called ontogenic networks [108]. An ontogenic network has some advantages

in comparison to the classical MLP: its architecture is not designedad hocor by a trial-and-error experiments, its

performance is usually better, the computing time is reduced because adding neurons one after another requires little

re-training, and memory requirements are lower. One may divide these methods into 4 main classes: methods which

grow the network, prune network connections and remove neurons, methods with variable topology and pseudo-

ontogenic methods.

The growing network methods increase the complexity of network topology starting the learning process from a

very simple network, inserting new neurons and connections [21, 109, 110] (depending on the required accuracy).

Contrary to this, the pruning methods decrease the complexity of topology starting from networks of large sizes,

and then trying to simplify them [70]. Methods with variable topology use a combination of these two techniques,

growing and pruning the network during the learning phase [111]-[114]. Some methods can not be considered as pure

ontogenic, because they use fixed size networks determined by a user before the learning process starts. However,

since they turn some units off and on they may be considered as a variant of an ontogenic algorithm [115, 116].

The methods that modify the network architecture after the end of the training phase are called non-ontogenic

[70, 107, 108]. In general, the domain of applications of these methods is reduced to simple problems, for example

problems involving Boolean functions, where one may easily find a simple and good neural network in a very short

time by trial-and-error. A lot of research has been done on network optimization using genetic algorithms [76, 78,

85, 93]. These methods may be grouped into three classes: supportive methods, collaborative methods and hybrid

methods.

11.2 Supportive methods

Here either genetic algorithms are used to help neural networks or vice versa, neural networks are used to optimize

genetic algorithms. A few examples are given below.

- Genetic algorithms assisted by neural networks.

The XROUT algorithm, developed by Kadaba, Nygard and Juell [117, 118], was used to resolve the Vehicle

Routing Problem. The problem consists in minimizing the distance traveled by vehicles, by assigning stopping points

and a servicing order. Kadaba designed a hybrid system in which genetic algorithms have to find a set of good

parameters of heuristic procedure, which searches the stopping points, and to construct an efficient set of heuristics

designated to select the tour. The parameters for finding the minimum tour are encoded in chromosomes and determine

the heuristics. Neural networks are used to generate an initial population for the two types of search implemented by

genetic algorithms.

- Neural network assisted by genetic algorithms.

GA can be used to support neural network research in three different ways: the first is to select the input data or

to transform the feature space, the second is to select a network learning rule and its parameters, and the third is to

analyze a neural network [90, 119].

• Data preprocessing: Kelly and Davis [120] used GA to find rotations of data vectors and the scaling factors for

each attribute, improving the performance of neural classifier. Other approaches are focused on data reduction.

Frequently the data reduction improves the network performance and reduces the computing time. Chang and
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Lippmann [121] used GA to reduce the volume of data. The algorithm creates new input data set from the

original one; for instance, new features may be generated from raw data using polynomial functions. Drabeet

al. [122] used GA to cluster subtasks of a complex task that neural network should learn. This is one of a few

papers that try to apply neural networks to complex problems involving combinatorial optimization. GA are

frequently applied to feature selection before training MLPS [123], Kohonen networks or vector quantization

algorithms (cf. articles in [87]).

• Modification of parameters and learning rules: Belew, McInerney and Schraudolph [96] used GA to determine

the learning coefficient and momentum for training of the MLP network. The speed of convergence has been

improved in comparison with hand-assigned values. Harp, Samad and Guha [79] applied GA to modify learning

coefficients dynamically, depending on the number of epochs. Schaffer, Caruana and Eshelman [85] adapted

the learning coefficient, the momentum and the connection weights. Chalmers [78] encoded the learning rule in

a chromosome, changing the rule using observation of network performance in previous epochs. GA was also

used to initialize the Radial Basis Networks [124, 125] and to train cellular neural networks [126].

• Neural network analysis using GA: Opitz and Shavlik [127] used GA to explain the behavior of neural networks

by defining a function linking the network inputs and outputs.

11.3 Collaborative methods

The idea of network optimization using genetic algorithms during the training process is quite popular [79, 83, 85, 128].

GA are used here to determine weights of connections using the mean-square quadratic error function as the fitness

function. However, this is a very time consuming process, even if some heuristics are used to reduce the computing

time. Other global minimization methods have been applied in neural networks almost exclusively for minimization

of the error function. A more natural way to combine GA with neural networks is to use genetic search techniques to

find an optimal network topology. Such search requires the following elements:

• A representation of a genotype which is defined as the function mapping of the genotype into a phenotype.

• A protocol allowing to establish a link between the phenotype and the environment related to the problem at

hand.

• A method of training capable of verifying the quality of a specified network.

• A measure of fitness obtained.

• A method generating new genotypes (a set of genetic operators).

11.4 Hybrid methods

Methods using GA to modify the weight of neural network connections are usually considered as less efficient and

more computing-intensive than those based on gradient backpropagation. Another possible application of GAs is

for initialization of adaptive parameters, as well as determination of learning coefficient and momentum. In some
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applications of neural networks, where the backpropagation cannot be used, for example in recurrent networks, GA

offers a solution replacing gradient learning algorithms [129].

Encouraging results have been obtained in GA application to optimize MLP network topologies [80, 93, 104, 121,

130], optimization of RBF network parameters [125] and structures of Kohonen networks [131, 132]. A specification

of a mapping function that encodes a network into a string of genes, known as ‘a chromosome’, is required for such

optimization. A number of methods to encode MLP networks in chromosomes [84, 86, 103, 133, 134] have been used

and a few of these methods will be described below. Another important problem is to define a fitness function that will

take into consideration various aspects of a hybrid optimization system. Before discussing these two questions, let us

describe a process of genetic search of an optimal neural network at a very general level.

11.5 Process of genetic search

The process of genetic search can be divided into five main phases: initialization, selection, genetic operations, evalu-

ation and replacement. The aim of the first phase is to build the initial generation of neural networks. In the domains

where no background knowledge is available, it is important that the construction procedure ensures an equiprobable

sampling in the search space. Therefore, to begin searching efficiently, one needs to start with representatives chosen

from the whole search space. However, in domains where a priori knowledge is available, the user may insert the

networks that are “close" to the optimal solution into the initial population.

Once the initial population of networks has been created and trained, one has to assign a certain probability of

reproduction in the next generation to each network. The selection operation creates a genetic patrimony, called a mat-

ing pool. The selection of the networks chosen for reproduction is carried out with probabilities directly proportional

to their quality. There are many selection strategies [135, 136, 137], often referred to in statistics as the sampling

techniques. One of the most interesting techniques is the stochastic universal sampling [135] which is simple and

theoretically sound.

Having taken out two networks from the mating pool, the new networks are produced by applying genetic oper-

ations. Two operations are fundamental: the crossover and the mutation. The crossover operation allows two new

networks, which are composed of a mixture of genes inherited from each parent-network, to be created. To preserve

properties of the best networks over the successive generations, the crossover is not applied systematically. The pur-

pose of the mutation operation is to provoke a jump inside the search space by modifying a randomly selected gene

in the network population. Generally, it prevents the GA from converging towards a local minimum. The mutation

creates some noise in the evolution process; therefore its probability is usually quite small. In our own system a large

number of network-oriented operations have been designed [101].

The evaluation operation allows the fitness of each neural network in the population to be measured. The operation

is composed of two steps. The first is chromosome decoding, leading to a construction of the corresponding network.

The second consists of computing the fitness function described previously. As a result a value is attributed to each

network, allowing to compare it with other networks generated during the selection and the genetic manipulation

processes.

Once evaluated, the replacement operation selects neural networks for the next population. The new population

is created by using similar algorithms to those used in the selection strategy. Therefore, in many genetic systems, the

replacement is treated as a selection operation. In our system a variety of strategies to create new populations has been
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implemented. The two most important aspects of genetic evolution of neural networks, the network encoding scheme

and the fitness function, are described in details below.

11.6 Network representation and encoding schemes

During the evolution each generated network is first decoded from a chromosome representing a neural network, then

it is trained and tested, and finally the network is encoded back into the chromosome (Fig. 1). Of course after training

neural network changes not only its connection weights, but also its quality.

Chromosome Cin Chromosome Cin

Learning and test

Network Nin Network Nout

Decoding Encoding

Figure 1: Network encoding.

Various information may be encoded in a chromosome. The most common practice is to store only a network

topology, but one may also encode the initialization parameters, connection weights, transfer functions, learning co-

efficients, etc. The more parameters are encoded the bigger is the search space. More precisely, if one encodesn

parametersp1, ..., pn, and if each of them takesval(pi) different values, then the size of the solution space is equal

to ∏n
i=1val(pi). In consequence, taking too many parameters will at least slow down the convergence of the genetic

process. This excess cost, no doubt prohibitive, will decrease the quality of solutions, especially if the inserted param-

eters are irrelevant. An ideal network coding scheme does not exist, but a number of requirements should be fulfilled

by a good encoding scheme. For example, the network-coding scheme should be bijective, otherwise it would be

impossible to control the evolution process. A detailed discussion of all such requirements may be found in [84, 102].

To introduce the problem of coding, let us consider one of most common methods used to encode MLP networks.

The encoding scheme consists of mapping the network structure onto a binary connection matrix where each cell of the

matrix determines whether a connection between two neurons exists or not. Each hidden and output neuron receives

connections from at least one neuron. The complete network structure is represented by the list of neurons with their

incoming connections (Fig. 2).

The direct encoding scheme has a number of advantages. It is simple, easy to implement and manipulate. In

addition, large number of genetic operators may be defined, including generic operators of crossover and mutation, as

well as network-oriented operators. One of the drawbacks of this method is that it may result in very long codes for

large networks. The main goal of an encoding scheme is to represent neural networks (phenotypes) in a population

as a collection of chromosomes (genotypes). There are many approaches to genetic representation of neural networks

[80, 84, 103, 133, 134, 138].

Besides the direct encoding scheme many other interesting methods exist. Several authors proposed an encoding
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1     2     3      4     5 

0    1     1     0     1     1

1    -     -      1     1     0

2     -     -     1     0     1

Chromosome : 11011 110 101

0

1 2

3 4 5

Output

Inputs

Figure 2: Direct encoding scheme.

scheme based on grammar rules. Kitano [133] developed a method founded on rewriting rules. Fig. 3 illustrates his

approach for MLP network encoding. The matrix of connections is recursively created by applying rewriting rules.

Forn neurons the connection matrix should have the size 2k≥ n (in Fig. 3n = 6 andk = 3) and the additional elements

of the matrix are filled with zeros. Each 2×2 matrix is replaced by a symbol according to a given rule and the 2×2

matrix of symbols is replaced by a higher order symbol. This recursive process ends with a single symbol for the

whole connection matrix. Each rewriting rules is treated as a gene in the chromosome representing the whole network

structure.

C A
B A

a a
a a

f b 0 0
0 0

1 0
0 1baA BS C a a

o b ... f 0 1
1 0

1 0
1 1 ... 

Rewriting rules:

Chromosome :   

SBACA Bbafb Aaaaa Cobaa Aaaaa

b a ... o

0

3
4
5
6
7

52

1 2

4 53

0

Matrix of connections
Output

Inputs

0 0 0 0 0 000

0 1 3 4 6 7

1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0
00000000

1
1 0 0 0 0 0 0 02

Figure 3: Example of encoded network using rewriting rules.



NEURAL COMPUTING SURVEYS 2, XXX -YYY, 1998, http://www.icsi.berkeley.edu/̃ jagota/NCS 23

A more sophisticated version of this method is provided by Korczak and Dizdarevic [74, 103]. Each network is

described by an encoding scheme based on the network decomposition according to ‘genes’. Each such gene, called

a ‘parcours’, encodes a subgraph of a neural network containing one output neuron, one attached connection and all

antecedents to this connection (Fig. 4).

0

1 2

3 4 5

Output

Inputs

0

2

3 4 5

0

54 3

00

1

Network                                                             Chromosome composed of 4 parcours

Figure 4: Example of network encoding using “parcours".

From a semantic point of view, aparcoursrepresents a function, defined on a given set of network inputs. Each

parcoursthus includes a part of the computing operations carried out by the network. These partial functions are inde-

pendent, therefore there is no semantic interaction between genes. This feature makes the manipulations on network

structures by the crossover operation particularly easy. Nevertheless, there are two types of syntactic interactions be-

tween genes that are helpful in the design of genetic algorithm: interaction between genes concerning the same output,

and interaction between the genes possessing a common element of architecture. The size of a chromosome coding

network is not fixed; it is proportional to the number of adjacent connections to the output neurons.

Other indirect encoding schemes are based on clustering methods. Theparcoursmethod of encoding neural

networks has been designed to achieve many objectives. On the one hand, the efficiency and simplicity of the encoding

scheme was very important. Large number of genetic operators should allow for the manipulation of the smallest

syntactic and functional elements of network architectures. On the other hand, this encoding scheme allows for the

application of a wide variety of genetic operators and ensures that network coherence is easily maintained.

11.7 Fitness function

Together with the encoding scheme the definition of a fitness function is of crucial importance for the genetic evo-

lution. This function is in charge of guiding the genetic search process by assigning a score to each neural network.

The fitness function may incorporate many criteria evaluating the network quality. In our system [74] three criteria

have been proposed: the performance, the complexity of network topology and the number of network inputs. More

precisely, we have looked for networks that:

• minimize the number of training errors and validation errors;
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• have a simple topology, in terms of a number of inputs, neurons and connections;

• are able to learn rapidly.

The last factor is particularly important when large data files are manipulated. Given a population of networks,

the fitness value of each network is computed as a linear combination of different criteria, where each criterion is

normalized and weighted according to its importance in a given problem. Frequently, the limits of the highest values

for the different criteria are unknown, but the user can define the acceptable limits for performance level and network

complexity. Formally, the fitness functionF [i] of the i-th network is a weighted sum of the network qualityFquality and

the network complexityFcomplexity:

F [i] = aFquality[i] + bFcomplexity[i]; wherea+ b = 1, a,b> 0 (25)

The network evaluation is carried out for all networks in the population. After complete evaluation the values

of Fquality andFcomplexity are renormalized. The normalization is necessary because the criteria have different and

heterogeneous domains. The formulas used are as follows:

Fquality[i] =
m

∑
j=1

p(q)
j

Ci j

max(C1 j . . .Cn j)
(26)

and

Fcomplexity[i] =
r

∑
k=1

p(c)
k

Cik

max(C1k . . .Cnk)
(27)

wherep(q)
j andp(c)

k are weights assigned by the user to the evaluation criteriaCi j andCik, and:
m

∑
j=1

p(q)
j =

r

∑
k=1

p(c)
k = 1 (28)

As a measure of the network quality one can also use the training efficiency calculated as the speed of the decrease

of the training error. To introduce this measure one can define a threshold for the training errort, which should be

reached at a given time in the training process.

The complexity component of the fitness function measures the topological complexity of a neural network in

terms of the number of neurons, the number of connections and the number of used input features. Usually, for each

such criterionC a maximal acceptable value max(C) is known. This value may be imposed by the application, e.g. it

may be the number of input features, or it may be defined by a user as a constraint such as the maximum number of

the hidden layers or the maximum number of neurons in a layer. To compute a total value of the network complexity

the following indicators are computed for each chromosome (equivalent to a network)i and each criterionC:

Comp(C, i) = 1−Used(C, i)
max(C)

(29)

For instance, to compute an indicator of used inputs for a network corresponding to a chromosome using only 8 of

16 inputs, one would obtain:Comp(UsedInp, i) = 1−8/16= 0.5

Finally, to compute the total network complexity one can use the following formula:
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Fcomplexity[i] =
r

∑
k=1

p(c)
k

Comp(Ck, i)
max(Ck)

where
r

∑
k=1

p(c)
k = 1 (30)

The formula proposed here uses only values relative to a given population, and therefore it should be applied to

indicators for which the global limits are difficult to estimate a priori. In a case where it would be possible to define

these limits for a whole set of solutions, it is preferable to apply a global normalization.

To summarize, three categories of optimization criteria have been identified: the quality, the complexity and the

performance. Each category is represented by one component of the fitness function and each component of the fitness

function might be calculated using some sub-criteria, which in turn may have their own weights.

Applying the fitness formula 25 may lead to a problem resulting from the compensation of two components of the

fitness function. A network of poor quality may have its fitness compensated by a low complexity, or inversely, a net-

work of high complexity may be compensated by its very good quality. In other words a rather poor network may have

good chances of being selected for reproduction. To avoid such problems thresholds for quality and complexity have

been defined. If a network has quality or complexity lower than the threshold a strong penalty factor is applied to the

fitness function to neutralize the effect of possible compensation. Suppose that we have two sets of critical thresholds{
S(q)

t ,1≤ t ≤m
}

and
{

S(c)
t ,1≤ t ≤ r

}
, one for the quality and the second for the complexity. The complexity and

the quality penalties may be applied in the following way:

Fquality[i]← Fquality[i]×Prq

(
S(q)

1 ∧S(q)
2 . . .∧S(q)

m

)
(31)

Fcomplexity[i]← Fcomplexity[i]×Prc

(
S(c)

1 ∧S(c)
2 . . .∧S(c)

r

)
(32)

wherePrq(True) = Prc(True) = 1 andPrq(False) = Constq, Prc(False) = Constc. If one of these conditions is

not satisfied, then a penalty is inflicted. The penalties may also be defined as additive coefficients. Usually the network

quality has more weight as a fitness criterion, and it is natural to penalize networks having low quality. However, it

is difficult to define what is an acceptable network complexity. As a consequence it will be harder to estimate the

threshold for complexity than for quality and the penalty for the complexity should probably be lower than that for a

poor quality.

The computed fitness is a decreasing function and that its codomain is in the interval[0,1]. To obtain an increasing

function, whose codomain is identical, one may transformF using the formula:

F̄ [i] =
1−F[i]

1+ α ·F[i]
, whereα≥ 0 (33)

The performance of a given network represents its capacity to solve a problem. All sorts of performance evaluation

functions have already been applied. They can be based on the training error, generalization error, or other domain

related measures. In our system the user may select one or many performance measures. The complexity of the

network topology is measured by taking into account the cost of basic operations(+,−,×,/) required to propagate

results from input to output neurons in the framework of the gradient-based backpropagation algorithm. Thus, the

number of neurons and their connections contribute to the calculation of the complexity term of the fitness function.
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The approach presented above has been implemented in two prototypes of evolutionary based neural systems

AGWIN [101, 104] and ECO [139]. Genetic search for optimal neural networks presented in this section not only

optimizes the network topology but performs also the feature selection for a given problem. There is no doubt that

genetic algorithms can be used to efficiently solve the problem of network optimization considering not only static

aspects of network architecture but also dynamic ones. The preferred method is hybrid, i.e. the minimization of the

cost function is performed using the gradient-based methods but optimization of the fitness function is done using the

genetic algorithm. Other methods described below use global minimization primarily to find better solutions of the

training problem.

12 PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) [149, 150] is inspired by evolutionary computations and artificial life, but it is

quite different from genetic algorithms.Swarmis a population of interacting points, called “particles", flowing through

space of adaptive parameters, each with some ‘velocity’ (this is simply a∆X change), trying to optimize some objective

function through collaborative search process. Each particle (corresponding to chromosome in GA) is a vectorX i in

the space of adaptive parameters, initialized randomly and given a random velocity. For each position of the particle

a fitness value is calculated and the information about the current as well as the best parameter valuesBi achieved by

each particle are stored. Parameters corresponding to the best result for the whole swarmC and the best results for

individual particles are used to influence the trajectories of evolving particles. This is done by adding to the current

positionX i of the particlei the velocity vector:

Vid = Ui ·Vid + c1 · r1(Bid −X id) + c2 · r2(Cd−X id) (34)

whered enumerate adaptive parameters,r1, r2 are random numbers in[0,1] interval, andUi are inertia parameters,

similar to the momentum in standard backpropagation algorithms. Inertia may be decreased to change the exploration

from more global to more local, playing similar role as the temperature in simulated annealing. This simple update

equation allows to mix the influence of the globally best solution and locally best solution on the trajectories of

swarm particles. A local version of this model replacesC by a vector of the best parameters in a local topographical

neighborhood.

Although little is known about the performance of the method and there are no proofs that it really converges

preliminary comparison with genetic methods or even standard backpropagation methods shows that it is faster and

capable of finding better solutions [150]. The quality of the swarm solution in case of the MLP training results to large

degree from optimization of individual slopes of the sigmoidal functions. This algorithm is very simple to implement

and may be extended along the lines of adaptive simulated annealing.

13 OPTIMIZATION OF NETWORK ARCHITECTURES VIA GLOBAL MINIMIZATION OF THE

COST FUNCTION

Finding optimal neural architectures is a special case of a general optimization problem. Genetic connectionist meth-

ods are used primarily for optimization of neural architectures. Can one use other global optimization methods to find
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optimal architectures?

In principle starting from a model that is sufficiently complex and using a good global method of minimization of

the error function an optimal network with non-zero connections, and thus appropriate architecture, may be found. In

practice such strategy will work only for very large training sets and will be quite costly from the computational point

of view. For small or medium datasets this strategy is used with regularization terms added to the error function [30],

for example with quadratic weight decay terms:

E(W) = E0(W) +
λ
2 ∑

i, j

W2
i j (35)

whereE0(W) is the standard quadratic error measure. Various complexity regularization methods, such as the min-

imum description length, information-theoretic criteria, Optimal Brain Damage or Optimal Brain Surgeon procedure

(cf. [1, 2, 4]) may be used to select neural model most suitable for a given data (for a survey of the network pruning

methods see [140]). The quadratic weight decay term corresponds to the assumption of the Gaussian distribution of

the weights:

P(W|M) ∝ ∏
i j

e−α1W2
i j (36)

Taking sum of absolute values instead of squares leads to the Laplacian regularization [141]. Another useful weight

decay term is:

E(W) = E0(W) +
λ
2 ∑

i, j

(Wi j /W0)2

1+ (Wi j/W0)2 (37)

whereW0 is an adaptive parameter and the summation runs over all weights and biases.

Networks created using complexity regularization may be large, with many neurons and small weights, but the

network output is smooth, leading to a good generalization. In Bayesian approach to neural computing theλ ‘hyper-

parameter’ is automatically adjusted to the complexity of the data [30, 142]. Autoclass, one of the most successful

approaches to unsupervised classification, is based on the Bayesian techniques estimating the likelihood of different

models and then using these likelihoods to combine these models in a committee for final prediction [143]. This ap-

proach is computationally quite costly, requiring optimization of many trial models, but the results are frequently very

good.

Regularization theory is described in many textboox [1, 2]. One simple reason why regularization helps MLP net-

works to improve generalization by avoiding overfitting of the data is based on the following argument: for normalized

input vectorsX but arbitrary weight vectorsW the range of the sigmoid argument lies in the[−|W|,+|W|] interval. A

unipolar sigmoid has a maximum curvature around±2.4, therefore smaller weights of the norm mean that the network

operates in an almost linear regime. Regularization methods force the weights to become small and thus the network

approximation to the training data becomes more smooth.

An alternative approach, frequently used in connection with genetic algorithms, is to use smaller networks, trying

different architectures or different classification models. Although regularization may smooth the error function land-

scape to some degree the optimal solution may still be hard to find by gradient methods, requiring either very large

networks or smaller networks with large weights. For example the experiments with theP∗SCG method [51] showed
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that even±10 may not be sufficient. We have recently proposed [7, 8] another form of regularization, which assumes

that these weights are distributed arounda> 0 andb< 0. Such distribution is enforced by the following penalty term:

E(W) = E0(W) +
λ1

2 ∑
i, j

W2
i j +

λ2

2 ∑
i, j

W2
i j (Wi j −a)2(Wi j + b)2 (38)

The second term withλ1 leads to a large number of zero weights, i.e. elimination of irrelevant features, and the third

term vanishes for weights equal 0,a or−b. Similarly as in the weight pruning technique case in the backpropagation

algorithm these terms lead to the additional change of weights:

∆Wi j = λ1Wi j + λ2Wi j (Wi j −a)(Wi j + b)(3W2
i j + 2Wi j (b−a)−ab) (39)

whereλ1 andλ2 scale the relative importance of auxiliary conditions. This form of error function has two ad-

vantages: independent parameters control enforcing of 0 anda, b weights, and an interpretation of this function from

the Bayesian point of view [142] is straightforward. It defines our prior knowledge about the probability distribution

P(W|M) of the weights in our modelM. A network trained on classification tasks should give crisp logical decision

“yes", “no" or “irrelevant", thereforea priori conditional probability [142] is:

P(W|M) = Z(α)−1e−αEa(W|M) ∝ (40)(
∏
i j

e−α1W2
i j

)(
∏
i j

e−α2(Wi j−1)2

)(
∏
i j

e−α2(Wi j +1)2

)

Prior knowledge about the problem may also be inserted directly into the network structure, defining initial con-

ditions modified further in view of the incoming data. The network is trained starting with relatively large values

of regularization parameters. The training error will initially be large since MLP has many irrelevant connections.

Optimal value ofa, b parameters are found iteratively, starting froma = b = 1 values:

a = +∑
i j

W3
i j (Wi j + b)2/∑

i j

W2
i j (Wi j + b)2 (41)

b =−∑
i j

W3
i j (Wi j −a)2/∑

i j

W2
i j (Wi j −a)2

The penalty function (38) encourages some connections to become small and they are finally deleted, therefore this

approach already includes partial optimization of architecture. Using it together with global minimization methods

should lead to both optimal architecture and the global minimum for the error function. Only a few experiments on

the real world datasets were done so far.

Initialization methods for optimization of neural architectures

Good initialization of network structure and adaptive parameters may bring the neural model close enough to the

global minimum to make the local minimization techniques sufficient for finding an optimum solution. Recently we

have proposed several initialization methods based on clusterization [7] and statistical discriminant analysis [8]. The

method works for single or more hidden layers and could be used with various parameters for initial clusterization (or

simply to provide multistart parameters (one may also add some random numbers to the proposed initial weights) and



NEURAL COMPUTING SURVEYS 2, XXX -YYY, 1998, http://www.icsi.berkeley.edu/̃ jagota/NCS 29

to set up different structures of networks. What is of primary importance is that – as already has been mentioned – in

small networks with small number of parameters it is very hard to find globally optimal set of weights and therefore

if multistart gradient methods are used a good initialization is needed. The multistart gradient method is relatively

fast comparing to most global minimization methods and with a proper starting point may be an alternative to global

minimization.

The methods presented in [7, 8, 9] are easily extended to any architecture containing in the first hidden layer

sufficient number of the hidden neurons to account for all the clusters; parameters of other layers should be set up in

such a way that the second hidden layer is treated as output nodes and further layer just pass information. In short

our minimal architecture is embedded in more complex architecture, and all extra connections have small random

weights, while the output from the embedded three-layered network is passed to the final output through the extra

hidden layers. In this way the same initialization by prototypes may be used in more complex architectures. Since

the initial network should be similar to the network with globally optimal architecture and parameters multistart local

optimization of such networks may be an inexpensive, but interesting alternative to global minimization. The weights

may be arbitrarily large (the norm of the weight simply changes the slope of the sigmoidal function), and the resulting

networks are quite small. The results of optimization through initialization have not yet been compared with those

obtained by optimization using global minimization techniques.

14 REMARKS ON NEW GLOBAL OPTIMIZATION METHODS

Some proposals for trying different combination of various global optimization methods were already described in

the text. Here a few more methods worth trying in neural networks context are described. Quite a lot of work should

still be done in this area before we will understand the weak and the strong points of different methods in real-life

applications. Books on global optimization [17] contain descriptions of more methods that could potentially be useful

for optimization of architectures or error functions in neural networks. Hybrid gradient-global methods are especially

worth developing.

Some modifications of the existing methods that have not yet been used for neural networks are listed below:

1. From the formal point of view genetic algorithms define specific prescription allowing to make changes of

adaptive parameters, and therefore they may be combined with the extension of Monte Carlo approach proposed

by Dittes [23].

2. Selecting up toK contributions to the error function from randomly selected training vector and itsK−1 nearest

neighbors is a modification of the Dittes Monte Carlo procedure [23]. It may be used in any SA scheme.

3. An interesting possibility is the combination of simulated annealing with genetic algorithms, called GA-SA

[24]. GA are used to speed up the SA in this case. Parallelized recombinative simulated annealing (PRSA) has

been described by Goldberg [144].

4. Parallel multi-simulated annealing procedure (a ‘population’ of SA runs created during a single run) may be

used for initialization of the gradient descent searches around promising values found after a fixed number of

function evaluations. The list of hyperboxes containing the local minima found by gradient procedure should be

kept to avoid repetitions.
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5. SA or GA may be combined with “rough quantization” approach, i.e. at the beginning only a few bits per weight

are allowed and the changes are relatively large since they have at least the size corresponding to the flipping of

the least significant bit. For example, a sign plus a single bit per weight gives the possibility to have 3 values,

0,±1 and in our experience this may already be sufficient to get quite good results [41]. Annealing is than

equivalent to increasing the resolution of parameters around the most promissing minima.

6. The Alopex algorithm may also be combined with the “rough quantization” approach described above.

7. Numerical gradient techniques may be used in GA or SA optimization but so far have never been used for neural

optimization.

15 FINAL REMARKS AND COMPARISON OF SOME RESULTS

In our survey we have included many global optimization algorithms, but more methods have been described in

the mathematical literature. Not all of them are suitable for optimization of neural systems. Cutting plane, successive

approximation and successive partition methods are generally applied to concave minimization [145], but it is not clear

how to apply these methods in context of neural systems, therefore they were omitted here. A few global optimization

methods have already been tried in the context of neural networks, usually with very good results.

Several challenging test problems for global optimization algorithms are known. In some of the test problems the

number of local minima grows exponentially large. Ingber and Rosen [38] have compared SA with genetic algorithms

for functions containing as many as 1050 local minima. However, since non-linear optimization problems differ

significantly what works well for some problems may not work at all for other problems. Since there is little or

no experience for most of these methods in context of neural systems it is hard to say which one is preferable. To

compare different minimization methods and methods that optimize network architecture a series of benchmarks

for neural systems would be useful. Simple benchmarks that allow to observe scaling properties of algorithms for

problems of different size include:

1. Parity problem for growing number of bits, which may be solved efficiently if a specific architecture is evolved.

2. Noisy XOR problem, in which the outputy = x1.XOR.x2, and the rest of inputs are given a zero-mean noise.

The network should evolve to the simplest XOR two-input structure.

3. Except for redundant inputs in the noisy XOR problem linearly dependent inputs and non-linear dependencies

among inputs may be introduced for test purposes.

4. Hypercube classification problem allowing to test the scaling properties of various classifiers [146].

Unfortunately no systematic comparison of these methods is available. Ingberg [24, 38] gives some comparison

of ASA with GA on a suit of test problems that are commonly used to test genetic approaches. In all cases ASA

has outperformed GA. Another comparison was made with GENECOP program of Michalewicz on a set of “Colville

problems”, for which ASA again performed better. Comparing ASA with other simulated annealing approaches also

showed the superiority of this approach. However, since ASA has many parameters and GA have also many parameters

it is too soon to conclude that ASA is a better method. Tabu search has been applied to various problems [43]. Some



NEURAL COMPUTING SURVEYS 2, XXX -YYY, 1998, http://www.icsi.berkeley.edu/̃ jagota/NCS 31

other interesting methods used for optimization include dynamic hill climbing (DHC), which seems to give similar

convergence as the simulated quenching approach [24]. GA compared to the multistart gradient methods are rarely

more efficient [147, 148]. RasID algorithm has been used so far only for one real problem (gasoline blending problem

[48]) outperforming slightly backpropagation with momentum and adaptive learning rates.

The NOVEL results were compared [20] with a number of other minimization methods in application to the two-

spiral and a few other problems. This comparison included: simulated annealing (SIMANN from Netlib library, but

not with Adaptive SA); two genetic algorithms GENOCOP (due to Michalewicz [11]) and LICE (due to Sprave [151]);

GRAD-MS using multiple random initial points followed by gradient descent; TN-MS, truncated Newton method with

multistarts, and Cascade Correlation constructive neural algorithm with random initialization. Best results obtained

with no more than 20 hours of computations on Sun SS 20/71 workstation were given [20] for 3 to 6 hidden units,

or 18-42 adaptive parameters. In all cases NOVEL algorithm achieved the best results, with 80-100% correct results

on the test set, followed closely by the SIMANN approach. We may conclude that application of ASA to the same

problem should do better since ASA is a significant improvement over standard simulated annealing. TN-MS achieved

third-best results, although for 6 hidden neurons test results were below 90%. Cascade Correlation came fourth, with

about 75% correct answers for 6-hidden unit test case, but only 20% for 3 hidden unit, compared to about 80% achieved

by NOVEL and SIMANN. Genetic algorithms achieved the worst results, below 60% in all cases, being unable to find

good solutions. NOVEL has also been tried on Sonar, Vovel, 10-parity and NetTalk datasets from the UCI repository

[13], using different number of hidden units, achieving very good results on the test sets, and falling behind TN-MS

only in one case.

From these few comparisons scattered in the literature one can conclude that genetic algorithms, most frequent-

ly combined with neural systems, are usually not the best solution to the global minimization problem and to the

optimization of neural architectures. There is still little experience with other methods and many variants of global

minimization have not yet been tried. Application of global minimization techniques to neural systems will undoubt-

edly be quite important in near future and we do hope that our survey will motivate more active research on this

topic.
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