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Abstract: Neural networks were used to extract crisp logic rules from the MMPI psycho-
metric questionnaires. These rules are used in an expert system that is capable of assigning
probabilities of different diagnoses and verbal interpretations for each case. Similar tech-
niques may be used for analysis of any questionnaire-based data.

I.  INTRODUCTION: THE PROBLEM

Psychometric tests are performed quite often to support clinical decisions, evaluate suitability of appli-
cants for jobs requiring special skills, or even to determine whether permission for carrying a gun should
be granted. Computerized versions of many tests were developed, but assessment of their results still
requires an expert psychologist. We have been approached by psychologists working in the Academic
Psychological Clinic of Nicholas Copernicus University who use the Minnesota Multiphasic Personality
Inventory (MMPI) test (hundreds of books and papers about this test exist, cf. review in [1]), consisting of
550 questions with yes/no/don't know answers. Questions range from general health problems and spe-
cific neurological symptoms to personal, political and moral opinions.

Existing computerized versions of the MMPI test assist only in information acquisition. Our goal is to
provide automatic psychological diagnosis. Rule based system is most desirable because a detailed inter-
pretation, including description of personality type, may be assigned to each diagnosis. Unfortunately
existing rules for interpretation of such tests are based on intuition, not on data mining, and seem to be
rather inaccurate. To find the rules a larger collection of diagnosed cases had to be accumulated and ana-
lyzed. There are many machine learning methods for rule induction that could be used for this task in-
stead of neural networks. There is a strong competition from decision trees [2], which are fast, accurate
and can easily be converted to sets of logical rules. Some inductive methods of machine learning [3], [4]
have been used for quite a long time for extraction of rules from the data. Fuzzy logic systems [5] are also
oriented towards rule-based description.

Despite this competition neural networks seem to have important advantages, especially for problems
with continuous-valued inputs. Good linguistic variables (collection of symbols, or intervals, representing
linguistic concepts appearing as conditions in the rule antecedent) may be determined simultaneously
with logical rules, selection of features and aggregation of features into smaller number of more useful
features is possible, adaptation mechanisms are build into the method, wide-margin classification pro-
vided by neural networks make logical rules more robust. We have developed a complete methodology
for logical rule extraction, optimization and application [6]-[7]. The rule extraction step is based on sev-
eral neural methods, including the multilayer perceptron (MLP) and probability density estimation meth-
ods. These methods may be used either directly on the data, or to find an approximately equivalent logical
description for a trained neural network, i.e. to understand what neural networks really do. Although
neural systems may perform useful classification in many applications humans do require a comprehensi-
ble description of the data, or knowledge instead of black-box recommendations. Results obtained with
our rule extraction methods were compared on many benchmark datasets with results obtained by other
systems. In most cases our methods gave much simpler and more accurate logical rules. These methods
are described very briefly in the next section, and their application to the psychometric data is in the third
section. Problems specific to the questionnaire-based data analysis are presented in the final section.



II. METHODOLOGY OF LOGICAL RULE EXTRACTION

Logical rules require symbolic inputs (linguistic variables), therefore the input data have to be quantized
first, i.e. features defining the problem should be identified and their values (sets of symbolic or integer
values, or continuos intervals) labeled.

Linguistic (logical) input variables sk, for integer or symbolic variables xi, taking values from a finite set
of elements ℵ i = {Xi

(j)}, are defined as true if xi belongs to a specific subset ℵ ik  ⊆  ℵ i. For continuos input
features xi linguistic variable sk is obtained by specifying an open or closed interval xi ∈ [Xk,X'k] or some
other predicate function Pk(xi). Each continuos input feature xi is thus replaced by two or more linguistic
values for which predicates Pk are true or false. For neural networks a convenient representation of these
linguistic values is obtained using vectors of predicates, for example Vs1 = (+1,−1, −1...) for linguistic
variable s1 or Vs2 = (−1,+1, −1...) for s2  etc.

Initial values of the intervals for continuos linguistic variables may be determined by the analysis of
histograms, dendrograms, decision trees or by clusterization methods. FSM, our probability density esti-
mation neurofuzzy network, is initialized using simple clusterization methods [7], for example den-
drogram analysis of the input data vectors (for very large datasets rounding of continuous values to lower
precision is applied first, and then duplicate data vectors are sorted out to reduce the number of input
vectors). Rectangular functions are used in FSM for a direct extraction of logical rules, or soft trapezoidal
functions described below are used.

MLP (multilayered perceptron) and other neural models may find linguistic variables by training a spe-
cial neural layer [6] of L-units (linguistic units). Each L-unit is a combination of two sigmoidal func-
tions realizing the function L(xi;bi,bi',β) =  σ(β(xi-bi)) − σ(β(xi- bi')), parameterized by two biases b, b'
determining the interval in which this function has non-zero value. The slope β  of sigmoidal functions
σ(β(x-b)) is slowly increased during the learning process, transforming the fuzzy membership function
(“soft trapezoid”) into a window-type rectangular function. Similar smooth transformation is used in the
FSM network using bicentral transfer functions, which are combinations of products of L(xi;bi,bi',β)
functions [7] with some additional parameters.

Construction and training of neural network follows the initial definition of linguistic variables. To
facilitate extraction of logical rules from an MLP network one should transform it smoothly into some-
thing resembling a network performing logical operations (Logical Network, LN). This transformation
gave the name MLP2LN [6] to the method. Skeletonization of a large MLP network (i.e. leaving only a
few most important connections) is the method of choice if our goal is to find logical rules for an already
trained network. Otherwise it is simpler to start from a single neuron and construct the logical network
using the training data. A smooth transition from MLP to a logical-type of network performing similar
mappings is advocated. This is achieved by:

a)  gradually increasing the slope β of sigmoidal functions to obtain crisp decision regions;
b)  simplifying the network structure by inducing the weight decay through a penalty term;
c)  enforcing the integer weight values 0 and ± 1, interpreted as 0 = irrelevant input, +1 = positive and  −1

= negative evidence.

These objectives are achieved by two additional terms added to the mean square error function E0(W):
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The first term, scaled by the λ1  hyperparameter, encourages weight decay, leading to skeletonization of
the network and elimination of irrelevant features. The second term, scaled by λ2, forces the remaining
weights to approach ± 1 or 0, facilitating easy logical interpretation of the network function: features are



either necessary (+1), should not appear (−1) or are irrelevant (0). Relatively large λ1 value is used at the
beginning, followed by a large λ2 value near the end of the training process. These parameters determine
the simplicity/accuracy tradeoff of the generated network and extracted rules. A few experiments are
sufficient to find the largest λ1 value for which the MSE is still acceptable, and does not decrease quickly
when λ1 is decreased. Smaller values of λ1  should be used to obtain more accurate networks (rules).

Logical rule extraction: rules ℜ k implemented by trained networks are obtained in the form of logical
conditions by considering contributions of inputs for each linguistic variable s, represented by a vector Vs.
Contribution of variable s to the activation is equal to the dot product Vs  ⋅ Ws of the subset Ws  of the
weight vector corresponding to the Vs inputs. A combination of linguistic variables activating the hidden
neuron above the threshold is a logical rule of the form:

ℜ  = (s1 AND ¬  s2 AND ... AND sk). (2)

In the constructive version of the MLP2LN approach (called C-MLP2LN) usually one hidden neuron
per output class is created at a time and the training proceeds until the modified cost function reaches
minimum. The input data that are correctly handled by the first group of neurons will not contribute to the
error function, therefore weights of these neurons are kept frozen during further training. This is equiva-
lent to training one neuron (per class) at a time on the remaining data, although sometimes training two or
more neurons may lead to faster convergence. This procedure is repeated until all the data are correctly
classified, weights analyzed and a set of rules  ℜ 1 ∨   ℜ 2 ... ∨  ℜ n  is found for each output class or until the
number of rules starts to grow rapidly. The network repeatedly grows when new neurons are added, and
then shrinks when connections are deleted. Since the first neuron for a given class is trained on all data
for that class the rules it learns are most general, covering largest number of instances.

Simplification of rules: the final solution may be presented as a set of logical rules or as a network of
nodes performing logical functions. However, some rules obtained from analysis of the network may
involve spurious conditions, more specific rules may be contained in general rules or logical expressions
may be simplified if written in another form. Therefore after extraction rules are carefully analyzed and
whenever possible simplified (we use a Prolog program for this step).

Optimization of rules. Gradient-based backpropagation methods have problems with finding the optimal
values of adaptive parameters, and they break down when the slopes of sigmoidal functions are very high.
Optimal linguistic variables (intervals) and other adaptive parameters may be found by maximization of
predictive power of a rule-based classifier. Let ℘ (Ci,Cj|M) be the confusion matrix, i.e. the number of
instances in which class Cj  is predicted when the true class was Ci, given some parameters M. Then for n
samples p(Ci,Cj|M) = ℘ (Ci,Cj|M)/n  is the probability of (mis)classification. The best parameters of the
model M are selected by maximizing the number (or probability) of correct predictions (the “predictive
power” of rules): maxM  Tr ℘ (Ci,Cj|M), over all parameters in M, or minimizing the number of wrong
predictions (possibly with some risk matrix  R(Ci,Cj): minM  Σi≠j R(Ci,Cj) ℘ (Ci,Cj|M).
Weighted combination of these two terms:

E(M) = λ Σi≠j R(Ci,Cj) ℘ (Ci,Cj|M) − Tr ℘ (Ci,Cj|M) ≥ −n (3)

is bounded by −n and should be minimized over parameters in M without constraints. For this minimiza-
tion we have used simulated annealing and multisimplex global minimization methods. If λ is large the
number of errors after minimization may become zero, but some instances may be rejected (i.e. rules will
not cover the whole input space).

The input data is usually not quite precise, with true values given by Gaussian distribution Gx=G(y;x,sx)
around the measured values x. In such a case one can estimate how well each rule is satisfied by the input



vector, or estimate the probability of different classes by performing Monte Carlo simulations drawing the
vectors from Gx distribution. An analytical formula is given by a convolution of the step function repre-
senting crisp rule, and the Gaussian function representing the data, giving an error function

erf( ) ( ; , )a x G y x s dyx
a

− =
∞z . The error function is approximated quite accurately (within 2%) by a sig-

moidal function used in MLPs. Taking instead of the erf function a sigmoidal function corresponds to an
assumption that the error distribution of x measurements is given by σ(x)(1−σ(x)), approximating Gaus-
sian distribution with sx

2=1.7 within 3.5%. If the rule involves closed interval [a,b], a≤b the probability
that it is fulfilled by a sample from the Gaussian distribution Gx representing the data centered at x is:

p(Ra,b(Gx=T)) ~ σ(x-a)−σ(x-b) = L(x;a,b,β) (4)

Thus the probability that a given condition is fulfilled is proportional to the value of a soft trapezoid
function realized by L-units. Crisp logical rules with assumption that data has been measured with finite
precision lead to soft L-functions that allow to compute classification probabilities that are no longer
binary. In fuzzy logic confidence factors that are not probabilities are frequently used. For complex, non-
orthogonal rules with many conditions related to different attributes, it is indeed difficult to estimate
probabilities that would agree with Monte Carlo simulations. For independent features xi present in logi-
cal rule probabilities given by the equation above should be multiplied and if more conditions are present
for the same feature x probabilities should be summed over all contributions.

III – APPLICATION TO THE PSYCHOMETRIC DATA

The psychometric data was collected in the Academic Psychological Clinic of Nicholas Copernicus Uni-
versity and in several psychiatric hospitals around Poland. We have worked with two datasets, one for
woman, with 1027 cases belonging to 27 classes (normal, neurotic, drug addicts, schizophrenic, psycho-
paths, organic problems, malingerers, persons with criminal tendencies etc.) determined by expert psy-
chologists, and the second for man, with 1167 cases and 28 classes. The answers to 550 questions were
converted to 14 continuos scales using standard tables. These coefficients are displayed in a histogram,
called a “psychogram”, allowing skilled psychologists to diagnose specific problems. The first four coef-
ficients are used for control, measuring consistency of answers or the number of “don't know” answers,
allowing to find malingerers. The next 10 coefficients form clinical scales, developed to measure tenden-
cies towards hypochondria, depression, hysteria, psychopathy, paranoia, schizophrenia etc. For example
values between 70 and 80 in the hypochondria scale may be interpreted as “very strong worries about
own health, leading to psychosomatic reactions”. A large number of simplification schemes has been
developed to make the interpretation of psychograms easier. They may range from rule-based systems
derived from observations of characteristic shapes of psychograms, statistical discrimination functions, or
systems using smaller number of aggregated coefficients. It should be very interesting to evaluate the
accuracy of this conversion process, based on experience of experts in psychometry, but it is not possible
since all diagnosis are made on the basis of reduced information.

Rule based system is most desirable because a detailed interpretation, including description of personality
type, may be assigned to each diagnosis. Rules were generated using C4.5 classification tree [2], a very
good classification system which may also generate logical rules, and the FSM neural network [8]. These
two systems are the easiest to use; we have also used several other networks to generate rules for a few
classes. For the first dataset C4.5 created 55 rules, achieving 93.0% of correct responses. Assuming about
1% inaccuracy of measurements increases accuracy to 93.7%. FSM (with rectangular membership func-
tions) generated 69 rules, agreeing in 95.4% with diagnosis by human experts. Gaussian fuzzification at
the level of 1.1-1.5% increases accuracy to 97.6%. For the second dataset C4.5 created 61 rules giving
92.5% accuracy, while FSM generated 98 rules giving 95.9% accuracy. After fuzzification 93.1% and
96.9% were obtained. Some rules cover only few cases from the database, therefore further pruning and
reoptimization is desirable. These results are for the reclassification accuracy only using generated sets of



rules. Statistical estimation of generalization by 10-fold crossvalidation gave 82-85% correct answers
with FSM (crisp unoptimized rules) and 79-84% correct answers with C4.5. Fuzzification improves FSM
crossvalidation results to 90-92%.

In general C4.5 gives slightly lower accuracy with most rules based on open intervals, and therefore
harder to interpret. For most classes there were only a few errors and it is quite probable that they are due
to the psychologists interpreting the psychogram data or due to the complex problems that cannot be
uniquely classified. Two classes, organic problems and schizophrenia, are difficult since their symptoms
are easily confused with symptoms belonging to other classes. On average 2.5-3 logical rules per class
were derived, involving between 2 and 9 attributes. These rules are most accurate on the available data if
about 1% of the uncertainty of measurement in each of the scales is assumed, corresponding to a Gaus-
sian dispersion centered around measured values. Larger uncertainties, on the order of 5%, lead to about
the same number of classification errors as the original crisp rules, but provide softer evaluation of possi-
ble diagnoses, assigning non-zero probabilities to classes that were not covered by slightly fuzzified rules.
Since our training set is relatively small (considering the number of classes) such fuzzy evaluations are
frequently useful to clinical psychologist.

An example of a psychogram with rule conditions shown as vertical bars is shown below. The rule:

IF Ps(X)∈  [56.5,64.5] ∧  Pt(X)∈  [58.5,73.5] ∧  Sc(X)∈ [68.5,85.5] ∧
    Ma(X)∈  [57.5,69.5] ∧  It(X)∈  [57.5,66.5]   Then  Schizofrenia-men

has 5 conditions and the actual case X characterized by the values of 14 scales

52 62 63 52 61 70 62 64 61 62 66 76 60 61  men

is accepted by that rule with 71.8% probability, calculated with assumption of Gaussian uncertainties
shown on the vertical bars for each condition. The rule condition for the Ps (psychostenia) scale fits with
only 72.2% to the measured value. This means that this value is close to the interval boundary.

Each rule has detailed interpretation associated with it by psychologists. Fuzzification leads to additional
adjectives in verbal interpretation, like “strong tendencies”, or “typical”. A book has been published (in
Polish), containing detailed description of the rule generation methodology and interpretation of all the
rules [9]. An expert system using these rules and associated interpretation is already used by a few clini-
cal psychologist and should be commercially available in the near future.



IV - CONCLUSIONS

Automatization of questionnaire evaluation may have wide applications. We have presented an approach
that tries to combine the ease of interpretation of a rule-based logical expert system, with high accuracy
and probabilistic interpretation provided by fuzzification of inputs. Unfortunately the system can work
only as well as the data it gets and in case of psychometric data evaluations are always to some degree
subjective. Perhaps one should be satisfied with a system that makes diagnoses at the human level. The
only way to test it would be to ask a few experts for diagnosis of many cases and check the mean and the
variance of such ensemble. Assuming that a group of experts improves the reliability of the diagnosis one
could easily evaluate performance of individual experts as well as the automatic system. Unfortunately
there are no databases of such kind that we could use.

Dealing with a large number of classes and thus large number of rules means that one has to use an effi-
cient system for rule generation. Our system has not been yet completely automated, therefore FSM sys-
tem was used for initial rule generation, although on simpler benchmark problems MLP2LN has always
been more accurate. Since the number of cases that we have is only about 1000 many different sets of
logical rules may give the same accuracy. Although quite different rules are produced a small variance in
crossvalidation tests shows that they are quite reliable. It may be interesting for the psychometric experts
to analyze many different sets of rules for each class, showing equivalent logical descriptions. IncNet,
another neural network model used in our group [10], obtained 93-95% accuracy in crossvalidation tests
(thanks are due to Norbert Jankowski for providing the results). Any reliable neural network or statistical
model is suitable as a generator of a large number of additional training data vectors for our rule extrac-
tion system. In this way we may obtain sets of rules which are more accurate and stable.

The same methodology may be used for data mining of many other types of  questionnaire-based data.
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