
A general purpose separability criterion for
classification systems

Krzysztof Grąbczewski and Włodzisław Duch,
Department of Computer Methods, Nicholas Copernicus University,

Grudziądzka 5, 87-100 Torún, Poland.
E–mail: {kgrabcze,duch}@phys.uni.torun.pl

Abstract
A separability criterion which can be applied to different classification algorithms is presented. It is designed to

find out the best (from the point of view of separation of different classes) divisions of continuous features or the best
combinations of symbolic values of discrete features. It has been tested on several datasets to construct classification
decision trees and decision rules. It can also be useful in continuous features discretization and estimation of feature’s
importance, which forms a first step of neural algorithms for extraction of logical rules from data.

I. INTRODUCTION

THERE are many different approaches to the task of learning classification from exam-
ples. Many of them strive to obtain the best possible accuracy without bothering about

the comprehensibility of the knowledge gained. Such systems play a role of ‘black boxes’
which are not able to give any explanation of their decisions. In many fields (for instance
in medicine) it is extremely important to understand decisions of computer support systems.
Very often we are interested not only in assigning a class label to the input data, but also in
an explanation of the decision and its analysis. In such cases we need a short, precise and
comprehensible description of classification problem which usually means a small set of crisp
logical rules. From this point of view the most important property of a classification system
is its ability to find the most informative features describing the objects that are classified,
because it guarantees as compact decision rules as possible.

If the objects are described by continuous features it is extremely important to divide the
feature space into possibly the smallest number of intervals, giving the best separation of
different classes. Definition of the linguistic variables is the first step in most methods of
extraction of logical rules from data, including our MLP2LN method [1]. In the next section
a criterion for selection of optimal intervals is presented. In the third section applications
of this criterion to decision trees, logical rule generation and feature selection methods is
discussed. The fourth section presents a few illustrative applications and a summary closes
this paper.

II. THE CRITERION

IN this section a criterion offering very good separability of objects with different class
labels is presented. It’s basic advantage is that it can be applied to both continuous and

discrete features, which means that methods based on it can operate on raw data.
The criterion is based on a simple idea that the best split is the one that separates the largest

number of pairs of objects from different classes. Thesplit value (or cut-off point) is defined
differently for continuous and discrete features. In the case of continuous features thesplit
value is a real number, in other cases it is a subset of the set of alternative values of the feature.

In all cases we can defineleft side (LS) andright side (RS) of a split values of featuref for
given datasetD:

LS(s, f ,D) =
{

{x ∈ D : f (x) < s} if f is continuous
{x ∈ D : f (x) �∈ s} otherwise

RS(s, f ,D) = D−LS(s, f ,D)
where f (x) is the f ’s feature value for the data vectorx.

Theseparability of a split value s is defined as:

SSV(s) = 2∗ ∑
c∈C

|LS(s, f ,D)∩Dc| ∗ |RS(s, f ,D)∩ (D−Dc)|

− ∑
c∈C

min(|LS(s, f ,D)∩Dc|, |RS(s, f ,D)∩Dc|)

whereC is the set of classes andDc is the set of data vectors fromD which belong to classc.
The higher the separability of a split value the better. According to this criterion the best

split value is the one which separates the maximal number of pairs of vectors from different
classes and among all the split values which satisfy this condition - the one which separates
the smallest number of pairs of vectors belonging to the same class.

Notice that one of the most important property of the separability criterion is that points
beyond the borders of feature values existing in the dataset have the separability equal to
0, and all points between the borders have positive separability. This means that for every
dataset containing vectors which belong to at least two different classes, for each feature
which has at least two different values, there exists a split value of maximal separability.

When the feature being examined is continuous and there are several different split values
of maximal separability close to each other, the most reasonable heuristics to use is to select
the split value closest to the average of all of them. To avoid such situations it is good to
examine split values which are natural for a given dataset (i.e. the middles between adjacent
feature values that occur in the data vectors). If there are non-maximal (regarding separabil-
ity) split values between two maximal points or if the feature is discrete, then the selection of
the best split value may be arbitrary.

III. APPLICATIONS

THE separability criterion can be used in several different applications. First of all it can
be used to build classification decision trees. Thanks to the ease of finding the best

cuts generated trees may be small, which also means that they can be converted into a small
number of crisp logical rules. Moreover, it can be used in algorithms aiming at discretization
of continuous features. It can also serve for analysis of feature importance and for selection
of features.

A. Decision tree

Construction of the decision trees is a natural application of the separability criterion. The
simplest method of building such a tree is to use best first search. We evaluate the separability
of each possible cut point of each continuous feature and of each subset of the set of values
of each discrete feature. The best splits are selected and the space (and dataset as well) is
divided into two parts by the first two branches of the binary tree. The criterion is then
applied recursively to each of the resulting parts of the input space (with their corresponding

data subsets). The tree is finished when it classifies the data with maximal accuracy. 100%
accuracy is possible only if there are no contradictory examples in the dataset.

The accuracy of 100% usually means overfitting, so to avoid that we use a special tech-
niqueto maximize the generalization capacity of the resulting tree. The simplest way to
improve generalization of a decision tree is by pruning the leaves and branches responsible
for classification of single or very few data vectors. To find the best way of pruning 10-fold
crossvalidation for the training set is performed. In each crossvalidation pass unseen samples
are used to find the best way of tree pruning. We can not memorize which leaves overfit the
data, because the final tree may be quite different than the tree built for the training data avail-
able during crossvalidation (90% of the data in 10-fold crossvalidation). Therefore an optimal
degree of pruning is determined. Pruning with the degree ofn means cutting off all the pairs
of leaves, which reduce the number of errors of their parent by not more thann. In each pass
of the crossvalidation the number of errors counted for the test part of the data is checked.
The optimal degree of pruning is the maximal degree (natural number) corresponding to the
minimal total crossvalidation test error (sum of all crossvalidation test errors).

The best first search algorithm applied to the problem of finding an optimal decision tree
seems to be a bit different than the original algorithm, as there is no chance to go back to nodes
of the search tree visited earlier. It is so because growing the decision tree can not enlarge the
error value. To diminish this drawback we use beam search instead of best first search. It is
really capable of finding better results, however it is slightly more time consuming.

B. Rule generator

It is easy to convert the decision tree into a set of crisp logical rules (each branch of the tree
represents one rule). However, the rules containing premises describing all the nodes from
the root of the tree to it’s leaves can be more complex than necessary. Especially in bigger
trees it may turn out that the decisions made at the very beginning are not very important for
classification of data vectors which end up in a leaf. They are very important for a large data
set, but not necessarily for smaller, localized samples. Therefore redundant rule antecedents
should be removed. To find out which premises are spurious they are deleted one by one and
a check of the accuracy is made. If the accuracy is decreased the premise should be kept.

C. Discretization and feature selection methods

The separability criterion can be used in several different ways to discretize a continuous
feature. For instance the same algorithm can be followed as for the construction of a deci-
sion tree, but the possible cut points should be checked only for that feature. After several
recursive runs as large number of cut points as necessary is obtained. The recursive process
can also be stopped when the subsequent splits do not significantly improve the separability.
The recursive process is necessary, because usually features have just one or two maximal
cut points and when the data is split into two parts at least one best split value for each of the
parts will certainly be found in the next stage.

Sometimes all the split values of a given feature have very low separability, and together
with some cut points of another feature they give much better results. In the process of build-
ing a decision tree beam search is quite efficient in finding such combinations of features.
However, in discretization process it is useless unless we descretize all the features simulta-
neously. Searching for all feature split values at the same time may take into account mutual

interaction of features, so it is much more reasonable.
Given a discretization of all the continuous features the separability of a single split value

can be easily generalized to the separability of a set of split values, which can be used for
feature selection.

IV. RESULTS

SINCE the main goal is a comprehensive description of data given for classification the re-
sults are presented as sets of crisp logical rules. The algorithms based on the separability

criterion presented here have been tested on well known benchmark datasets. Most of them
come from the UCI repository [7].

A. Appendicitis data

The appendicitis dataset contains only 106 cases, with 8 attributes (results of medical
tests), and 2 classes: 88 cases with acute appendicitis and 18 cases with other problems.
We have selected this dataset because a very simple classification rule has been found by
Weiss and Kapouleas [8] using their PVM (Predictive Value Maximization) approach. Since
PVM makes exhaustive search testing all possible simple rules (therefore it is applicable to
very small datasets only) this solution should indeed be very close to the simplest possible.

The decision tree built with SSV converted into logical rules gives just two rules per class.
Because there are no “don’t know” answers, only the rules for one of the cases need to be
presented, the other class can be summarized using theelse condition.

First rule obtained using separability criterion gives 91.5% accuracy. The second one cov-
ers additional three data vectors, increasing the accuracy to 94.3%. The example of the
second rule confirms that decisions made at the top of the tree do not have to be important
to distinguish the classes in small local areas. In Table I results of different methods for this
dataset are compared.

R 1: HNEA < 7520.5∧ MBAP < 12→ class 0
R 2: HNEA ∈ (9543.5, 9997.5)→ class 0
R 3: ELSE→ class 1

TABLE I

Results for the appendicitis dataset

Method Error Leave-one-out error
k-NN – 17.9%
Bayes 11.3% 17.0%
CART 9.4% 15.1%
MLP+backprop 9.8% 14.2%
PVM [8] 8.5% 10.4%
C-MLP2LN [1], 1 neuron 8.5% (est.) 10.4%
C-MLP2LN, 2 neurons 5.7%
SSV rules 5.7%

B. Hypothyroid data

This is somewhat larger dataset [7], with 3772 cases for training, 3428 cases for testing,
22 attributes, and 3 classes: primary hypothyroid, compensated hypothyroid and normal (no
hypothyroid). It has already been quite thoroughly examined with different systems. It seems
impossible to find a better solution than the already known - especially, that some of the
results use global optimization strategies like ASA (adaptive simulated annealing [4]).

Rules obtained from the separability criterion are:

R 1: TSH> 6.05∧ FTI < 64.72∧ thyroid-surgery = 0→ class 1
R 2: TSH > 6.05∧ FTI > 64.72∧ thyroid-surgery = 0∧ on-thyroxine = 0∧ TT4 < 150.5
→ class 2
R 3: ELSE→ class 3

These rules give very high accuracy, matching the best results although the solution has
been found with fully automatic rule extraction approach. Results are summarized in Table
2. It is worth noting that the error of the best neural network classifiers is still twice as large
(1.5%) as the error made by these simple rules.

TABLE II

Results for the hypothyroid dataset

Method Train. error Test error
k-NN – 4.73%
Bayes 2.97% 3.94%
MLP+backprop 0.40% 1.55%
Cascade correl. 0.00% 1.52%
C-MLP2LN 0.32% 0.93%
C-MLP2LN rules + ASA [4] 0.11% 0.64%
PVM 0.21% 0.67%
CART 0.21% 0.64%
SSV rules 0.21% 0.67%

C. Other datasets

We have also tested our method on some other datasets such as Wisconsin breast cancer,
Cleveland heart and mushrooms data.

For the Wisconsin breast cancer data we have obtained a very simple (compared to others)
set of rules which is 97.4% accurate:

R 1: F4< 2.5∧ F7< 1.5→ class 1
R 2: F4< 2.5∧ F2< 5.5→ class 1
R 3: F4> 2.5∧ F7< 2.5∧ F6< 3.5→ class 1
R 4: ELSE→ class 2

Two rules describing the Cleveland heart data are 85.8% accurate:

R 1: ca = 0.0∧ (thal = 0∨ exang = 0)→ class 1
R 2: cp �= 2 AND slope�= 2→ class 1

R 3: ELSE→ class 2

For the mushroom dataset SSV tree has easily found 100% accurate solution which can be
described as three logical rules. It is one of the simplest equivalent sets of rules we know of.

R 1: odor �∈ {a,l,n} → class 1
R 2: odor∈ {a,l,n} ∧ spore-print-color∈ {r,w} ∧ population = v∧ habitat�∈ {l,p} → class 1
R 3: odor∈ {a,l,n} ∧ spore-print-color∈ {r,w} ∧ population�= v ∧ gill-size �= b → class 1
R 4: ELSE→ class 0

V. Summary
The results we have obtained for several benchmark datasets prove that methods based

on the separability criterion introduced in this paper produce very accurate and compact de-
scription of the data. Moreover, decision tree building algorithm based on beam search finds
small trees (which also means simple logical rules) fully automatically. The parameters of
the method (like the beam width or the number of crossvalidation parts) do not need to be
precisely adjusted in order to obtain good results. This makes the algorithm a powerful,
user-independent tool for extraction of crisp logical rules from raw data.

Acknowledgement: We would like to thank the Polish Committee for Scientific Research,
grant no. 8T11F 014 14 for partial support.

References
[1] W. Duch, R. Adamczak and K. Gr ˛abczewski, Extraction of logical rules from neural

networks,Neural Processing Letters 7: 211-219, 1998
[2] R. Andrews, J. Diederich, A.B. Tickle, A Survey and Critique of Techniques for Extract-

ing Rules from Trained Artificial Neural Networks,Knowledge-Based Systems 8 (1995)
373–389.

[3] R. Andrews, S. Geva, Rule extraction from a constraint back propagation MLP, Proc. 5th
Australian Conference on Neural Networks, Brisbane, Queensland (1994), pp. 9-12

[4] W. Duch, R. Adamczak, K. Gr ˛abczewski and G.̇Zal, Hybrid neural-global minimization
method of logical rule extraction,Int. Journal of Advanced Computational Intelligence
(in print, 1999)

[5] W. Duch, G.H.F. Diercksen, Feature Space Mapping as a universal adaptive system,
Computer Physics Communications 87 (1995) 341–371

[6] M. Ishikawa, Rule extraction by succesive regularization, in: Proc. of the 1996 IEEE
ICNN, Washington, June 1996, pp. 1139–1143.

[7] C.J. Mertz, P.M. Murphy, UCI repository of machine learning databases, available at the
address
http://www.ics.uci.edu/pub/machine-learning-databases;

[8] S.M. Weiss, I. Kapouleas, in: J.W. Shavlik and T.G. Dietterich, Eds.Readings in Ma-
chine Learning, Morgan Kauffman Publ. CA 1990

