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Abstract— Neural network models are presented as special cases of a
framework for general Similarity-Based Methods (SBMs). Distance-based
multilayer perceptrons (D-MLPs) with non-Euclidean metric functions are
described. D-MLPs evaluate similarity to prototypes making the interpre-
tation of the results easier. Renormalization of the input data in the extend-
ed feature space brings dramatic changes in the shapes of decision borders.
An illustrative example showing these changes is provided.

I. I NTRODUCTION

Multilayer perceptrons (MLPs) trained with backpropagation
method (BP) are certainly the most popular among all neural
techniques [1]. Applied to classification problems MLPs use
sigmoidal functions to provide soft hyperplanes dividing the
input space into separate regions. MLPs are therefore simi-
lar to the statistical discriminant techniques, although combi-
nation of soft sigmoids allows for representation of more com-
plex, nonlinear decision borders. This is usually considered to
be a strength of the MLP model, although in cases when sharp
decision borders are needed it may also become its weakness.
For example, classification borders conforming to a simple log-
ical rule x1 > 1∧ x2 > 1 are easily represented by two hyper-
planes but there is no way to represent them accurately using
soft sigmoidal functions used in MLPs. Increasing the slopes of
sigmoidal functions to improve representation of such decision
borders leads to problems with learning by backpropagation or
any other gradient-based method, since the volume of the input
space in which sigmoids change rapidly (and thus gradients are
non-zero) is rapidly shrinking. In the limit sigmoidal functions
become step-functions but gradient techniques like backpropa-
gation cannot be used to make this transition. As a result for
some datasets no change in the learning rule or network archi-
tecture will improve the accuracy of neural solutions. A good
real-world example is the hypothyroid dataset, for which the
best optimized MLPs still give about 1.5% of error [2] while
logical rules reduce it to 0.64% (since 3428 cases are provided
for testing this is a significant improvement).

An additional problem with MLPs is connected with the in-
terpretation of their classification decisions. Proponents of the
logical rule-based machine learning methods consider it to be
the biggest drawback of neural networks, limiting their applica-
tions in safety-critical fields such as medicine. Similarity-Based
Methods (SBMs), for example thek-nearest neighbor (k-NN)

method, retrieve the relevant context for each query presented to
the classification system, providing some interpretation and esti-
mating probability of different class assignment. Such interpre-
tation is also possible for the Radial Basis Function (RBF) net-
works using Gaussian or other localized functions, or the Learn-
ing Vector Quantization (LVQ) method based on optimization of
reference vectors. It may seem that such an interpretation is not
possible for MLPs since they belong to the discriminant rather
than to memory-based techniques. One way to obtain an inter-
pretation of MLP decisions is to study the transition from non-
linear MLP to the network performing logical operations [3].
Although discriminant methods and prototype methods seem to
be quite different in fact the two approaches are deeply con-
nected. A single hyperplane discriminating vectors belonging
to two classes may be replaced by two prototypes, one for each
class. ForN prototypes one can generateN(N −1)/2 pair-wise
discriminating hyperplanes providing piece-wise linear approx-
imation to the decision borders.

Recently a general framework for Similarity-Based Methods
(SBMs) of classification has been presented [4]. The Distance-
Based Multilayer Perceptrons (D-MLPs) described in the next
section are just one of many models that may be derived from
this framework. They improve upon the traditional approach
by providing more flexible decision borders and by enabling a
prototype-based interpretation of the results. The treatment of
symbolic and missing values and the initialization of such net-
works is also described. The third section contains discussion of
the metric functions useful for D-MLPs. To avoid programming
the backpropagation training method for each type of distance
function a simple transformation of the input data is proposed.
The input space is extended and the data renormalized using the
chosen distance functions. An illustration of this method on the
Iris data is presented for pedagogical purposes in the fourth sec-
tion. The paper is finished with a short discussion.

II. D-MLP NETWORKS AS A SIMILARITY-BASED METHODS.

Although the focus of this paper is on classification the
same framework may also be applied to regression and pat-
tern completion problems. The classification problem is s-
tated as follows: given a set of class-labeled training vectors
{R j,C(R j)}, j = 1..Nt , whereC(R j) is the class ofR j, and giv-



en a vectorX of an unknown class, use the information provided
in the similarity measureD(X,R j) to estimate the probability of
classificationp(Ci|X;M), whereM describes the classification
model used (values of all parameters and procedures employed).
A general model of an adaptive system used for classification
should include at least the following elements:
M = {D(·),G(D(·)),k,{R j},E[·],K(·))}, where
D(·) is a function (usually a distance function), parametrized in
various ways, or a table used to compute similarities;
G(D(X,R)) is a weighting function estimating contribution of
the reference vectorR to the classification probability;
k is the number of reference vectors taken into account in the
neighborhood ofX;
{R j} is the set of reference vectors created from the set of train-
ing vectors{Xi} by some procedure;
E[·] is the total cost function optimized during training;
K(·) is a kernel function, scaling the influence of the error, for a
given training example, on the total cost function.

An adaptive system may include several such modelsMl and
an interpolation procedure to select between different models or
average results of a committee of models. Various procedures
for selection of features, minimization algorithms and architec-
tures used for network computation lead to a large number of
similarity-based methods. Here only neural methods based on
this framework are considered. The cost function that minimizes
risk for overall classification is:

E({X};R ,M) = (1)

∑
i
∑
X

R (Ci,C(X))H (p(Ci|X;M),δ(Ci,C(X)))

where i = 1. . .Nc runs over all classes,X over all training
vectors,C(X) is the true class of the vectorX and a function
H(·) is monotonic and positive, often a quadratic function. The
elements of the risk matrixR (Ci,Cj) are proportional to the
risk of assigning theCi class when the true class isCj (in the
simplest caseR (Ci,Cj) = 1−δi j), andM specifies all adaptive
parameters and variable procedures of the classification model
that may affect the cost function. Regularization terms aimed
at minimization of the complexity of the classification mod-
el are frequently added to the cost function, helping to avoid
the overfitting problems. IfH(·) is a quadratic function of
the maxi p(Ci|Xp;M)−δ(Ci,C(X)) standard mean square error
function is recovered.

Neural networks using binary inputs and threshold neurons
compute distances in a natural way. If the input signalsX and
the weightsW are(±1. . .± 1) vectors, neuron withN inputs
and the thresholdθ realizes the following function:

Θ(
N

∑
i

WiXi −θ) =
{

0 if ||W−X||> θ
1 if ||W−X|| ≤ θ

(2)

where|| · || norm is defined by the Hamming distance. One
can interpret the weights of neurons in the first hidden layer as
addresses of the reference vectors in the input space and the ac-
tivity of threshold neuron as activation by inputs falling into a

hard sphere of radiusθ centered atW. Changing binary into
real values and threshold into sigmoidal neurons for inputs nor-
malized to||X||= ||W||= 1 leads to a soft activation of neuron
by input vector close toW on a unit sphere. The Hamming
neural network [6] is actually a neural realization of the nearest
neighbor method for a single neighbor and binary inputs.

The standard activation of a neuronW ·X may always be writ-
ten as:

W ·X =
1
2

(
||W||2+ ||X||2−||W−X||2

)
(3)

For normalized input vectors||X|| = 1 the transfer functions
of MLP neuron is:

σ(W ·X+θ) = σ(d0−D(W,X)) (4)

whereD(W,X) is proportional to the square of Euclidean dis-
tance betweenW andX. Normalization is necessary to avoid
the dependence ofd0 on X. This function evaluates the in-
fluence of the reference vectorsW on the classification prob-
ability p(Ci|X;{W,θ}). It plays a role of the weight func-
tion G(D) = σ(d0−D(W,X)), monotonically decreasing, with
flat plateau for small distances, reaching the value of 0.5 for
D(W,X) = d0 and approaching zero for larger distances. For
normalizedX but arbitraryW the range of the sigmoid argumen-
t lies in the[θ−|W|,θ+ |W|] interval. A unipolar sigmoid has
a maximum curvature around±2.4, therefore small thresholds
and weights mean that the network operates in an almost linear
regime. Regularization methods add penalty terms to the error
function forcing the weights and thresholds to become small and
thus smoothing the network approximation to the training data.

From the SBM point of view in MLP networks, as long as the
input data is normalized, sigmoidal functions are used to esti-
mate the influence of weight vectors according to the distance
between weight and training vectors. Many such estimations
are combined to compute the final output. By changing the dis-
tance function in equation (4) from the square of the Euclidean
distance to some other distance measures new types of neural
networks, called further D-MLP networks, are defined. Another
possibility is to write the weighted product in a form:

σ(W ·X) = σ
(

1
4
(||W+X||2−||W−X||2)

)
(5)

and replace the Euclidean norm by Minkovsky’s or other type
of norms. Although results are equally interesting only the for-
m (4) has been used below. The D-MLP networks simply re-
place the square of the Euclidean distance in this equation by
some other metric function. The D-MLP network with the n-
odes computingσ(d0 −D(W,X)) is trained like the standard
MLP, using the backpropagation method [1]. Backpropagation
procedure requires derivatives of the distance functions, but for
Minkovsky and other popular functions they are easily provided.

The network should be initialized taking the centers of the
clusters in the extended space asW and takingd0 = D(W,Xb),



whereXb is a vector at the borders of the given cluster (we have
tried [7] dendrograms and decision trees but other clusterization
methods may also be used for initialization [8]). A parameter
which is rarely changed in MLPs is the slope of the sigmoidal
function. It defines the area which has an influence on perfor-
mance of each node. If the slope is too high the area in which
the sigmoidal function is not approximately constant is smal-
l and only a few training vectors have a chance to influence the
gradient-based learning procedures. If it is too low then all func-
tions strongly overlap and there is no possibility to create sharp
decision borders. In the standard formulation:

(W ·X+θ)/T = (
W

||W|| ·X+
θ

||W|| )||W||/T

= (W′ ·X+θ′)/T ′ (6)

Thus for normalizedX andW ′ increase of the norm of the
weights is equivalent to increase of the slope and no special
learning for the slopes is needed. A useful variability range of
the sigmoid is between its maximum curvature points, which for
T = 1 are between∆(T ) = ±2.4. If the variability range is as-
sumed to be 1/10 of the size of the cluster, i.e.∆(T ) = ±d0/10
then settingT ≈ d0/24 will be appropriate. After such initial-
ization of the network parameters training procedure is usually
quite short.

A. Metric functions and input transformation.

In Eq. (4) the parameterd0 should be treated as an adaptive
parameter only ifX is normalized. This may always be done
without loss of information if one or more additional compo-
nents are added to the vector, extending the feature space by
at least one dimension. In particular takingxr =

√
R2−||X||2,

whereR ≥ maxX ||X ||, amounts to a projection of the data on
a unit semisphere with radiusR (more sophisticated projection
is described in [7]. If non-Euclidean norm is used the sphere
changes its shape. Minkovsky’s distance with the scaling fac-
tors is:

D(A,B;s)α =
N

∑
i

sid(Ai,Bi)
α (7)

Thed(·) function is used to estimate similarity at the feature
level and in the simplest case is equal to|Ai −Bi|. For largeα
this metric changes the sphere into a soft cuboid, forα = 1 it be-
comes a pyramid and forα < 1 it has a hypocycloidal shape. In-
stead of deriving the backpropagation equations for the transfer
functions with non-Euclidean distances one may achieve similar
result using a standard MLP network withxr determined by the
normalization condition using the desired metric.

The distance function may be heterogeneous, using
Minkovsky’s metric for numerical features and probabilistic
metrics [9] for symbolic features. In memory-based reason-
ing the Modified Value Difference Metric (MVDM) has gained
some popularity [9]. The distance between twoN-dimensional

vectorsA,B with discrete (nominal, symbolic) elements, in aK
class problem, is computed using conditional probabilities:

Dα(A,B) =
N

∑
j

K

∑
i

∣∣p(Ci|A j)− p(Ci|B j)
∣∣α (8)

where p(Ci|A j) is estimated by calculating the number of
times Ni(A j) the valueA j of the featurej occurred in vec-
tors belonging to classCi and dividing it by the number of
times feature thisA j value occurred for any class. We can al-
so define a “value difference" for each featurej asd v(A j,B j) =

∑K
i (p(Ci|A j)− p(Ci|B j)) and computeD(A,B) as a sum of value

differences over all features. Metric is defined here via a data-
dependent matrix with the number of rows equal to the number
of classes and the number of columns equal to the number of all
attributes. Generalization for continuos values requires a set of
probability density functionspi j(x), with i = 1..K, j = 1..N.

Using VDM type of metrics leads to problems with calcula-
tion of gradients, therefore another method is advocated here.
The feature space is extended adding enough dimensions to re-
produce, using Minkovsky or other metricD(), the VDM dis-
tances for the training vectors. LetA stand for the symbolic
part of the input vectorX. The VDM metric is used only for
this symbolic part and allows to calculateDVDM(Ai,A j) dis-
tance tables. Numerical representationB of symbolic vectors
A should preserve the VDM distances. The algorithm proceeds
as follows: an arbitrary numerical valueB1 = (0) is taken for the
symbolic features of the first vectorA1, and the next vectorA j

is taken. Symbolic values should be replaced by numerical val-
ues in such a way that all VDM distancesd jk = DVDM(A j,Ak),
k = 1.. j − 1 are reproduced by the distancesD jk = D(B j ,Bk)

calculated withBk vectors. This is possible because VDM met-
ric fulfills the triangle inequality, as any metric function should
do. The spheres centered at the previous vectorsB k, with thed jk

radiuses, should all cross at least in one pointB j . If this point
does not belong to the subspace of the previousB k vectors a new
feature is added to the numerical vector, and all previous vectors
Bk are extended with(B,0). After the last training vector is in-
cluded the final numerical vectorsB are appended to the numeri-
cal part of the input vectorsX forming a new set of input vectors.
The final input space has usually a larger number of dimensions
than the original input space, the maximum increase being equal
to the number of the training vectors, although sometimes the
number of dimensions may even decrease. If the final number
of dimensions is for some reason too large those dimensionsi for
which all featuresbi of theB vectors are small may be dropped
and the remaining values rescaled, minimizing the differences

∑ j>k D jk − d jk)
2.

Many other types of metric functions exist [9] and their per-
formance should be empirically verified. Since the architecture
of the D-MLP network is completely determined by the initial-
ization procedure and the training is short due to a good starting
point various distance functions may be tried on a given prob-
lem.



III. PEDAGOGICAL ILLUSTRATION

The influence of non-Euclidean distance functions on the de-
cision borders is illustrated here on the classical Iris flowers
dataset, containing 50 cases in each of the 3 classes. The flow-
ers are described by 4 measurements (petal and sepal width and
length). Two classes, Iris virginica and Iris versicolor, overlap,
and therefore a perfect partition of the input space into sepa-
rate classes is not possible. An optimal solution (from the point
of view of generalization) contains 3 errors [10] and may be
obtained using only two of the four input features (x 3 andx4),
therefore it is easy to display and only those two features have
been left in simulations described below.

A standard MLP solution is obtained with 4 hidden neurons
and 3 output neurons. One discriminating plane per class of the
smallest and the largest flowers (setosa and virginica) is needed
and two planes to separate the vectors of the versicolor class. To
increase accuracy and speed up the learning in the final phase of
learning only the vectors near the class borders are presented to
the network. The selection algorithm loops over all vectors and
for a given vectorX findsk (for examplek = 10) nearest vectors
belonging to a different class thanX. These vectors are written
to the new training file providing a description of the border
region. The MLP solution is equivalent to a rule that uses linear
combination of the inputs,a1x3+b1x4+ c1 < 0 for setosa class,
anda2x3+b2x4+c2 > 0 for virginica, and the else condition for
versicolor class. This method of training leads to a sharper and
more accurate decision borders.

The data has been standardized and rescaled to fit it insi-
de a square with±1 corners. An additional feature has been
added and the 3-dimensional vectors normalized using various
Minkovsky distance measures. The network has been initialized
taking the normalized weights that are equal to the centers of the
three clusters. In the extended feature space only 3 neurons are
necessary. In Figure 1 dramatic changes in the shapes of deci-
sion borders for Minkovsky metric are observed. Using squared
Euclidean metric inσ(d0 −D(X,R)) transfer functions the s-
tandard MLP solution is obtained. Euclidean case corresponds
to circular decision borders, the city block metricα = 1 gives
sharp, romboidal shapes, for largeα almost rectangular deci-
sion borders are obtained (an approximation using logical rules
is in this case straightforward) while for smallα a hypocycloidal
shapes are created. Since smooth transition between these cases
is madeα should be treated as an adaptive parameter. For the
Iris data the optimal solution (3 errors) has been recovered for
all values ofα ≥ 0.8.

IV. D ISCUSSION

The similarity based framework accommodates many classi-
fication methods, including neural networks. Neural networks
of the D-MLP type, using non-Euclidean distance functions, are
especially interesting and seem to open many unexplored pos-
sibilities. Simple transformation based on normalization of the

input data in extended space may completely change the hyper-
planar decision borders introducing quite complex shapes. S-
tandard MLP programs may be used for training such networks.
The training times are short since a good initialization procedure
based on clusterization techniques determines weights, thresh-
olds and the slopes of all neurons. The number of neurons in
the network defined in extended space may also decrease, as has
been observed in the Iris example. A new method to treat sym-
bolic values and a new training procedure using only the vectors
close to the decision borders has been described.

An additional advantage of the approach outlined here is the
understanding of what these networks have really learned in
terms of the prototypes (weights) and the weighted distances
from these prototypes. Moreover, if partial similarity is defined
for reduced number of known attributes the same networks may
be used for pattern completion tasks. Given a partially known
vectorX all sufficiently similar nodes are easily identified, the
missingX values replaced by weightsWi of these nodes cre-
ating severalXi candidates and the one with the highest clas-
sification probability is selected as the complete vector. Such
procedure is always defined while calculation of partial activa-
tion of neurons does not always make sense. Unknown input
features may be obtained by interpolation among several nodes
that code similar prototypes. Although only a first step towards
the similarity based neural methods has been made here already
a number of interesting new models have been introduced. Em-
pirical comparisons of D-MLPs with other classification system-
s should be reported soon.
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Fig. 1. Shapes of decision borders in the Iris case for standard MLP and D-MLP
with Minkovsky metric,α = 0.5,1.0,1.5,2.0 and 7.0.
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