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Abstract— Neural network models are presented as special cases of a method, retrieve the relevant context for each query presented to
framework for general Similarity-Based Methods (SBMs). Distance-based  the classification system, providing some interpretation and esti-

multilayer perceptrons (D-ML Ps) with non-Euclidean metric functionsare ti bability of diff tel . t Such int
described. D-MLPs evaluate similarity to prototypes making the interpre- mating probability of difierent class assignment. Such interpre-

tation of the results easier. Renormalization of theinput datain theextend-  tation is also possible for the Radial Basis Function (RBF) net-
ed feature space brings dramatic changesiin the shapes of decision borders.  \works using Gaussian or other localized functions, or the Learn-

Anillustrative example showing these changes is provided. ing Vector Quantization (LVQ) method based on optimization of
reference vectors. It may seem that such an interpretation is not

I. INTRODUCTION possible for MLPs since they belong to the discriminant rather

. . . . than to memory-based techniques. One way to obtain an inter-
Multilayer perceptrons (MLPs) trained with backpropagation

thod (BP wainly th ) | I rprletation of MLP decisions is to study the transition from non-
method (BP) are certainly the most popular among all neu fhear MLP to the network performing logical operations [3].

tgchnlques 1] .Apphed 0 gla55|f|cat|on problems.l\{ll_.Ps us/glthough discriminant methods and prototype methods seem to
sigmoidal functions to provide soft hyperplanes dividing th

%e quite different in fact the two approaches are deeply con-

input space into separate regions. MLPs are therefore SMEcted. A single hyperplane discriminating vectors belonging

lar to the statistical discriminant techniques, although com% two classes may be replaced by two prototypes, one for each

nation of soft sigmoids allows for representation of more COM3.ss. FON prototypes one can generdéN — 1)/2 pair-wise

ctflascriminating hyperplanes providing piece-wise linear approx-
be a strength of the MLP model, although in cases when Sh?mation to the decision borders.

decision borders are needed it may also become its Weaknes?:é o
. . . ecently a general framework for Similarity-Based Methods
For example, classification borders conforming to a simple log-.

ical rulex; > 1A x; > 1 are easily represented by two hyper_SBMs) of classification has been presented [4]. The Distance-

. Based Multilayer Perceptrons (D-MLPs) described in the next
planes but there is no way to represent them accurately usin

. . . . . section are just one of many models that may be derived from
soft sigmoidal functions used in MLPs. Increasing the slopes % . -
. this framework. They improve upon the traditional approach

sigmoidal functions to improve representation of such decismg)n providing more flexible decision borders and by enabling a

borders leads to problems with learning by backpropagation . .
. ) . prototype-based interpretation of the results. The treatment of
any other gradient-based method, since the volume of the inpu } L o
: . . . . : slymbollc and missing values and the initialization of such net-
space in which sigmoids change rapidly (and thus gradients are |~ . . . . . .
. . o L . . works is also described. The third section contains discussion of
non-zero) is rapidly shrinking. In the limit sigmoidal functions

: . . . the metric functions useful for D-MLPs. To avoid programming

become step-functions but gradient techniques like backpropa- . . .
. . . the backpropagation training method for each type of distance
gation cannot be used to make this transition. As a result for~ " , . . .
. . unction a simple transformation of the input data is proposed.

some datasets no change in the learning rule or network archj- . . . .
- . The input space is extended and the data renormalized using the
tecture will improve the accuracy of neural solutions. A good _ . . . .
. . : chosen distance functions. An illustration of this method on the
real-world example is the hypothyroid dataset, for which thé

best optimized MLPs still give about 1.5% of error [2] WhileIr|s data is presented for pedagogical purposes in the fourth sec-

logical rules reduce it to 0.64% (since 3428 cases are providté%' The paper is finished with a short discussion.

for testing this is a significant improvement).
. . . ! . II. D-MLP NETWORKS AS A SIMILARITY-BASED METHODS
An additional problem with MLPs is connected with the in-

terpretation of their classification decisions. Proponents of theAlthough the focus of this paper is on classification the
logical rule-based machine learning methods consider it to bame framework may also be applied to regression and pat-
the biggest drawback of neural networks, limiting their applicdern completion problems. The classification problem is s-
tions in safety-critical fields such as medicine. Similarity-Basedted as follows: given a set of class-labeled training vectors
Methods (SBMs), for example thenearest neighbok{NN) {RI,C(R1)},j = 1.\, whereC(R/) is the class oR!, and giv-



en a vectoX of an unknown class, use the information providetiard sphere of radiu@ centered atV. Changing binary into

in the similarity measurB(X, Rj) to estimate the probability of real values and threshold into sigmoidal neurons for inputs nor-
classificationp(Ci|X; M), whereM describes the classificationmalized to||X|| = ||W|| = 1 leads to a soft activation of neuron
model used (values of all parameters and procedures employdyy).input vector close t&W on a unit sphere. The Hamming
A general model of an adaptive system used for classificatioeural network [6] is actually a neural realization of the nearest
should include at least the following elements: neighbor method for a single neighbor and binary inputs.

M = {D(:),G(D(-)),k,{RI},E[],K(-))}, where The standard activation of a neurdh X may always be writ-
D(-) is a function (usually a distance function), parametrized iten as:

various ways, or a table used to compute similarities; 1

G(D(X,R)) is a weighting function estimating contribution of W-X=3 (1IW2+ [IX[[> = [[W = X[ [?) €©)

the reference vectdr to the classification probability;

k is the number of reference vectors taken into account in the ;
of MLP neuron is:

For normalized input vector$X|| = 1 the transfer functions

neighborhood oK;

{Rj} is the se_t of reference vectors created from the set of train- G(W - X +8) = a(do — D(W, X)) )
ing vectors{X'} by some procedure;

E[] is the total cost function optimized during training; whereD(W, X) is proportional to the square of Euclidean dis-
K(-) is a kernel function, scaling the influence of the error, for tance betweeiV andX. Normalization is necessary to avoid
given training example, on the total cost function. the dependence afy on X. This function evaluates the in-

An adaptive system may include several such mobgland fluence of the reference vectorg on the classification prob-
an interpolation procedure to select between different modelsatsility p(Ci|X;{W,8}). It plays a role of the weight func-
average results of a committee of models. Various procedutish G(D) = o(dg — D(W, X)), monotonically decreasing, with
for selection of features, minimization algorithms and architegtat plateau for small distances, reaching the value of 0.5 for
tures used for network computation lead to a large number D{W,X) = dy and approaching zero for larger distances. For
similarity-based methods. Here only neural methods based wormalizedX but arbitraryW the range of the sigmoid argumen-
this framework are considered. The cost function that minimizesies in the[8 — |W|,8+|W/|] interval. A unipolar sigmoid has

risk for overall classification is: a maximum curvature arountd2.4, therefore small thresholds
E({X}:R,M) = ) and weights mean that the network operates in an almost linear
regime. Regularization methods add penalty terms to the error
Iz Z R (G, C(X))H (p(Gi|X; M), 3(Ci,C(X))) function forcing the weights and thresholds to become small and

wherei = 1...N; runs over all classes§ over all training thus smoothing the network approximation to the training data.
vectors,C(X) is the true class of the vectot and a function ~ From the SBM point of view in MLP networks, as long as the
H(-) is monotonic and positive, often a quadratic function. Thiput data is normalized, sigmoidal functions are used to esti-
elements of the risk matriR (C;,C;) are proportional to the mate the influence of weight vectors according to the distance
risk of assigning the&€; class when the true class@ (in the between weight and training vectors. Many such estimations
simplest cas® (C;,Cj) = 1 &;;), andM specifies all adaptive are combined to compute the final output. By changing the dis-
parameters and variable procedures of the classification mot#ice function in equation (4) from the square of the Euclidean
that may affect the cost function. Regularization terms aimetistance to some other distance measures new types of neural
at minimization of the complexity of the classification modnetworks, called further D-MLP networks, are defined. Another
el are frequently added to the cost function, helping to avojebssibility is to write the weighted product in a form:
the overfitting problems. IH(:) is a quadratic function of 1
the maxp(Gi|XP; M) — 3(G;,C(X)) standard mean square error oW-X) = o (Z(HW +X [P =W — X||2)> (5)

function is recovered. d reol the Euclid by Minkovsky’ ther t
Neural networks using binary inputs and threshold neurong® © reprace the Euclidean norm by MInkovsky's or otner type

compute distances in a natural way. If the input sigiaind of n:rl::s' /t-\)lthough r:iullts areT(ra]qugll'i//lr;ere?tmgkonly_/ thT for-
the weightsW are (£1...+ 1) vectors, neuron witiN inputs (4) has been used below. The D- NEIWOrks simply re-

and the threshol realizes the following function: place the square' of the 'Euclldean distance in this gquatlon by
some other metric function. The D-MLP network with the n-

@(gV\/{Xi _g)= { 0 if|W-X]||>6 ) odes computing(dp — D(W, X)) is trained like the standard

| 1 if|W-=X]||<8 MLP, using the backpropagation method [1]. Backpropagation
where|| - || norm is defined by the Hamming distance. Ongrocedure requires derivatives of the distance functions, but for

can interpret the weights of neurons in the first hidden layer dinkovsky and other popular functions they are easily provided.

addresses of the reference vectors in the input space and the adhe network should be initialized taking the centers of the

tivity of threshold neuron as activation by inputs falling into alusters in the extended spaceViisand takingdg = D(W, XP),



whereXP® is a vector at the borders of the given cluster (we hawectorsA, B with discrete (nominal, symbolic) elements, itKa
tried [7] dendrograms and decision trees but other clusterizatiolass problem, is computed using conditional probabilities:
methods may also be used for initialization [8]). A parameter N K

which is rarely changed in MLPs is the slope of the sigmoidal Da(AB)=3 5 |p(CilA)) - p(Ci|B;)|" (8)
function. It defines the area which has an influence on perfor- )

mance of each node. If the slope is too high the area in whichWhere p(Ci|A;) is estimated by calculating the number of
the sigmoidal function is not approximately constant is smalimes Ni(A;j) the valueA; of the featurej occurred in vec-

| and only a few training vectors have a chance to influence S Pelonging to clas€; and dividing it by the number of
gradient-based learning procedures. Ifit is too low then all fundmes feature thig\; value occurred for any class. We can al-
tions strongly overlap and there is no possibility to create shatp define a “value difference” for each featjrasdy (A, Bj) =

decision borders. In the standard formulation: 51 (P(Gi|A)) — p(Ci[Bj)) and comput®(A, B) as a sum of value
differences over all features. Metric is defined here via a data-
(W-X+80)/T = (ﬂ X4 i)||W| Yas dependent matrix with the number of rows equal to the number
Wi W] of classes and the number of columns equal to the number of all
= (W-X+6)/T (6) attributes. Generalization for continuos values requires a set of

) ) probability density functiong;;(x), withi =1..K, j = 1..N.

Thus for normalizedt andW’ increase of the norm of the i DM type of metrics leads to problems with calcula-
weights is equivalent to increase of the slope and no specigly of gradients, therefore another method is advocated here.
learning for the slopes is needed. A useful variability range qfhe feature space is extended adding enough dimensions to re-

the sigmoid is between its maximum curvature points, which f?froduce using Minkovsky or other metii), the VDM dis-

T =1 are betweed(T) = £2.4. If the variability range is as- 505 for the training vectors. Lét stand for the symbolic
sumed to be 1/10 of the size of the cluster, A€T) = £do/10 54 of the input vectoX. The VDM metric is used only for

then settingl’ ~ dp/24 will be appropriate. After such initial- this symbolic part and allows to calculaBpw (A, Al dis-
ization of the network parameters training procedure is usualtlé(nce tables. Numerical representat®mf symbolic vectors

quite short. A should preserve the VDM distances. The algorithm proceeds
as follows: an arbitrary numerical val@¢ = (0) is taken for the
symbolic features of the first vectdr!, and the next vectoh

In Eq. (4) the parametety should be treated as an adaptivés taken. Symbolic values should be replaced by numerical val-
parameter only iX is normalized. This may always be doneues in such a way that all VDM distanceég = Dvpwm (Ai,Ak),
without loss of information if one or more additional compok = 1..j — 1 are reproduced by the distand@g = D(BJ,B")
nents are added to the vector, extending the feature spacechjculated wittBK vectors. This is possible because VDM met-
at least one dimension. In particular taking= /R% —[|X[|?, ric fulfills the triangle inequality, as any metric function should
whereR > max || X||, amounts to a projection of the data ordo. The spheres centered at the previous ve&bysiith thed;k
a unit semisphere with radiu® (more sophisticated projection radiuses, should all cross at least in one p8iht If this point
is described in [7]. If non-Euclidean norm is used the sphetibes not belong to the subspace of the previgftigectors a new
changes its shape. Minkovsky’s distance with the scaling faature is added to the numerical vector, and all previous vectors

A. Metric functions and input transformation.

tors is: BX are extended witliB,0). After the last training vector is in-
N cluded the final numerical vectdBsare appended to the numeri-
D(A,B;9)% = z sd(Aj,B))” (7) cal partof the input vectods forming a new set of input vectors.

I The final input space has usually a larger number of dimensions

Thed(-) function is used to estimate similarity at the featurénan the original input space, the maximum increase being equal
level and in the simplest case is equalAp— B;|. For largea to the number of the training vectors, although sometimes the
this metric changes the sphere into a soft cuboidyferl itbe- number of dimensions may even decrease. If the final number
comes a pyramid and for < 1 it has a hypocycloidal shape. In-of dimensions is for some reason too large those dimenifons
stead of deriving the backpropagation equations for the transfehich all features; of the B vectors are small may be dropped
functions with non-Euclidean distances one may achieve similand the remaining values rescaled, minimizing the differences
result using a standard MLP network withdetermined by the 5., Djk— djk)z.
normalization condition using the desired metric. Many other types of metric functions exist [9] and their per-

The distance function may be heterogeneous, usifigrmance should be empirically verified. Since the architecture
Minkovsky's metric for numerical features and probabilistiof the D-MLP network is completely determined by the initial-
metrics [9] for symbolic features. In memory-based reasoiration procedure and the training is short due to a good starting
ing the Modified Value Difference Metric (MVDM) has gainedpoint various distance functions may be tried on a given prob-
some popularity [9]. The distance between talimensional lem.



[1l. PEDAGOGICAL ILLUSTRATION input data in extended space may completely change the hyper-
The influence of non-Euclidean distance functions on the dgl_anar decision borders introducing quite (;qmplex shapes. S-
];gndard MLP programs may be used for training such networks.

cision borders is illustrated here on the classical Iris roweTh training i hort si dinitializati q
dataset, containing 50 cases in each of the 3 classes. The flows " ainiNG iMes are Short Since a good infmailzation procedure

ers are described by 4 measurements (petal and sepal width g%%ed on clusterization techniques determines weights, thresh-

L . . olds and the slopes of all neurons. The number of neurons in
length). Two classes, Iris virginica and Iris versicolor, overlap P

and therefore a perfect partition of the input space into sept[aq-e network defined in extended space may also decrease, as has

rate classes is not possible. An optimal solution (from the poiHi9 ?n ok?serveddln the Irt|s (.ex'ample. Adnew m.ethod ltot:‘reat Si/m_
of view of generalization) contains 3 errors [10] and may bgo Icvalues and a newtraining procedure using only the vectors

obtained using only two of the four input features @ndxs), close to the decision borders has been described.

therefore it is easy to display and only those two features have’:;‘n add|t(|jgnal :?dv:ntag:]e of the applr(oaﬁh Ou“'nﬁld r|1ere |s(;he
been left in simulations described below. understanding of what these networks have really learned in

A standard MLP solution is obtained with 4 hidden neuront;erms of the prototypes (weights) and the weighted distances

C rom these prototypes. Moreover, if partial similarity is defined
and 3 output neurons. One discriminating plane per class of the :

N or reduced number of known attributes the same networks may
smallest and the largest flowers (setosa and virginica) is needéed . . .
c)used for pattern completion tasks. Given a partially known

and two planes to separate the vectors of the versicolor class. - . . o
ve(ftorX all sufficiently similar nodes are easily identified, the

increase accuracy and speed up the learning in the final phase of .

. | _
learning only the vectors near the class borders are presenteH1 {gsmgx values replaced by weight&/" of these nodes cre

. . aélng severaX' candidates and the one with the highest clas-
the network. The selection algorithm loops over all vectors arIc,lfication robability is selected as the complete vector. Such
for a given vectoX findsk (for examplek = 10) nearest vectors P y P j

belonging to a different class tha@ These vectors are written procedure is always defined while calculation of partial acyva—
tion of neurons does not always make sense. Unknown input

to the new training file providing a description of the borde . . .
region. The MLP s%lutior? is equi?/alent to aprule that uses Iine][Pfatures may be obtained by interpolation among several nodes
' ftghat code similar prototypes. Although only a first step towards

combination of the input®1x3 + bixs4 + ¢1 < 0 for setosa class, L
PUIS1 X3 401X +C1 the similarity based neural methods has been made here already

andayxs + bax4 + ¢z > 0 for virginica, and the else condition for . ) .
. . - a number of interesting new models have been introduced. Em-
versicolor class. This method of training leads to a sharper and

more accurate decision borders pirical comparisons of D-MLPs with other classification system-

The data has been standardized and rescaled to fit it inSéEhOUId be reported soon.
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Fig. 1. Shapes of decision borders in the Iris case for standard MLP and D-MLP

with Minkovsky metric,a = 0.5,1.0,1.5,2.0 and 70.




