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Grudziądzka 5, 87-100 Torún, Poland.
E–mail: duch@phys.uni.torun.pl

Abstract
Neural networks are usually trained using local, gradient-based procedures, and the best architectures are se-

lected by experimentation. Gradient methods frequently find suboptimal solutions being trapped in local minima.
Genetic algorithms are frequently used but do not guarantee optimal solutions and are computationally expensive.
Several new global optimization methods suitable for architecture optimization and neural training are described
here. Multistart initialization methods are also offered as an alternative to global minimization.

I. INTRODUCTION

SOFT computing methods compete with traditional pattern recognition and statistical meth-
ods in many applications. For neural networks with predetermined structure, for example

Multilayer Perceptrons (MLPs) with fixed architectures, finding an optimal set of parameters
(weights and thresholds) requires a solution of a non-linear optimization problem. Such
problems in general are NP-complete and the chance to find the best solution using typical,
gradient-based learning techniques starting from a large, multi-layered network, is minimal.

There are many global optimization (GO) methods suitable for use in minimization of the
neural cost functions and optimization of neural architectures. Selection of the minimization
procedure may lead to great improvement in the quality of the network and in the speed of
convergence of the learning algorithm itself. Global minimization [1] replacing the gradient-
based backpropagation algorithms (BP – this abbreviation is used here as a synonym of any
gradient-based training method) may find solutions to hard problems using smaller, compact
neural networks. For example, Shang and Wah [2] have found good solutions to the two-spiral
benchmark problem using just 4-6 hidden neurons, while previous smallest MLPs (build
using the cascade correlation algorithm [3]) used 9 neurons, 75 weights, and the training
process was very sensitive to initial conditions. Except for genetic algorithms which are
frequently combined with neural networks only a few global optimization methods have been
applied so far to training and optimization of neural architectures.

The direct approach to finding optimal network structures is to use ‘educated guesses’
for good structures, and then select the best ones. GO methods, such as genetic algorithms
(GA) [4] or simulated annealing (SA) [5], may guide us in this process. This strategy is
based on an assumption (rarely spelled out explicitly) that the quality of the network, mea-
sured by the error on the training or sometimes on the validation set, is a smooth function
of network topology and its adaptive parameters. Perhaps the most obvious, although rarely
used method to find optimal solution, is based on good initialization, followed by gradient



optimization [6], [7]. Initialization should bring adaptive parameters into the vicinity of the
global minimum. In a long series of computer experiments Schmidhuber and Hochreiter [8]
observed that repeating random initialization (“guessing" the weights) many times leads to
faster convergence than using sophisticated versions of gradient methods. Gradient learning
procedures were not able to compensate for bad initial values of weights and biases, getting
stuck in local minima. Therefore a good strategy is to abandon training as soon as it slows
down significantly and start again from random weights. A better strategy is to use good
initialization followed by a short gradient descent, or a global minimization method to solve
the non-linear optimization problem.

In this paper alternatives to the standard gradient-based backpropagation training tech-
niques are described and several novel global optimization methods suitable for neural net-
work training and architecture optimization introduced. While most global minimization
methods are computationally quite expensive there are some that are competitive with stan-
dard BP and should be used at least for initialization of gradient learning.

II. GLOBAL MINIMIZATION METHODS

THE problem of unconstrained global minimization is stated as follows: given a vector
of initial parametersP, including such information as weights, biases, other adaptive

parameters, structure of the network, and a functionE(P) evaluating the quality of this vector
for some datasetD = {X (i),Y (i)} (this may be either training or validation dataset), whereX (i)

are input vectors andY (i) are the desired target vectors, generate new vectors of parameters
P(k) until global minimum ofE(P) function is found.

Since most global minimization procedures are relatively expensive hybrid methods are
advocated here. The simplest method is based on Monte Carlo (MC) approach. New vector of
parametersP is randomly generated by changing a single parameter or a group of parameters.
For optimization of neural network structures the change may involve adding or deleting
one connection or one neuron with some connections. After a short gradient-based training
resulting networks are evaluated on a validation set. Using gradient training in connection
with MC optimization of architecture does not guarantee that globally optimal solution will
be found (but the use of genetic algorithms does not guarantee it either), but is relatively fast
and may create several models useful for creation of an ensemble. If the change of the quality
of neural solutions is not a smooth function of the parameters defining neural architectures
MC approach will work on average as well as any other, more sophisticated method, such as
GAs.

To improve results of BP training MC search in the space of quantized weights and biases
is used in the first phase of training, followed by short gradient-based training (without quan-
tization) of the most promising networks that have been selected by MC. Thus MC is used
both for selection of architectures and initial learning phase. A pool of the most promising
candidate networks may be selected before BP learning starts. After a selection of small
number of the best neural architectures MC step may be repeated, this time with relatively
small variation of architectures allowed.



Several improvements of this basic schemes are proposed: improvements in the Monte
Carlo procedure in which a whole ensemble of energy functions is defined [9] and the mini-
mum is searched for on all these energy landscapes, various versions of simulated annealing
[10] (SA), rescaling of the error functions in SA or MC [11], modifications of the Alopex
algorithm [12] based on SA, excluding already explored areas of the parameter space [13].
Various versions of multisimplex [14], Random Line Generation [15] and particle swarm op-
timization [16] methods are presented. Deterministic methods of global exploration of input
space are also discussed: trajectory based method, such as NOVEL [2], smoothing algorithm
[17], branch and bound methods and interval methods [18].

GO methods described here do not require calculation of gradients and may be used for
optimization of weights, biases and also slopes of the sigmoidal functions. In some cases
networks with large slopes (>10) give significantly better results. In BP methods transition
to very large weights and biases, corresponding to high slope values, is not numerically sta-
ble. Some modifications of the existing GO methods that have not yet been used for neural
networks are listed below:
1. Selecting up toK contributions to the error function from randomly selected training vec-
tor and itsK−1 nearest neighbors is a modification of the Dittes Monte Carlo procedure [9].
It may be used in any SA scheme.
2. Parallel multi-simulated annealing procedure (a ‘population’ of SA runs created during a
single run) may be used for initialization of the gradient descent searches around promising
values found after a fixed number of function evaluations. The list of hyperboxes containing
the local minima found by gradient procedure should be kept to avoid repetitions.
3. SA or GA may be combined with “rough quantization” approach, i.e. at the beginning
only a few bits per weight are allowed and the changes are relatively large since they have
at least the size corresponding to the flipping of the least significant bit. For example, a sign
plus a single bit per weight gives the possibility to have 3 values, 0,±1 and in our experience
this may already be sufficient to get quite good results [19]. Annealing is than equivalent to
increasing the resolution of parameters around the most promising minima.
4. The Alopex algorithm may be combined with the “rough quantization” of adaptive param-
eters in the global search phase.
5. From the formal point of view genetic algorithms define specific prescription allowing to
make changes of adaptive parameters, and therefore they may be combined with the extension
of Monte Carlo approach proposed by Dittes [9].

III. ALTERNATIVES TO GLOBAL OPTIMIZATION

TWO alternatives to global optimization methods are discussed here: initialization meth-
ods for optimization of neural architectures and ensemble methods for combining re-

sults of many models.
Good initialization of network structure and adaptive parameters may bring the neural

model close enough to the global minimum to make the local minimization techniques suf-
ficient for finding an optimum solution. Recently we have proposed several initialization



methods based on clusterization [6] and statistical discriminant analysis [7]. The method
works for single or more hidden layers and could be used with various parameters for initial
clusterization (or simply to provide multistart parameters (one may also add some random
numbers to the proposed initial weights) and to set up different structures of networks. What
is of primary importance is that – as already has been mentioned – in small networks with
small number of parameters it is very hard to find globally optimal set of weights and there-
fore if multistart gradient methods are used a good initialization is needed. The multistart
gradient method is relatively fast comparing to most global minimization methods and with
a proper starting point may be an alternative to global minimization.

The methods presented in [6], [7] are easily extended to any architecture containing in
the first hidden layer sufficient number of the hidden neurons to account for all the clus-
ters; parameters of other layers should be set up in such a way that the second hidden layer
is treated as output nodes and further layer just pass information. In short our minimal ar-
chitecture is embedded in more complex architecture, and all extra connections have small
random weights, while the output from the embedded three-layered network is passed to the
final output through the extra hidden layers. In this way the same initialization by prototypes
may be used in more complex architectures. Since the initial network should be similar to
the network with globally optimal architecture and parameters multistart local optimization
of such networks may be an inexpensive, but interesting alternative to global minimization.
The weights may be arbitrarily large (the norm of the weight simply changes the slope of the
sigmoidal function), and the resulting networks are quite small. The results of optimization
through initialization have not yet been compared with those obtained by optimization using
global minimization techniques.

It is also not clear whether global optimization methods are competitive to mixture of ex-
perts. There are many methods for combining results of various models obtained for example
by using systematically generated MLP networks of various complexity or using completely
different models, such as various neural networks with several transfer functions combined
with machine learning methods. In the simplest approach linear combination of predictions
of these models is used to form an ensemble (cf. [20]):

M(X,α) =
1
K

K

∑
k=1

αkMk(X,Wk) (1)

K

∑
k=1

αk = 1; αk ≥ 0 (2)

There are no indication in the literature that non-linear combination of models has advan-
tages. The parametersα of the ensemble are optimized using the least squares method. In
probabilistic (Bayesian) interpretation these coefficients are treated as probabilities that the
data has been generated byMk models.

More sophisticated methods are based on a resampling approach to combine results. Sev-
eral such resampling schemes were developed in statistics and machine learning (cf. Breiman
[21] or Diettrich [22]) and should perform very well also for neural networks.



Ensemble methods may easily be combined with initialization methods. For example set-
ting different granularity in initial clusterization procedure will produce a series of methods
with various bias-variance tradeoffs. Since generation of these models is computationally
inexpensive it may be competitive to global optimization.

IV. FINAL REMARKS

ALTHOUGH genetic algorithms are almost the only well known GO method applied to
neural networks several alternatives to simple gradient-based optimization and train-

ing of neural systems exist: many global optimization methods, initialization methods and
ensemble methods. To determine which of these methods will prove to be the most useful
requires large-scale empirical comparisons. Only a few global optimization methods have
already been tried in the context of neural networks, usually with very good results. Un-
fortunately no systematic comparison of these methods is available. In cases published so
far networks trained with GO methods performed very well, sometimes finding solutions of
much better quality, but for many datasets gradient-based solutions are satisfactory.

Genetic algorithms are certainly very interesting but disproportionately much effort has
been put into their applications to neural systems. There is no empirical evidence to sup-
port the idea that they lead to the best solution of the learning problem or to optimal neural
architectures. Other global minimization techniques, ensemble methods and initialization
methods applied to neural systems are also worth of investigating, especially in view of the
computational complexity of genetic algorithms. Several such methods have been proposed
in this paper.
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