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Abstract— Psychological spaces give natural framework for con-  but after proficiency is gained brain’s activity becomes lo-

struction of mental representations. Neural model of psychological  calized. One solution to these problems is offered below.
spaces provides a link between neuroscience and psychology. Cate-

gorization performed in high-dimensional spaces by dynamical asso-
ciativememory modelsisapproximated with low-dimensional feedfor- Il. MIND AND NEURODYNAMICS.
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mentgare;pscussed_ PP = P that'the original |dea} of Iocgl reverberations in groups of
cortical neurons coding the internal representations of cat-
egories, put forth by the psychologist Donald Hebb already
in 1949, is correct [4]. Local circuits seem to be involved in
Although great progress has been made in recent yeargénception and in memory processes. Analysis of integra-
understanding how the brain generates behavior reconcilian of information from the visual receptive fields in terms
tion of language used in psychology and language useddfmodules composed of dense local cortical circuitry [5] al-
neuroscience still remains one of the most important prolews for explanation of a broad range of experimental data
lems. Roger Shepard in a paper “Toward a universal lawaf orientation, direction selectivity and supersaturation. It
generalization for psychological science” [1] wrote: “Whaivould be most surprising if the brain mechanisms operating
is required is not more data or more refined data but a dift the perceptual level were not used at higher levels of in-
ferent conception of the problem”, pointing out that psychdermation processing. Neocortex has highly modular orga-
logical laws should be formulated in appropriate psychologization, with neurons arranged in six layers and grouped in
ical spaces (P-spaces) [2]. Unified theory of mind in cogaacrocolumns that in turn contain microcolumns of about
nitive science that Allen Newell hoped for is still missingl10 neuron each. Successful models of memory, such as the
[3]. Clearly a set of new concepts, a mapping between netacelink model of Murre [6], make good use of this modular
rophysiological and psychological events, is needed. Hatructure, postulating that each episodic memory is coded
should the higher order cognitive processes, such as catdga number of memory traces that are simultaneously ac-
rization, be reduced, at least in principle, to neurodynamictated and their activity dominates the global dynamics of
How are the mental representations in the long-term methe brain, reinstating similar neural state as was created dur-
ory formed? In this paper a model offering plausible solung the actual episode.
tions to these questions is described. How is then mind related to neurodynamics? In physics
Categorization, or creation of concepts, is one of the masticroscopic properties results from microinteractions, in
important cognitive processes. Itis also one of the most dgsychology behavior should also result from neurodynam-
ficult processes to understand if one tries to see it from ties. In practice direct attempts at connecting neural dynam-
point of view of both psychology and neuroscience. Cuies with higher cognition seem to be hopelessly difficult.
rent research on category learning and concept formatidiacroscopic physics is possible because space-time, either
frequently ignores constraints coming from neural plaudtuclidean in classical physics, or described by differential
bility of postulated mechanisms. Connectionist models ageometry in relativistic physics, is a good arena for physi-
at best loosely inspired by the idea that neural processes edgikevents. It seems fruitful to use P-spaces as an arena for
at the basis of cognition. An explanation given by a formahental events. A sketch of such theory was given recently
theory, even if it fits psychological data, may allow for pref7].
dictions, but it may not give us more understanding of hu- A reasonable hypothesis relating psychological concepts
man cognition than a few-parameter fits allowing for pree brain activity seems to be the following: the activity
diction of sun eclipses gave the ancient astronomers.  of microcolumns shows quasidiscrete attractor dynamics.
Psychologists frequently use a language of psycholo@everal stable patterns of excitations may form, each cod-
cal or feature spaces to describe results of categorizationier a specific concept. Via axon collaterals of pyramidal
periments. Shepard showed [1] the existence of universalls, extending at distances of several millimeters, each mi-
scaling laws in psychological spaces. Therefore it should beocolumn excites other microcolumns coding related con-
very interesting to construct models of mental events takimgpts. These excitations should depend on the particular
place in P-spaces and to show how such models could befogm of local dynamics. From the mathematical point of
alized by neural dynamics. One of the mysteries in brautew the structure of local excitations is determined by at-
research is how are the mental representations acquirgd@tors in the dynamics of neural cell assemblies. A col-
Learning at the beginning involves many groups of neuroihection of mode-locking spiking neurons provides a good

I. INTRODUCTION.



model of such networks. Simple models of competitivieehavior of the attractor network is defined. To characterize
networks with spiking neurons have been created to eke attractor dynamics in greater details probabiljti¢s )
plain such psychological processes as access to consciouay be defined on the P-space. Iiacategory problem
ness (cf. [8]). Realistic simulations of the attractor dynanthere areX” — 1 independent probabilities. Other functions
ics of microcolumns, giving results comparable with expethat one may define on P-space may measure the time the
iment, should be possible, although they have not been dafymamical system needs to reach the asymptotic categoriza-
yet. In any case, possible attractor states of neurodynantios probability value. Functions on P-spaces may be mod-
should be identified, basins of attractor outlined and trangled using conventional feedforward neural networks.
tion probabilities between different attractors found. In the More detailed models of this kind, which | have called
olfactory system it was experimentally found[9] that the dypreviously [7] “Platonic models” (Plato thought that mind
namics is chaotic and reaches a cyclic attractor only wheeeents are a shadow of ideal reality, here probability max-
proper external input is given as a cue. The same mayib® representing categories of input objects are shadows of
expected for the dynamics of a microcolumn. Specific ereurodynamics), should also preserve similarities between
ternal input provides a proper combination of features actiategories learned by neural systems. Similarity of cate-
vating a microcolumn that partially codes a category. Frogories represented in feature spaces by peaks of high prob-
the neurodynamical point of view external inputs push theility clusters should be proportional to some measure of
system into a basin of one of the attractors. distance between them. In neural dynamics this is deter-
A good approach connecting neurodynamics with memined by transition probability between different attractor
tal events in higher cognition tasks should start from anatates, determining how “easy” itis to go from one category
lysis of neural dynamics, find invariants (attractors) of thi® the other. However, there is no reason why such transition
dynamics and represent the basins of attractors in P-spgebabilities should be symmetric. As a consequence dis-
Behavioral data may also be used to set a topography of p@nced( A, B) between two objectd and B in the feature
chological space. Inthe first step neural responses shouldpace should be different than distar€®, A). Euclidean
mapped to stimulus spaces. This may be done by populatggometry cannot be used in such case. A natural generaliza-
analysis or Bayesian analysis of multielectrode respongis of distance is given by the action integral in the Finsler
[10]. Conditional probabilities of responsé¥r;|s),i = spaces [11]: 5
1..N are computed from multi-electrode measurements. .
The posterior probability?(s|r) = P(stimuluggiven re- 5(4,B) = mm/ LX), dX (1)/ dt)dt
sponse) is computed from the Bayes law:

Ps|r) = P (slr, roorn) = P(s) Hﬁiﬁvp(rib) whereL(-) is a Lagrangian function. Attractor basins cor-
Yo P(s")IL;Z, P(r|s’)  respond to regions of high values of probability densities in
Representin@(s|r) probabilitiesin psychological space$-spaces. The dynamics in P-spaces is represented by the
based on the feature of stimulia number of “objects” repreaovement of a point called the stategoing from one cat-
senting recognized categories are created. Psychologicabgory to another, following the underlying neurodynamics.
search on categorization may provide additional behaviof@ynamics should slow down or stabilize around probabil-
data and both types of data may be used in one model. ity peaks, corresponding to the time that the mind spends
It would be ideal to construct models of neurodynarin each category coded by an attractor state of neurodynam-
ics based on experimental data, describing how groupsicg. Only a small part of the overall neurodynamics of the
neurons learn to categorize, and then to reduce these mm@kin is modeled, the rest acting as a source of noise. Point,
els to simplified, canonical dynamics (i.e. the simplest dgyclic and strange attractors may be interpreted as recog-
namics equivalent to the original neurodynamics) in theition of categories. Point attractors correspond to infinite
low-dimensional psychological space. So far there are times spend on one category. The distance between such
good neurodynamical spiking neuron models of the cateategories should in this case grow infinitely — if interac-
gory learning process, but it is possible to create a simglens with other parts of the brain are neglected point attrac-
attractor network models based on the Hopfield networksrs behave like “black holes”, trapping the mind state for-
and use these models to understand some aspects of eter.
gory learning in monkeys (cf. [4]). The internal state of The model of forming mental representations proposed
these models is described by the activity of a large numb®ere assumes that categorization is initially done by the
of neurons. Since the input informati6h X) is uniquely brain using many collaborating microcolumns in the asso-
determined by a poink’ in the psychological space it isciative areas of the cortex or in the hipocampus. This pro-
possible to investigate the category that the attractor modeiss should be described by an attractor network. Catego-
A(O(X)) will assign to each point in the psychologicafization, or interpretation of the states of this network, is
space. Thus an image of the basins of attractor dynamicslone by distal projections to cortical motor areas. Longer
the psychological space may be formed. Attractors do rearning leads to development of a specialized feedforward
have to be point-like, as long as a procedure to assign ca¢ural network that matches higher-level complex features
egories, or probability of different categories, to a specifigith categorization decisions of the attractor network. Men-



tal representations are defined and interpreted in the low-Since the details of neurodynamics are not important to
dimensional P-spaces, not in the high-dimensional patternsderstand such categorization experiments, it should be
of activity of the attractor network dynamics. Higher-levesufficient to investigate canonical form of simplified neu-
complex features are created by combination of lower-leweldynamics. One may claim that any neural dynamics re-
features (mechanisms of attention should play a role hergponsible for categorization in problems with two relevant
Alternatively they may be formed by a neural realization deatures is in principle reducible to one of the simplified dy-
multidimensional scaling procedure [12]. Preservation ofamical systems defined in the 3-dimensional psychologi-
similarities is the only requirement for the dimensionalitgal spaces (two features plus the third dimension labeling
reduction. Mental representations - objects in P-spaces - eategories). Parameters defining such simplified dynamics
formed slowly transferring the knowledge about categorizahould allow to reproduce observed behavior. Prototype dy-
tion from the attractor networks to simpler feedforward netiamics for all logical functions used in categorization exper-
works. iments has been found. For example, Type Il problems are
Geometrical characterization of P-spaces and of the lais#ved by the following prototype dynamical system:
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The model presented in the previous section may be ap-This system has 5 attractors (0,0,0), (-1,-1,-1), (1,1,-1); (-
plied to categorization in psychology. Although the exant,1,1), (1,-1,1); the first attractor is of the saddle point type
plar theory of categorization is usually presented as an altand defines a separatrix for the basins of the other four. Such
native to the prototype theory [13] neurodynamics lies at tliyynamical system may be realized by different neural net-
basis of both theories. Is it possible to distinguish betweeworks. In this example, as well as in the remaining five
categorization based on prototypes and exemplars? In thees of classification problems of Shepatdl. [14], it is
first case basins of attractors should be large and the osasy to follow the path from neural dynamics to the behavior
responding objects in P-spaces should be large and fuzzfyexperimental subjects during classification task. Starting
A prototype is not simply a point with average features fdrom examples of patterns serving as point attractors itis al-
a given set of examples, but a complex fuzzy object in tleays possible to construct a formal dynamics and realize it
P-space. If categorization is based on exemplars there iarthe form of a set of frequency locking nonlinear oscilla-
point-like attractors corresponding to these exemplars atwats [15].
the P-space objects are also point-like. Intermediate caseslthough polynomial form of canonical dynamical sys-
are also possible, going from set of points representing éem is for the XOR case very simple and has only one saddle
emplars, to a fuzzy object containing all the exemplars. Apoint for other useful functions it is more complex. Mod-
though representation is different both theories may giwing point attractors using functions(X;, s;) localized
similar behavioral results if processes acting on these repeund theX attractors, leads to the following equations:

resentations are different. If the neural dynamics is noisy K

exemplars become so fuzzy that a prototypeis formed. Neu- V(X)) = Z W, G(X;, s;)

ral dynamic models physical processes at the level of brain i=1

matter while dynamic in the P-spaces models a series of suc- : ov

cessive categorizations, or mental events, providing precise Xio = - aX;

language useful from psychological perspective. This form allows us to model the potential by changing

A classic category learning task experiment has been piie positions and fuzziness (controlled by parameters)
formed by Shepardt.al. [14]. Subjects were tested on sixof the attractors and their relative weight§. Functions
types of classification problems of increasing complexity. 8( X;, s;) may either be Gaussian or, if neural plausibilityis
distinct objects had two kinds of shape, two colors and twequired, a sum of combination of pairs of sigmoidal func-
sizes. In type | problems only a single feature was relevations_, (¢(X; +s;) — o(X; — s,)) filtered through another
for example category A included all squared-shaped objestgmoid. Using this form of the potential one may create
and category B all triangle shaped objects. In type Il probasins of attractors with desired properties and set up the pa-
lems two features were relevant for categorization, for esameters of these functions to account for experimental data.
ample shape and color, but not size of the objects. The logidPeople learn relative frequencies (base rates) of cate-
behind category assignment could be AND, OR, XOR. Tymgmries and use this knowledge for classification. The in-
[I-VI problems involve all three features with various logicverse base rate effect [16] shows that in some cases predic-
behind the assignment. tions contrary to the base rates are made. This effect may be



explained using specific shapes of the basins of attractorswétric spaces rather than vector spaces. It is not yet clear
neural dynamics, butitis much easier to understand it repiehat are the precise restrictions of modeling psychological
senting these attractors and the decision boundaries betwsgaces using vector space structure.
them in the P-space. Thus the same event may be seen frod unified paradigm for cognitive science requires elu-
psychological and from the neurodynamical point of viewcidation of the structure of psychological spaces, search
Learning of the base rates changes synaptic connection®inow dimensional representations of behavioral data and
the neural models, creating larger and deeper basins offat-connections with neural dynamics. Linking neural dy-
tractors - in the P-space objects (high probability valuesamics with psychological models based on feature spaces
corresponding to these attractors are large. Inverse base leads to a complementary description of brain processes and
effects result from deeper, localized attractors around ranental events. The laws governing these mental events re-
categories, or smaller, localized objects in P-spaces.  sult from approximations to neural dynamics, similarly as
Processes acting on representations in feature spaceshikelaws of classical physics result from approximations to
fine certain physics of mental events, with forces reflectingiantum mechanics. These modified feature space mod-
the underlying neural dynamics. The state of the systerls are useful in analysis of psychological experiments, ex-
called “the mind state” [7], is a pointmoving in the P-spacealaining data on judgments of similarity between objects
Base rate effects influence the size of the basins of attracd abstract concepts, as well as results of experiments on
tors, represented by the size of objects in the P-space. Thategorization. Perhaps at the end of this road a physics-like
also influence transition probabilities: specifying value dheory of events in mental spaces is possible?
a feature that frequently appears in combination with other
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