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Abstract.
This paper explores different techniques for extracting

propositional rules from linguistic rule neural networks
and fuzzy rules from fuzzy neural networks. The
applicability and suitability of different types of rules to
different problems is analyzed. Hierarchical rule
structures are considered where the higher the level is
the smaller the number of rules which become  more
vague and more approximate. The issue of quality of the
rules extracted and ways to improve it is discussed. The
paper takes for case study several benchmark datasets
from the UCI Machine Learning Repository. It
compares results produced by propositional and fuzzy
rules extracted from the two types of neural networks.

1. Introduction to the rule extraction
problem: a rule is worth a thousand of data
examples

Extracting rules from data has been explored through
different techniques (Andrews et al. 1995, Mitchell
1997, Fayyad, U. et al. 1996), some of them listed
below:
! case-based methods
! decision tree methods
! clustering methods
! incremental inductive learning
! neural networks
! fuzzy neural networks
! others

Fuzzy neural networks, which combine both
connectionist and fuzzy logic principles, have proved to
be efficient when used for rule extraction and rule
adaptation (Hashiyama et al, 92; Jag, 93; Hauptmann
and Heesche, 95; Kasabov, 96). It is interesting to
consider the crisp limit of the rule extraction from fuzzy
neural networks and compare the quality of
propositional and fuzzy rules. Two neural architectures,
FuNN and LR-net, designed for rule extraction, are
described below and the crisp propositional rules
obtained with LR-net are compared with the fuzzy rules

obtained with the FuNN network. We discuss the weak
and the strong points of both approaches.

2.  Fuzzy Neural Network (FuNN) –
architecture, principles, applications.

Fuzzy neural networks are neural networks that realise
a set of fuzzy rules and a fuzzy inference machine in a
connectionist way.  FuNN is a fuzzy neural network
introduced first in Kasabov (1996) and then developed
as FuNN/2 in Kasabov et al. (1997). It is a connectionist
feed-forward architecture with five layers of neurons
and four layers of connections. The first layer of neurons
receives the input information. The second layer
calculates the fuzzy membership degrees to which the
input values belong to predefined fuzzy membership
functions, e.g. small, medium, large. The third layer of
neurons represents associations between the input and
the output variables, fuzzy rules. The forth layer
calculates the degrees to which output membership
functions are matched by the input data and the fifth
layer does defuzzification and calculates values for the
output variables. A FuNN has both the features of a
neural network and a fuzzy inference machine. A simple
FuNN structure is shown in Fig.1. The number of
neurons in each of the layers can potentially change
during operation through growing or shrinking. The
number of connections is also modifiable through
learning with forgetting, zeroing, pruning and other
operations. The membership functions, used in FuNN to
represent fuzzy values, are usually of triangular type, the
centres of the triangles being attached as weights to the
corresponding connections. The membership functions
can be modified through learning. Several training
algorithms have been developed for FuNN (Kasabov et
al.  1997):

(a) A modified back-propagation (BP) algorithm that
does not change the input and the output connections
representing the membership functions.

(b) A modified BP algorithm that utilises structural
learning with forgetting, i.e. a small forgetting
ingredient, e.g. 10-3, is used when the connection
weights are updated (cf. Ishikawa 1996).
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(c) A modified BP algorithm that updates both the
inner connection layers and the membership layers. This
is possible when the derivatives are calculated
separately for the two parts of the triangular membership
functions. These are also the non-monotonic activation
functions of the neurons in the condition element layer.

(d) A genetic algorithm for training
(e) A combination of any of the methods above used in

different time intervals as part of a single training
procedure.

Several algorithms for rule extraction from FuNN have
been developed for extracting different types of rules:

(a) Aggregated fuzzy rules, i.e. each rule node of a
trained FuNN is represented as a fuzzy   IF-THEN rule;

(b) weighted fuzzy rules
(c) simple fuzzy rules

Fig.1. A FuNN structure for two initial fuzzy rules:
R1: IF x1 is A1 (DI1,1) and x2 is B1 (DI2,1) THEN y is
C1 (CF1); R2: IF x1 is A2 (DI1,2) and x2 is B2 (DI2,2)
THEN y is C2 (CF2), where DIs are degrees of
importance attached to the condition elements and CFs
are confidence factors attached to the consequent parts
of the rules (adopted from [11]). The triplets (s,a,o)
represent summation, activation, and output functions
specific for the layer.

FuNNs have several advantages when compared with
the traditional connectionist systems or with the fuzzy
systems:

(a) They are both  statistical and  knowledge
engineering tools.

(b) They are robust to catastrophic forgetting, i.e.
when further trained only on new data, they keep a
reasonable memory of the old data.

(c) They interpolate and extrapolate well in regions
where data is sparse.

(d) They can be used as replicators (autoassociative
memory), where the same input data is used as an output
data during training; in this case the rule nodes perform
an optimal encoding of the input space.

(e) They accept both real input data and fuzzy input
data represented as singletons (centres of gravity of the
input membership functions)

(e) They are appropriate tools to build multi-modular
Inteligent Information systems (IIS) as explained below.

The FuNN fuzzy neural networks have been used so
far for different tasks: speech recognition; time series
modelling and prediction; decision making;
classification (Kasabov 1996; Kasabov et al. 1997;
Kozma and Kasabov 1998).

3. The LR networks

The architecture of the LR networks (Duch et al.
1996) is roughly similar to the FuNN networks: there are
also five layers, including the input and the output layer.
The first three layers are used to define linguistic
variables (Figures 2 and 3) or membership functions that
in general have trapezoidal shapes:

L(x;b,b’) = σ(x+b) - σ(x+b’)

The difference between the two sigmoidal functions
(realized by the neurons of the second layer) defines a
smooth trapezoidal membership functions. In the high
slope limit this function changes into a rectangular
function and crisp linguistic variables are obtained. If
the difference between the two biases, b and b’ is small
the membership function has a bell shape and if the
sigmoidal neurons are replaced by semi-linear neurons it
has triangular shape. Since the weights between the first
(input) and second layer are all +1 and the second-third
layer are +1 or -1 pairs of the second layer nodes are
combined with one third layer node into a single
„linguistic variable” unit with two adaptive parameters
(plus variable slopes), L(x;b,b’). The output from the L-
units is combined by the rule nodes (R-units), hence the
name LR-network. Linear combination of the rule unit
outputs gives in turn the final output. To make transition
to the crisp logic straightforward a penalty term using
two regularization hyperparameters, λ1 and λ2 is added
to the error function, enforcing the zero or ±1 value of
weights.

E(W) = E0(W)+ λ1  Σi,j  Wij
2 + λ2  Σi,j Wij

2(Wij
2 -1)

where E0(W) is the standard error function. The term
scaled by λ1  is used at the beginning of the training to
enforce large number of zero weights and the term
scaled by λ2 is slowly increased towards the end of
training. The alternative form with Laplace
regularization is:

E(W) = E0(W)+ λ1  Σi,j  |Wij |+ λ2  Σi,j |Wij|(|Wij
 |-1)
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The modification of the backpropagation procedure is
quite trivial. Since our goal is to obtain small networks
that are easy to interpret simple regularization using the
λ1 term (Ishikawa 1996) is not sufficient. As Neal
(1996) has pointed out large number of small weights
may lead to good generalization (small weights mean
that only the linear part of the sigmoid, around the
threshold value, is used), but in compact neural
networks some weights should stay large and this is
ensured by the λ2  term in our penalty function. The crisp
logic limit is very interesting because propositional rules
are obtained.
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b'

b

b b'

+1
σ( x+b)

σ( x+b')

-1

Fig.2. L-unit in the limit of large slope values realizes
a window type crisp membership function.

In practice we have found a constructive version of the
training algorithm much easier to use than the version
starting with the larger network. One rule neuron per
output class is created and the network trained on all the
data until convergence is reached. Second rule neuron is
added for those classes for which errors remain and the
training repeated. This training procedure is called
MLP2LN (Duch et al. 1996a) because it attempts to
change the MLP network into a network performing
logical functions (LN).

Since the first R-unit is trained on all data until the
error will decrease as much as possible it codes the rules
covering the largest number of cases, with
suubsequently added R-units coding more and more
specific rules. The optimal number of R-units is easily
determined by examining the rules that are derived from
each new added unit: if the number of derived rules
exceeds the number of vectors classified by these rules
the network becomes too specialized and such a unit
should not be added. Some constructive algorithms,
such as the cascade correlation, have been criticized
because they may lead to overtraining and thus poor
generalization, but this problem is easily avoided here.
The optimal number of L-units may also be found by
starting from a single unit per each input, covering the
whole data range, and adding more units until no
significant reduction of the error occurs. It should be
stressed that finding good linguistic variables leads to a
hard minimization problem that local descent algorithms
are rarely able to solve. Therefore a good initialization,
based for example on analysis of histograms, iterative
optimization of linguistic variables (using the final
values as a start for creation of a new LR network), or

on initialization of MLP networks by cluster information
(Duch et al. 1997c) is highly desirable.
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Fig.3 Architecture of L-R network for a two-class
problem (single output unit is sufficient).

4. Extracting  Propositional Rules  from
LR- networks on Case Study Data Sets

The Iris data (Mertz and Murphy 1997), serving as a
well-known benchmark, has 150 vectors evenly
distributed in three classes, called iris-setosa, iris-
versicolor and iris-virginica. Each vector has four
features: sepal length x1 and width x2, and petal length
x3 and width x4 (all in cm). Analysis of histograms of
the individual features for each class may provid initial
linguistic variables. For example, Iris-virginica class is
more frequent for x3 > 4.9 and Iris-versicolor are more
frequent below this value. Since the number of vectors
per class is rather small discretization should be based
on smoothed histograms. Initial discretization is further
improved by changing the cutoffs of linguistic variables
to minimize the classification error of the extracted set
of rules - the whole rule extraction procedure may then
be repeated with new linguistic variables.

Several solutions may be generated by LR-networks,
depending on the strength of regularization terms
enforcing network skeletonization. The simplest result
involves one attribute, petal length x3, and leaves two
rules giving 95.3% accuracy (7 errors) on the whole
dataset:

IF  x3 < 2.5  THEN iris-setosa;
IF  x3 > 4.9  THEN iris-virginica;
else iris-versicolor.

This is the simplest description of the Iris dataset.
Decreasing the regularization parameters we can
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generate more accurate rules, involving two attributes,
for example:

IF  x3=s  THEN iris-setosa
IF  x3=l ∨  x4=l  THEN iris-virginica;
ELSE iris-versicolor.

where x3=s (small) means x3 < 2.5, x3=l means that
x3 > 4.93 and x4=l means x4 > 1.7. These simple rules
make only 3 errors on the whole data set. One can argue
that more accurate solutions do not offer a better
generalization because decreasing the regularization
hyperparameters further leads to three new rules per one
correctly classified vector, which clearly indicates the
overfitting of the data. It would be hard to improve upon
the accuracy and explanation power of the rules given
above (Duch et al. 1997a,b).

Thus in the case of such simple classification problem
crisp propositional rules may be more useful than fuzzy
rules and one does not gain much on leaving fuzzy
membership functions instead of going to the crisp logic
limit. One can draw similar conclusions from
investigation of a number of medical datasets. We have
obtained propositional rules for the following datasets:

Hepatitis dataset (Mertz and Murphy 1997) contains
155 samples belonging to two different classes (32 „die”
cases, 123 „live” cases). There are 19 attributes, 13
binary and 6 attributes with 6 to 8 discrete values. The
propositional rules for the first of these classes are:

age > 52 ∧  bilirubin > 3.5  OR
age ∈ [30,51] ∧  histology=yes ∧  ascites=no
These rules give 11.6% error on the whole dataset.

Further efforts to add new neurons to classify the
remaining data lead to a very large number of rules
which is a clear indication of overfitting the data. For
example the next neuron classified properly 6 new
vectors, but yielded more that 50 rules. For comparison
LDA (linear discriminant analysis) gives 13.6%, k-NN
gives about 15%, MLP about 18% and CART decision
tree about 17% of errors for this case.

The cancer dataset (Mertz and Murphy 1997)
contains 286 cases, with 9 attributes and 2 classes.
Usually 30% of the cases are selected randomly as a test
data, and the best classification results give only about
23% of error on the training and similar error on the test
set. One rule:

deg_malig=3 ∧  ~ inv_nodes ∈ [0-2]

gives 22.9% accuracy on the test data with 10-fold
cross-validation, and 22.6% on the training part. It may
be obtained by optimization of two slightly more
complex rules (coming from one neuron)

 (deg_malig=3 ∨  breast=left) ∧  ~ age ∈ [50-59]   ∧  ~
inv_nodes ∈ [0-2]

deg_malig =3 ∧  breast=left ∧  node_caps=yes

Further training of the network leads to one new rule
per each data vector, decreasing accuracy on the test set.
These rules give 22.0% errors on cancer data and give
the best classification results, although similar accuracy
has been achieved by the CART decision tree and PVM
method (Weiss and Kapouleas 1990). Results obtained
using machine learning methods (AQ15 and weighted
networks), quoted in the UCI repository that contains
this dataset, are within 26.5-35% error range, for
example k-NN gives 34.7% and MLP 28.5% errors on
the test data.

Heart disease dataset (Mertz and Murphy 1997)
contains 303 cases collected by the Cleveland Clinic
Foundation. While the database has 76 raw attributes,
only 13 of them are actually used, 6 of which are
continuous. The network with only one hidden neuron is
equivalent to the three crisp logical rules:

∼ cp=2 ∧  slope=3   OR
ca=0.0 ∧ (∼  cp=2 ∨  slope=3)  OR
∼  thal=2 ∧ (ca=0.0 ∨  ∼  cp=2 ∨  slope=3)

These rules give 17.5% of error on the whole dataset.
This is the only medical data tested so far for which
linear discriminant analysis gives slightly better result
(15.5% of error) than propositional rules. k-NN, MLP
and CART give about 19% of errors on this dataset
(Mertz and Murphy 1997).

The hypothyroid data (Mertz and Murphy 1997) is
somewhat larger, with 3772 cases for training, 3428
cases for testing, 22 attributes, and 3 classes: primary
hypothyroid, compensated hypothyroid and normal (no
hypothyroid). For the first two classes after some
optimization the following rules are obtained (Duch et
al. 1997):

1:  TSH > 6.1 ∧  FTI < 64.4
2:  TSH > 6 ∧  TT4 < 149 ∧  FTI ≥ 64.4

∧  on_thyroxine = no ∧   surgery=no

These rules are very accurate, giving only 0.67% on
the test and 0.21% on the training set.

LR-network gave more complex rules:
1:  (TSH∈ [6.1,29) ∧  FTI < 63 ∧  T3 < 20) 
∨  (TSH ≥ 29 ∧  FTI < 63)

2: TSH ≥ 6.1 ∧ FTI ∈ [64.4,180] ∧  on_thyroxine = no
∧  (surgery=no ∨ TSH∉ [6.1,29])



which make 0.3% error on the training set and 0.9%
on the test set. Comparing to other classification systems
these rules are not only easy to understand but also
highly accurate. The best MLP with genetic
optimization (Schiffman et al. 1993) gives 1.5% error
on the training set and k-NN makes 4.7% error.

5. Extracting Fuzzy Rules from FuNN – A
Comparative Analysis

The FuNN structure is designed to facilitate rule
extraction and rule insertion in addition to adaptive
learning with fixed or adaptable membership functions.
If a FuNN structure is trained different sets of
aggregated rules can be extracted depending on the
threshold used which removes rule condition and
conclusion elements with importance less than the
threshold. In this way a hierarchical knowledge
representation of  the information learned in the FuNN
structure can be created. On the top of this structure are
simple general rules.

     A set of rules extracted from FuNN trained on the
Iris data when the threshold = 2 is shown  below:

IF x3= Sm (4) AND x4=Sm (4) THEN   setosa (8);
IF x2=Med (7) AND x4=Med(37)

THEN versicolour (16);
IF x1=Sm (12) AND x3=L (38) AND x4=Med (6) 

THEN  virginica (17),

where: Sm, Med and L denote small, medium and large
fuzzy values represented as triangular membership
functions having centers of 0, 0.5 and 1 respectively in a
normalised domain for each of the input variables. Rules
in this form, assigning importance factors to different
conditions and conclusions, carry more information than
simple propositional rules. The rules above can be
presented in a more general, simplified way which will
make a new level of rule representation in a knowledge
representation hierarchical scheme as shown below:

IF x3= Sm  AND x4=Sm THEN   setosa ;
IF x4=Med THEN versicolour;
IF x3=L THEN  virginica

The FuNN architecture allows for training with adaptive
membership functions when the centers ‘move’ if
necessary in order to approximate better the data set.
The FuNN structure above had initially three rule nodes
and three rules were extracted with different level of
accuracy. When using the FuNN model, a FuNN is
initialized with more rule nodes, in the given example
we start with 40 rule nodes, and learning with forgetting
is applied. After sufficient training with a consecutive
pruning, similar rules as shown above can be extracted,
while the classification performance is 100%. The

connection weights which are not contributing to the
solution ‘fade away’ and a skeleton network is obtained
which is a structural representation of the fuzzy system
with 3 aggregated fuzzy rules. This is illustrated in fig.4.
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     5. Crisp logical rules may be highly accurate in
classification problems because it is easy to recognize
when overfitting occurs. It may not be so simple with the
fuzzy rules. Fuzzy rules carry more information but their
interpretation is more difficult. Smooth transition
between the fuzzy and crisp rules may be realized either
by using constrained MLPs or density estimation
networks (Duch and Diercksen 1995, Duch et al. in
print) and is always worth doing. If some accuracy is
lost in this transition propositional rules may still be
used for approximate justification of the results.

     6. It is not clear how to approach the time series or
signal analysis using propositional rules. One approach
could rely on basis functions, such as wavelets, and form
the rules not in terms of input features but expansion
coefficients. In this case the use of fuzzy rules is more
appropriate.
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